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Abstract: Antioxidant proteins can be beneficial in disease prevention. More attention has been
paid to the functionality of antioxidant proteins. Therefore, identifying antioxidant proteins is
important for the study. In our work, we propose a computational method, called SeqSVM,
for predicting antioxidant proteins based on their primary sequence features. The features are
removed to reduce the redundancy by max relevance max distance method. Finally, the antioxidant
proteins are identified by support vector machine (SVM). The experimental results demonstrated that
our method performs better than existing methods, with the overall accuracy of 89.46%. Although a
proposed computational method can attain an encouraging classification result, the experimental
results are verified based on the biochemical approaches, such as wet biochemistry and molecular
biology techniques.

Keywords: antioxidant protein; primary sequence; support vector machine; maximum relevance
maximum distance; feature selection

1. Introduction

Permeability is an intrinsic nature of a normal cell membrane. Not only the water and oxygen are
allowed to flow into the cell freely, but also the carbon dioxide and other waste products (uric acid,
water, and etc.) can pass through the cell membrane. The free radicals exist in metabolic process, X-rays,
air pollutants, cigarette smoking, etc. [1]. They are unstable before they find atoms for neutralization.
Since the skin is damaged outside every day, the free radicals are harmful to the cells of the skin.
They can create a chain with the beginning of oxidative damage, and then the cells are destroyed.

Antioxidant proteins can neutralize free radicals to make them stable. Research shows that
antioxidant proteins play an important role in terminating cellular and DNA damage caused by free
radicals [2]. The damage caused by free radicals is the source of aging and various diseases [3–5]. Thus,
research on antioxidant proteins has been paid more attention recently.

Although some micronutrients (vitamins) have been recognized as antioxidant molecules, such as
vitamin E, vitamin C, etc., it is still necessary to identify effective proteins with antioxidative
characteristics. Unfortunately, it is time-consuming to predict the antioxidant proteins by biochemical
experiments. The computational method for prediction has been paid more attention recently,
such as SNPdryad, used for predicting deleterious non-synonymous human SNPs (Single Nucleotide
Polymorphisms) [6,7]. The computational methods used for identifying antioxidant proteins are
expected, especially for the cases with large amount of protein sequence data. A method based
on star graph topological indices was proposed to handle the problem [4], and the results are
encouraging. However, the sequences in [4] are reused in the experiments, which the results are
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likely to be overestimated. Furthermore, a naive Bayes model was proposed by Feng et al. [8] to
predict antioxidant proteins. The model proposed in [8] is based on optimal dipeptides, and the
accuracy is 66.88% evaluated by jackknife test. The accuracy of AodPred [9], based on g-gap dipeptide
composition, is 74.79%. As we have known, the accuracy of antioxidant proteins can be improved.

The experimental results of previous work show that the performance of predicting antioxidant
is related to the representation of proteins and the classifiers. The sequence information of proteins
should be described precisely in the process of protein representation [10,11]. The study of protein
representation has been paid more attention these years, such as the amino acid composition (AAC)
model used in [12–14], g-gap dipeptide composition, proposed in [15], 400D [16], 188D [17], and others.
The protein is represented by a simple vector in AAC model, whose elements represent the normalized
occurrence frequency of the native amino acid in the peptide chain. As a result, the sequence
information is lost in the AAC model. G-gap dipeptide composition [18] is a sequence-based
feature extraction method for protein representation, which has been used widely in the realm of
bioinformatics [2,9,17,19–24]. 400D is a method that represents the occurrence frequency of two
consecutive amino acids, which is used in [16] to identify anticancer peptides. 188D [17] contains
188 features, including the physicochemical property attributes, the occurrence frequency of amino
acid information, and others. The features can be combined together for keeping more information,
as in [25,26]. In our work, the protein is described based on the physicochemical properties [17],
and there are, totally, 188 dimensions used for protein representation. However, the results of
experiments show that there may be redundancy between the features, so it is necessary to reduce the
dimensionality of the features [27]. The redundancy is also considered in our work by maximizing
the relevance and the distance between the features [28], and number of features is reduced to 132.
The problem of imbalance class is considered in our work, and the dataset is processed by SMOTE
(synthetic minority oversampling technique) method. The experimental results demonstrate that the
reduced features attain higher accuracy than 188D. In other words, the accuracy of SeqSVM using 188D
is 88.68%, while the accuracy of SeqSVM is improved to 89.46% using the method of MRMD (maximum
relevance maximum distance) to select the features. Compared with AodPred [9], the accuracy of our
method is better than that of AodPred, whose accuracy is 74.79%.

Above all, the contributions of our work include as follows:

(1) A computational method called (SeqSVM) is proposed to predict antioxidant proteins, which
is based on the primary sequence features proposed in [17]. The features are described by the
physicochemical properties and sequence information of the protein, the dimensionality of the
extracted features is 188, so the feature used here is called 188D.

(2) There is redundancy in the 188D feature. In the manuscript, the features are selected by maximum
relevance maximum distance method [28]. The features will be kept which can maximize the
Pearson’s correlation coefficient and the distance between attributes. The experimental results
show that the performance of the method using selected features is competitive, or even better
than that of the method using 188D.

(3) The proposed method uses support vector machine for antioxidant protein prediction.
The experiments demonstrated that our proposed method performs better than existing methods
with the accuracy of 89.46%. The best result of existing work is 74.79% proposed by Lin et al. [9].

The rest of the paper is organized as follows. The experimental results are discussed and analyzed
in Section 2. Section 3 introduces the dataset used in the proposed work, the classification method,
SMOTE processing, sequence representation, and performance evaluation. Finally, a conclusion is
given in Section 4.
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2. Results and Discussion

2.1. Comparison with Existing Methods

Our proposed method (SeqSVM) is compared with existing methods. Table 1 shows the
comparison of our method with the existing method, on accuracy. The dataset is processed by
SMOTE method to make a balance between the antioxidant samples and non-antioxidant samples
in SeqSVM. For the purpose of removing the feature redundancy, the features are selected by max
relevance max distance principle. In Table 1, the accuracy of our method with SMOTE processing and
MRMD is 89.46%. Naive Bayes method is proposed to predict antioxidant proteins, and the accuracy
of the method is 66.88% in jackknife test [8]. AodPred [9] is a method based on SVM classifier by using
g-gap dipeptide features. The accuracy of AodPred based on g-gap dipeptides is 74.79% in jackknife
test. Thus, the experimental results demonstrate that our method can attain high accuracy and classify
antioxidant and non-antioxidant proteins efficiently. The time complexity of computation method
depends on the classification method SVM, which is related to the number of training samples and the
feature dimension.

Table 1. The comparison of accuracy with existing methods.

Performance Evaluation SeqSVM (132D) AodPred Nave Bayes

Accuracy 89.46% 74.49% 66.88%

2.2. The Comparison of Performance Evaluation on Feature Selection Methods

To further demonstrate the performance of our sequence-based method and the selected 132D
features, the features are compared with g-gap dipeptides by using other classifiers provided by
WEKA [29]. The feature set of 188D is reduced by MRMD method to 132D. MRMD method is a feature
method, which is mentioned in Section 3.6. The performance of the features on different classifiers
on sensitivity (Sn), specificity (Sp), and accuracy (Acc) are compared in Figures 1–3. In Figures 1–3,
“Logistic” is short for logistic regression. J48 tree is a decision tree method based on C4.5. RF and SVM
are short for random forest and support vector machine.

The Sn on 132D used Bayes net performs better than other methods. In the experiments, we can
see that our method (188D and 132D using SVM) performs better than other classifiers using g-gap
dipeptides, except SVM. However, Bayes net using 188D attains the highest Sn with 81.6%. The Sn
of reduced 132D on Bayes net also performs better than that of AodPred. Figure 1 also shows that
188D and 132D perform better than g-gap dipeptides on most classifiers, which means that 188D and
132D are more robust than g-gap dipeptides. The figure also shows that the reduced 132D removes the
redundancy, and can attain comparably high sensitivity on Bayes net and J48 tree. The sensitivity of
132D reduced features is higher than that of 188D on the other three classifiers. Thus, it is necessary to
select features by max relevance max distance method.

The comparison of specificity with the features on different classifiers is shown in Figure 2. Our
method (188D with SVM) performs better than that of AodPred (g-gap dipeptides) on specificity.
The value of Sp of the reduced SeqSVM is higher than that of AodPred (g-gap dipeptides). G-gap
dipeptides performs on Bayes net than 188D and 132D. The values of Sp using different features are
comparable on Logistic, J48 tree, and RF classifiers.

In Figure 3, the accuracy of SeqSVM with 188D and 132D is better than that of AodPred (g-gap
dipeptides SVM).
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2.3. The Comparison of SeqSVM

The method of SeqSVM with SMOTE is compared to SeqSVM without SMOTE. The comparison
of SeqSVM methods is shown in Table 2. The accuracy of SeqSVM before SMOTE is 85.98%, while the
accuracy of SeqSVM is 88.68% after SMOTE processing. The accuracy of SeqSVM is improved by 3.1%
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after using SMOTE processing compared with SeqSVM without SMOTE processing. The accuracy of
SeqSVM with SMOTE and MRMD is 89.46%, which the accuracy is improved by 4% compared with
SeqSVM. The experimental results demonstrate that the performance of classifier can be improved by
using SMOTE processing, when the number of class sample is imbalance. Although the computational
methods can attain an encouraging classification result, the experimental results are verified based on
the biochemical approaches, such as wet biochemistry and molecular biology techniques.

Table 2. The comparison of accuracy on SeqSVM methods.

Performance Evaluation SeqSVM
(Non-SMOTE)

SeqSVM
(SMOTE)

SeqSVM
(SMOTE + MRMD)

Accuracy 85.98% 88.68% 89.46%

3. Materials and Methods

3.1. Benchmark Dataset

The dataset used in our work is generated and used by Feng et al. [8,30,31], and the data are
selected from the UniProt database. For the purpose of selecting valid data, only the proteins that have
been confirmed with antioxidative activities are selected, and the proteins with ambiguous meanings
(such as “B”, “X”, “Z”) are excluded. The benchmark dataset (S) is represented by positive subset (S+)
and negative subset (S−), formulated as Equation (1).

S = S+ ∪ S−, (1)

where the symbol “∪” means the union in the set theory. There are 710 antioxidant proteins and
1567 non-antioxidant proteins left after the selection process. Furthermore, the selected sequences
contain redundancy with high similarity. To avoid the overestimation of the methods, the homologous
sequences with more than 60% similarity are removed by CD-HIT program [32] from the dataset.
Finally, a benchmark dataset with 253 antioxidant proteins and 1552 non-antioxidant proteins is used
for the prediction model. As a result, the positive subset (S+) contains 253 samples, while there are
1552 samples in the negative subset (S−).

3.2. Support Vector Machine

Support vector machine (SVM) is a supervised classification model. As we have known, SVM has
been widely used in bioinformatics [9,33–46], so here, we introduce it briefly. In linearly separable cases,
the key idea of SVM is that a hyperplane is built to separate the two groups with a maximum margin.
If the samples are non-linearly separated, the input variables are mapped into a high dimensional
feature space by a kernel function. The principle of SVM is introduced in [47,48], and more details
are provided in [49]. The SVM used in our work is the package named LIBSVM written by Chang
and Lin [50]. Radial kernel function (RBF) is selected because of its effectiveness and efficiency.
The regularization parameter, C, and the kernel width parameter, γ, are optimized by the grid
search approach.

3.3. SMOTE Processing

There are 253 antioxidant proteins and 1552 non-antioxidant proteins in the dataset. The dataset
is quite imbalanced for the reason that the positive samples and negative samples are not equally
represented. SMOTE [51] is an approach to achieve a better result by oversampling the minority class
and undersampling the majority class. The key idea of SMOTE is that a synthetic sample is created
by oversampling method, instead of replacement. The minority class is composed of the minority
class samples and the synthetic samples. The synthetic samples are generated along the line segments
joining any or all of the K minority class nearest neighbors. If 200% samples should be oversampled,
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two out of K nearest samples will be chosen, and samples are generated on each direction of the chosen
neighbors. The data are standardized after SMOTE processing.

3.4. Sequence Representation

188D vector was used to extract features of proteins by Cai et al. in 2003 [17]. The property of
188D includes the amino acid composition, distribution and physicochemical property. Due to the
diversity of the amino acid, to extract the features clearly, the mentioned properties are divided into
four classes. C1 means the percentage of amino acid (based on the amino acid class), C2 represents
the percentage of amino acid (based on physicochemical property). There are 20 amino acids, so the
dimension number of frequency of each amino acid is 20. The physicochemical property is represented
by eight attributes, which are secondary structure, solvent accessibility, normalized Van der Waals
volume, hydrophobicity, charge, polarity, polarizability, and surface tension. There are three values
for each attribute, for example, the attribute of secondary structure can be described by EALMQKRH,
VIYCWFT, or GNPSD, denoted by Rij (1 ≤ i ≤ 8, 1 ≤ j ≤ 3). The physicochemical property
of proteins is shown as Figure 4. Thus, 24 attributes are used for describing the physicochemical
properties. B describes the percent frequency of bivalent. There are three types of bivalent used for
each property, denoted by RimRin, RimRio, RinRio(1 ≤ m, n, o ≤ 3). Thus, there are 24 dimensions on
the eight physicochemical property attributes.
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Given a protein sequence with length L, the percent of the amino acids of a particular property
located at the first, 25%, 50%, 75%, 100% is measured as the distribution of the protein. There are
24 attributes used to describe the physicochemical properties. The distributions of amino acids are
represented by 120 attributes, by the reason that there are five values on each attribute. Above all,
the total number of attributes for protein representation is 188. In fact, it is obvious that not all of the
188 features will be used for prediction. There is redundancy between the features. Thus, the features
are selected by max relevance max distance method proposed by Zou [28].

3.5. Performance Evaluation

Sensitivity (Sn), specificity (Sp), and accuracy (Acc) are used to measure the classification
quality. Sensitivity is used in Chou’s work [52–55], and represents the sensitivity, which is calculated
by Equation (2). Specificity is the specificity of the algorithm, which is measured by the rate
of misclassification of the antioxidant proteins. The calculation of Sp is shown as Equation (3).
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Assessments of Sp or Sn, individually, are not sufficient to evaluate the performance of a method.
The overall accuracy is calculated by Equation (4).

Sn= TP
TP+FN

, (2)

Sp= TN
TN+FP

, (3)

Acc =
TP + TN

TP + FN + TN + FP
, (4)

where TP is the number of true positive samples, TN represents the number of true negative
samples, FN represents the number of false negative samples, and FP represents the number of
false positive samples.

Assume N+ is the number of antioxidant proteins labeled by the classification method, and N−

is the number of non-antioxidant proteins labeled by the classification method. N+
− is the number

of antioxidant proteins which are misclassified by non-antioxidant proteins. N−+ is the number of
non-antioxidant proteins which are mislabeled by antioxidant proteins. Thus, there are

TP = N+ −N+
−, (5)

TN = N− −N−+, (6)

FP = N−+, (7)

FN = N+
−. (8)

If N+
− = 0, this means that all antioxidant proteins are recognized, and the sensitivity Sn = 1.

Similarly, if N−+ = 0, this means that none of the non-antioxidant proteins are misclassified as
antioxidant proteins, and the value of specificity Sp = 1. Equations (9)–(11) can be rewritten as

Sn = 1−
N+
−

N+ , (9)

Sp = 1−
N−+
N−

, (10)

Acc = 1−
N+
− + N−+

N− + N+ . (11)

From Equations (9)–(11), it is obvious that if N−+ = N+
− = 0, which means that none of the

antioxidant peptides or the non-antioxidant peptides are misclassified. Thus, there is Sn = Sp = Acc = 1.
The values of Sn, Sp, and Acc are larger, and the performance of the method is better.

In the experiments, the predictors are evaluated by the jackknife cross-validation [56]. There are
three cross-validation test methods used in the literature, which are independent dataset test, K-fold
cross-validation (i.e., 5-fold cross-validation or 10-fold cross-validation) and jackknife cross-validation
test [56]. Jackknife test is considered as the least arbitrary and most objective [57]. The advantage of
jackknife test has been demonstrated in that it can give a unique output for a given benchmark dataset.

3.6. Feature Selection

Feature selection techniques have been widely applied to problems in bioinformatics [57–61].
In this work, we use maximum relevance maximum distance (MRMD) [28] to remove the redundancy
of features. The objective function of MRMD is shown as Equation (12). If m−1 features have been
selected, the m-th feature will be selected if the i-th feature maximizes Equation (12).

max(MRi + MDi) (12)
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where MRi is the relevance between the features. The relevance is measured by the Pearson’s correlation
coefficient, shown as Equation (13).

PCC
(→

X,
→
Y
)
=

∑N
k=1(xk − x)(yk − y)√

∑N
k=1(xk − x)

√
∑N

k=1(yk − y)
, (13)

where N is the number of vectors, and x(y) is the average value on the k-th dimension. MDi is used
to measure the level of similarity between two feature vectors. In our experiments, the maximum
distance is calculated as the mean of the Euclidean distance (ED), cosine distance (COS), and Tanimoto
coefficient (TC) (shown as Equation (16)). The distances used are defined as follows.

EDi =
∑ ED(

→
F i,
→
F k)

M− 1
=

∑
√

∑K
k=1(xi − xk)

2

M− 1
(1 ≤ k ≤ M, k 6= i), (14)

COSi =
∑ cos(

→
F i,
→
F k)

M− 1
=

∑
→
F i
→
F k/||

→
F i||||

→
F k||

M− 1
(1 ≤ k ≤ M, k 6= i), (15)

TCi =
∑ TC(

→
F i,
→
F k)

M− 1
=

∑
→
F i
→
F k/(||

→
F i||

2
+ ||

→
F k||

2
−
→
F i
→
F k)

M− 1
(1 ≤ k ≤ M, k 6= i), (16)

maxMDi =
1
3
(EDi + COSi + TCi)(1 ≤ i ≤ M), (17)

where M is the number of features. The distance is calculated on each dimension, and the feature will
be selected with the maximum distance by satisfying the condition of Equation (17).

4. Conclusions

Antioxidant proteins can terminate the cellular and DNA damage caused by external sources,
such as exposures to X-rays, ozone, cigarette smoking, and others. The study of antioxidant proteins
has drawn attention in recent years. The computational methods have been proposed to identify
the antioxidant proteins, and the results are encouraging. In our work, a method based on primary
sequence information, using SVM, is proposed to predict antioxidant proteins, and the experimental
results show that our method performs better than existing methods. The contribution of our work
is that a computational method is proposed to predict antioxidant proteins, and the classification
accuracy of the method is better than some existing methods. Since there are publicly accessible web
servers provided for practical models [62–66], the web server for identifying antioxidant proteins
based on our method will be developed later to help the researchers identify the antioxidant proteins.
We will also extend our work to other organism in our future work, such as E. coli/S. cerevisiae/D.
radiodurans in UniProt database.
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