Supplementary information **Figure S1.** PDGFR inhibitor represses PDGF-BB-induced phosphorylation of PDGFR and PLCγ. MEF-STIM1^{-/-} cells were starved in a serum-free medium for 12 h and then pretreated with 10 μM AG-1295 for 30 min. Cells were stimulated with 100 ng/mL PDGF-BB for 3, 5, and 10 min. Immunoblotting analysis using antibodies against phospho-PDGFRβ (pPDGFRβ), PDGFRβ, phospho-PLCγ (pPLCγ), and PLCγ. β-actin served as the internal control. (B and C) Quantification of proteins phosphorylation between DMSO and AG-1295 treatments. Relative intensities of the blots are presented as mean ± SEM from three independent experiments. Bar charts show phosphorylation levels of (B) pPDGFRβ and (C) pPLCγ normalized to the total protein. *,#: P < 0.05; **,##: P < 0.01; ***,###: P < 0.001 by Student's t-test. **Figure S2.** STIM2 knockdown attenuates SOCE in MEF-STIM1^{-/-} cells. (A) Western blotting of STIM2 and β-actin was performed to evaluate the knockdown efficiency of scrambled siRNA (siControl) and STIM2 siRNA (siSTIM2) upon pre-treatment with siRNAs for 48 h in MEF-STIM1^{-/-} cells. Representative tracings showing the effect of STIM2 knockdown in Fura-2/AM-loaded, serum-starved MEF-STIM1^{-/-} cells in the absence of extracellular Ca²⁺ followed by addition of 2 mM Ca²⁺ to the extracellular buffer under stimulated with (B) thapsigargin (TG, 2 μM) or (C) PDGF-BB (100 ng/mL). Intracellular Ca²⁺ ([Ca²⁺]_i) was monitored using a single-cell fluorimeter for 15 min. Each trace represents the mean from three independent experiments. Blue arrowheads indicate addition of TG or PDGF-BB at 1 min. **Figure S3.** Inhibition of PDGF-BB-mediated PLC γ activation using the PLC inhibitor. MEF-STIM1^{-/-} cells were starved in a serum-free medium for 12 h and then pretreated with 10 μM U73122 and 100 ng/mL D609 for 30 min. Cells were stimulated with 100 ng/mL PDGF-BB for 3, 5, and 10 min. Immunoblotting analysis using antibodies against phospho-PDGFR β (pPDGFR β), PDGFR β , phospho-PLC γ (pPLC γ), PLC γ , phospho-CREB (pCREB), and CREB. β -actin served as the internal control. (B and C) Quantification of protein phosphorylation between DMSO, U73122, and D609 treatments. Relative intensities of the blots are presented as mean ± SEM from three independent experiments. Bar charts show phosphorylation levels of (B) pPLC γ and (C) pCREB normalized to the total protein. *: P < 0.05; **: P < 0.01 by Student's t-test. **Figure S4.** PDGF-BB induces interaction between STIM2 and SOCE-related channel proteins in MEF-STIM1 $^{-/-}$ cells. Starved cells were treated with 100 ng/mL PDGF-BB for 5 min, and cells were fixed with 4% paraformaldehyde. Immunofluorescence staining was performed to label STIM2, Orai1, Orai2, Orai3, and TRPC1, and the fluorescence images were obtained using confocal microscopy. Scale bars = 10 μ m. **Figure S5.** PDGF-BB does not affect MEF cell proliferation. (A) MEF-WT and MEF-STIM1^{-/-} cells were starved in a serum-free medium for 12 h and then cultured in to DMEM with 0.1% FBS and with or without PDGF-BB (100 ng/mL) for 24, 48, and 72 h. Following fixation with 4% paraformaldehyde, cells were stained with Hoechst 33342. Fluorescence images were captured using an inverted fluorescence microscope. Cell counting was analyzed using ImageJ. Each point represents mean \pm SEM from three independent experiments. (B) Comparison of the effects of PDGF-BB on cell proliferation between MEF-WT and MEF-STIM1^{-/-} cells in a medium containing 0.1% FBS. ***: P < 0.001 by Student's t-test. **Figure S6.** STIM1 knockout decreases phosphorylation of PLC γ , Akt, JNK, and ERK, but not STAT3, under EGF stimulation. MEF-WT and MEF-STIM1^{-/-} cells were starved in a serum-free medium for 12 h and then stimulated with 100 ng/mL EGF for 5, 15, and 30 min. Immunoblotting analysis using antibodies against phospho-EGFR (pEGFR), EGFR, phospho-PLC γ (pPLC γ), PLC γ , phospho-Akt (pAkt), Akt, phospho-JNK (pJNK), JNK, phospho-ERK (pERK), ERK, phospho-STAT3 (pSTAT3), and STAT3. β -actin served as the internal control.