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Abstract: Thyroid hormones (THs) influence multiple processes in the developing and adult central
nervous system, and their local availability needs to be maintained at levels that are tailored to
the requirements of their biological targets. The local complement of TH transporters, deiodinase
enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type
3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and
adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host
of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH
excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the
Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during
development introduces an additional level of control to deliver specific levels of hormone action in
the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the
genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to
exogenous treatments and environmental exposures, with potential implications for the etiology of
human neurodevelopmental disorders.

Keywords: thyroid hormone; type 3 deiodinase; Dio3; environmental factors; DIk1-Dio3
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1. Introduction

The importance of thyroid hormones (THs) for brain development and function has been well
established. Insufficient levels of TH during development due to congenital thyroid defects or to
iodine deficiency may lead to impaired cognition and, in severe cases, to cretinism, a syndrome
characterized by impaired sensory function, motor deficits, and profound mental retardation [1,2].
Studies in rodents have shown that THs regulate the expression of a large number of genes in the
central nervous system (CNS) [3-5], affecting important neurological processes including myelination,
synaptic establishment and transmission, dendrite formation, neuronal migration and maturation,
axonal development, and the proliferation, fate and differentiation of neural cells [6-8]. Given the
breadth of cellular and molecular processes influenced by THs in the CNS, it is not surprising that
a disruption in the mechanisms controlling the action of THs leads to many neurological abnormalities
affecting brain cytoarchitecture, motor, cognition and sensory functions, and behavior [9].

Circulating levels of THs largely depend on the regulation of the hypothalamic-pituitary-thyroid
axis and the hormonal output of the thyroid gland. Levels of TH action in some tissues tend to
correlate with serum hormone levels. However, a large body of research performed in recent years
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has dramatically increased our appreciation of the critical importance of the factors that regulate TH
economy and action at the cellular level [10]. THs transporters [11] and metabolizing enzymes [12] may
act at a local level to enhance or dampen TH action. This is critically applicable to the CNS, a tissue that
exhibits a complex complement of these factors that uniquely regulate the trafficking and availability
of TH in neural tissue. Thus, due to these local factors, serum levels of THs do not necessarily reflect
TH action in a given tissue or target cell. This divergence between circulating level of TH and tissue
TH action is particularly important in the context of the clinical evaluation of neurological disorders,
as serum thyroid function parameters may not be indicative of the actual TH state of brain tissue.

The severity of neurological phenotypes resulting from congenital hypothyroidism directed
most past scientific attention to the pathways increasing TH action and the positive effects of TH
for neurological outcomes. However, significant evidence indicates that excessive TH action also
has detrimental effects for brain development and function. In this regard, the predominant factor
protecting the CNS from abnormally elevated levels of THs is the type 3 deiodinase (DIO3) [13].
The strong expression of DIO3 in the developing and adult brain suggests an important role for this
enzyme in preventing neurological abnormalities caused by excessive TH action in the brain. Studies
in DIO3-deficient mice, reviewed here, largely confirm this notion.

In addition, Dio3 is one of the few genes undergoing genomic imprinting [14,15], an epigenetic
phenomenon involved in the regulation of allelic gene expression depending on the allele’s parental
origin [16,17]. In the context of current paradigms, the present review also focuses on the
imprinting of Dio3 in brain tissue, and explores its potential significance for brain development
and neurological disorders.

2. Thyroid Hormone Action in the Brain: Role of DIO3

2.1. Main Mechanism of TH Action

Two main hormones are produced by the thyroid gland: thyroxine (3,5,3'5'-tetraiodothyronine,
T4), which is produced in higher quantities and considered mostly a pro-hormone, and
3,53 -triiodothyroinine (T3), which is secreted in lower amounts but is the most active form,
as it exhibits a 10-fold higher affinity than T4 for nuclear TH receptors. Both hormones are largely
bound to proteins in the serum and can be transported into target cells by different types of cell
membrane transporters including monocarboxylate transporters, organic anion transporters, and
other members of the solute carrier transporter family [18]. These transporters provide a first level of
specificity for TH action, as they exhibit different affinities for T3 and T4, and their number may vary
significantly across target issues [19,20].

Once inside a target cell, THs can be deiodinated by members of a family of selenoenzymes
that include type 1, 2, and 3 deiodinases (DIO1, DIO2 and DIO3, respectively) [12]. Via outer-ring
deiodination, both DIO1 and DIO2 can convert the prohormone T4 into the active hormone T3, and
thus, increase TH signaling. In contrast, DIO3 can convert T4 and T3 into 3,3’,5'-triiodothyronine
(reverse T3, rT3) and 3,3'-diiodothyronine (3,3'-T2), respectively, both of which have a negligible
affinity for the TH nuclear receptors. Thus, deiodinase enzymes in target cells regulate T3 availability
and provide another tissue-specific level for the regulation of TH action.

Lastly, the predominant mechanism for the biological action of THs involves the regulation
of gene transcription through nuclear TH receptors. These molecules are DNA-binding proteins
that act as transcription factors, and upon T3 binding, regulate gene expression [10,21]. Two genes
encode for the two basic types of TH receptors: TH receptor alpha and beta (THRA and THRB,
respectively). These two genes express several receptor isoforms by alternative splicing that confer
a last level of specificity in TH action, as they show different affinities for response elements in
target genes, determine protein interactions, and drive co-factor recruitment in the regulation of gene
transcription [22].
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2.2. Noncanonical Mechanisms of TH Action

In addition to the most prevalent mechanism of TH action described above, recent observations are
identifying other molecular pathways by which THs may exert biological effects. These mechanisms
may include direct binding of T4 to the nuclear receptor to regulate gene transcription and binding
of THs and their derivatives to receptors in the cytoplasm and cell membrane to regulate other cell
signaling pathways [23,24]. More research is needed to further define the in vivo relevance of these
mechanisms to normal physiology, but they may also be affected by DIO3 function, as this enzyme
modulates the availability of THs and their metabolites.

2.3. Determinants of TH Action in the Brain: Role of DIO3

Figure 1 shows the current working paradigm for TH action in the brain as supported by research
in recent years. Transporters at the blood-brain barrier and in neural cell types are responsible for the
transport of THs from the circulation into target cells. Among these transporters, the monocarboxylate
transporter 8 (MCT8) and the organic anion carrier transporter 1c1 (OATP1C1) play predominant and
critical roles in the brain transport of T3 and T4, respectively [25]. In humans, a genetic impairment in
MCTS8 function leads to the Allan-Herndon-Dudley syndrome, which features a severe hypothyroid
state in the brain, and severe motor and cognitive defects similar to those observed in cretinism [26].
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Figure 1. Mechanisms of thyroid hormone action in the brain and its biological effects. DIO2 and DIO3,
type 2, and type 3 deiodinase, respectively. T3, triiodothyroinine; T2, diiodothyronine; T4, thyroxine.

Also contributing to the TH economy in the neural milieu are the DIO2 and DIO3, which are
predominantly expressed in astrocytes and neurons, respectively [27-29]. Despite their relatively
high cell specificity, both enzymes can influence local hormone availability and T3-dependent gene
expression not only in the cells in which they are expressed, but also in neighboring cells [30-32].

3. Consequences of DIO3-Deficiency for Brain Development and Function

3.1. Serum TH Status and Dio3 Expression in Development

THs are critical for normal brain development. However, their serum levels are very low during
fetal life, not reaching adult-like levels until near birth in humans and two weeks of age in rodents.
These periods are comparable in both species in terms of brain development milestones. During early
development, serum THs can be lower than 5% of the adult values [33,34]. This period coincides with
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high expression of Dio3 in most fetal tissues [35,36]. In addition, Dio3 is present in mouse embryonic
stem cells [37] and is highly expressed in the placenta [38,39] and in the maternal decidual tissue that
surrounds the embryo after implantation [40]. The expression pattern of Dio3 suggests that it is critical
to limit TH action in early development, and that Dio3 plays a crucial role in this regard.

For insight about the consequences of DIO3 deficiency for brain TH action, we need to consider
how serum levels of TH and tissue Dio3 expression change during development. In contrast to most
mouse tissues whose Dio3 expression is high during fetal and neonatal life and negligible in adulthood,
the CNS exhibits high Dio3 expression throughout life [27,41]. However, there are significant changes
in Dio3 expression levels among different brain regions and developmental stages [37,41]. During
development, DIO3 activity is relatively high in the cerebellum, hindbrain, pons, and medulla,
but declines to low levels in late neonatal life and adulthood. In contrast, the high DIO3 activity
in the developing olfactory bulb, cerebral cortex, hippocampus, thalamus, hypothalamus, and striatum
tends to be maintained into adult age, and could be even higher, especially in the cerebral cortex and the
hippocampus [37]. Interestingly DIO3 activity peaks in the hypothalamus in early neonatal life [28,42],
when most neuroendocrine systems are maturing. Marked, transient peaks in Dio3 expression have
also been described in the neonatal rat in specific neural structures related to brain sexual differentiation
and the reward and fear systems including the amygdala, the nucleus accumbens, and the medial
preoptic area [28]. Thus, DIO3 influences TH signaling in broad areas of the developing and adult
brain, protecting neural processes from untimely or excessive T3 action, and ultimately ensuring
normal CNS function in adulthood.

3.2. Neurological Phenotypes of Mice Lacking DIO3

The importance of DIO3 for the CNS is evidenced by observations in mice carrying a mutation that
renders DIO3 fully inactive. Dio3 ™/~ mice exhibit an array of neurological abnormalities, as described
below and summarized in Figure 2.
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Figure 2. Neurological consequences of DIO3 deficiency in mice. The lack of DIO3 function prevents
degradation of THs, increasing their availability and molecular action in the brain (red lines and
arrows). Increased T3 action in the brain (grey arrow) leads to multiple neurological phenotypes
(black arrows). TR, thyroid receptor; DIO2, type 2 deiodinase.

3.2.1. TH Status of the Dio3~/~ Brain

In wild type (WT) mice, serum levels of THs peak and reach adult-like levels at 2-3 weeks
of age. Loss of DIO3 function translates into severely impaired clearance of THs during fetal and
neonatal life. As a result, Dio3™/~ mice experience developmental thyrotoxicosis, characterized
by high serum levels of T3 and low levels of serum T4 (Figure 2) due to T3 negative feedback on
the hypothalamic-pituitary-thyroid (HPT) axis [42]. This thyrotoxicosis occurs during the time the
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HPT axis is maturing physiologically. However, due to the T3-driven suppression of the HPT axis,
Dio3~/~ mice at later developmental stages are hypothyroid, exhibiting lower than normal serum levels
of T3 and T4 (Figure 2) [42]. Although the HPT axis functional deficits of Dio3~/~ mice ameliorate in
adulthood, they never fully recover and Dio3~/~ mice exhibit low serum levels of T3 and T4 during
adult life and substantial impairments in the regulation of the axis [43].

Based on the assessment of T3-dependent gene expression, the brain of Dio3™/~ mice largely
follows the TH state of the serum, being thyrotoxic in early development and hypothyroid in late
neonatal life (Figure 2) [42]. However, the adult Dio3~/~ brain becomes increasingly thyrotoxic
with age, despite the serum hypothyroidism. Notably, these age-dependent changes in brain TH
status do not take place in the same time frame across the CNS. Different regions of the brain show
specific timelines for reaching a hypothyroid state during late neonatal life and a hyperthyroid state
in adulthood [44]. This is likely the result of regional differences in the molecular determinants of
TH action at the local level. Notably, the T3 excess in the Dio3™/~ brain is largely normalized with
concurrent DIO2 deficiency [45], illustrating the important and complementary role of these enzymes
in maintaining brain TH action within an adequate range.

The divergence between the TH states of the serum and the brain that occurs in Dio3™/~ mice
is of critical importance in the clinical context of neurological disorders. It raises the possibility that
a deficiency in DIO3 may lead to an excess of T3 in the brain that is not appreciated by evaluating
thyroid parameters in the serum.

3.2.2. Neuroendocrine Abnormalities

In addition to the functional deficits in the HPT axis mentioned above, Dio3 ™/~ mice also manifest
abnormalities in the leptin-melanocortin system, which controls energy balance by regulating food
intake and energy expenditure [46]. The hypothalamus of Dio3~/~ mice exhibits increased expression
of agouti-related protein and decreased expression of pro-opiomelanocortin [46]. This is observed
together with serum leptin levels that are normal or high. These parameters would normally be
associated with increased food intake, and reduced energy expenditure and leptin resistance, and
would predict an obesity phenotype. However, Dio3~/~ mice are leaner and manifest reduced adiposity,
likely due to a markedly increased level of physical activity [46].

Dio3~/~ mice of both sexes manifest impaired fertility [42]; in the males this is associated with
hormonal alterations in the gonadal axis [47], suggesting abnormalities in the reproductive functions
of the endocrine hypothalamus.

Adult Dio3~/~ mice also exhibit reduced serum levels of oxytocin (OXT) and arginine-vasopressin
(AVP), and abnormal, sexually dimorphic gene expression patterns related to the signaling of
these neuropeptides [48]. Serum OXT and AVP are reduced mostly in adult Dio3~/~ females,
while hypothalamic Oxt and Avp mRNA expression is largely affected in male Dio3~/~ mice,
being increased in neonates and reduced in adults [48]. These findings suggest hypothalamic T3
excess results in sexually dimorphic abnormalities in the physiology of these neuropeptide systems,
which are highly relevant to social behaviors [49].

3.2.3. Brain Morphology

The developmental T3 excess in Dio3 ™/~ mice results in a brain with several morphological
abnormalities, many of them not characterized in full (Martinez et al. unpublished observations).
The Dio3~/~ cerebellum is hypomorphic. It shows reduced foliation, accelerated disappearance of
the external germinal layer, and premature expansion of the molecular layer at juvenile ages [50],
abnormalities that are associated with impairments in motor tasks. This phenotype is normalized in
a genetic background lacking THRA [50], suggesting that the aberrant cerebellar outcomes in Dio3 ™/~
mice are caused by increased T3 signaling through this particular receptor.
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3.2.4. Sensory Function

DIO3 is highly expressed during development in the retina [51], middle ear [52] and
olfactory bulb [37]. In this regard, Dio3~/~ mice manifest substantial deficits in sensory function.
The developmental excess of T3 in Dio3~/~ mice disrupts cochlear development and leads to
deafness [52]. It also causes the neonatal degeneration and death of retinal cones [51], which are
critical for light and color vision. A concurrent loss of function in DIO2, the enzyme that enhances T3
availability (Figure 1) leads to a significant amelioration of the abnormal TH state in the serum [53]
and brain [45] of DIO3-deficient mice, suggesting that DIO2 activity is exacerbating the thyrotoxicosis
caused by impaired TH clearance by DIO3. Interestingly, in mice with double DIO2/DIO3 deficiency,
cone viability is normalized, but the deafness is not only not eliminated, but is more profound [53].
The latter observation suggests that ear development requires strict and timely control of T3 action for
normal outcomes, and best illustrates the idea that multiple alterations in the developmental pattern
of TH action may have additive effects on brain pathophysiology. In addition, female Dio3~/~ mice
exhibit impaired olfactory function [48], although the molecular and cellular basis for this phenotype
remains to be identified.

3.2.5. Behavior

Dio3~/~ mice exhibit alterations in behavior that are relevant to neurological conditions in
humans. Dio3~/~ mice of both sexes manifest hyperactivity and reduced anxiety-and depression-like
behaviors [54]. Dio3~/~ females exhibit poor maternal behavior, and mutants of both sexes show
increased levels of threat and aggressive behaviors [48]. In addition, the hyperactivity in adult Dio3 /=
mice of both sexes is associated with a lengthened circadian cycle of night activity [46].

In summary, the absence of DIO3 has broad consequences for the TH status of the brain and for
TH-dependent programs of brain gene expression, ultimately affecting brain morphology, sensory
and neuroendocrine functions, mood and social behaviors, physical activity and circadian patterns.
There are no current cases of DIO3 inactivating mutations described in humans. However, the above
observations suggest that DIO3 deficiency may have important implications for neurodevelopmental
and neurological disorders.

4. Genomic Imprinting of Dio3

4.1. Genomic Imprinting

The multiple effects of DIO3 deficiency on brain development and function provides important
relevance to the mechanisms regulating its expression. A critical mechanism is genomic imprinting,
an epigenetic phenomenon affecting a small percentage of genes that results in preferential or exclusive
expression from one of the alleles, depending on the allele’s parental origin [17,55]. This allelic
expression pattern is the result of sex-specific epigenetic marks (DNA methylation) in the gametes that
are maintained after fertilization and during embryonic development [17,56], leading to allele-specific
expression or repression of the imprinted gene [17,57,58]. Disruption of the mechanisms regulating
genomic imprinting leads to aberrant dosages of imprinted genes, and results in pathological outcomes
in humans and animal models [59-62].

4.2. The DIk1-Dio3 Imprinted Domain

Imprinted genes are usually located in distinct clusters (“imprinted domains”) across the genome.
Each cluster typically features one or more genomic regions exhibiting allele-specific differential
methylation [63-65]. Some differentially methylated regions function as “imprinting control regions
(ICRs)” and are responsible, depending on their methylation status, for directing the expression or
repression of imprinted genes within the cluster in cis [17,66].

Dio3 belongs to what is usually referred to as the DIk1-Dio3 imprinted domain [67], which is
defined by the genes, DIk1 and Dio3, that initially marked the centromeric and telomeric ends of the
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imprinted cluster in mouse chromosome 12 [68]. (Later, another imprinted gene, Begain, was described
as located centromeric to DIk1 [69]) This domain is located in the distal arm of mouse chromosome 12
and the syntenic region in the distal arm of human chromosome 14 [70]. A simplified diagram of the
mouse DIk1-Dio3 imprinted domain is shown in Figure 3a. It includes the DIk1, Rt/1, and Dio3 genes
that are preferentially expressed from the paternal allele (“paternally expressed”) [14,15,71], and the
Meg3, Rian and Mirg genes, which are preferentially expressed from the maternal allele (“maternally
expressed”). Interestingly, while paternally expressed genes in the domain are protein-encoding,
maternally expressed genes include different types of non-coding RNAs [71-73].

a
DIk1-Dio3 Imprinted Domain
| o
Materna
allele | DIk IG-DMR mMeg2 H Rtil H Rian H mirg |-/ Dio3 "]
— X N — Dio3osx 1—' e X
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dlele  |_DIK1 IG-DMR Meg3 H Rtz H Rian H Mirg |—/~{| Dio3 |
Dio305  dmmt
~310 kb ~520 kb
b
Allelic Dio3 Expression in Brain Regions
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s h L =o ;

Figure 3. Genomic imprinting of Dio3 in the brain. (a) Simplified diagram of the mouse DIk1-Dio3

imprinted domain showing the dominant pattern of allele-specific gene expression. An arbitrary
number of pin point shapes indicate loci exhibiting allele-specific methylation (open circles,
unmethylated; closed circles, methylated); (b) Brain variability in the percentage allelic contribution to
Dio3 expression and associated IG-DMR methylation compared to fetal Dio3. Some brain regions
exhibit relaxed or absent Dio3 imprinting despite unchanged IG-DMR methylation status [37].
(Data is approximate and based on parent-of-origin inheritance of the DIO3 mutation. Allelic
contributions may add more than 100%, as the wild type allele may exhibit T3-dependent up-regulation
upon loss of DIO3 function in the other allele).

Allelic expression in imprinted domains is directed by allele-specific differential methylation.
In the DIk1-Dio3 domain, three main regions have been identified as differentially methylated.
These include the 3’ end of DIk1, the promoter region of Meg3, and an intergenic, differentially
methylated region (usually referred to as IG-DMR) located between the DIk1 and Meg3 genes [65,74].
These regions are hypomethylated in the allele inherited from the mother and hypermethylated in
the allele inherited from the father [71]. The lack of methylation in the maternal allele is associated
with the expression of maternally expressed non-coding RNAs and the in cis repression of paternally
expressed protein-coding genes (Figure 3a).

4.3. Regulation of DIk1-Dio3 Genomic Imprinting

The IG-DMR functions as the ICR of the DIk1-Dio3 imprinted domain [75]. Maternal allele deletion
of the IG-DMR leads to increased methylation at the Meg3 promoter and subsequent repression of
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maternally-expressed genes. It also leads to aberrant expression of paternally-expressed genes from
the maternal allele [65,76]. These genes, including Dio3, will then show biallelic expression.

In contrast, IG-DMR deletion in the paternal allele does not affect the expression of genes in the
domain [65]. These observations show that the IG-DMR is critical for the control of the Meg3 promoter
and the expression of maternally-expressed genes, and suggest that the latter are needed for the normal
repression of paternally-expressed genes in the maternal allele, including Dio3 [76].

Consistent with this idea are observations in mouse models carrying a lacZ transgene insertion at
the Meg3 promoter region [77]. Mice with paternal or maternal inheritance of this transgene exhibit
aberrant placental and fetal expression of the imprinted genes in the domain, and these changes are
associated with abnormalities affecting viability, growth, and development [77,78].

4.4. Dio3 Genomic Imprinting Across Tissues

In the mouse fetus, Dio3 exhibits a strong preferential expression from the paternal allele [14,15],
but the maternally-inherited Dio3 allele is not completely silenced [15]. Compared to other mouse
fetal tissues, Dio3 imprinting is markedly relaxed in the placenta [79]. However, the molecular
basis for this relaxation is unknown. The different degree of imprinting in placental and fetal Dio3
is consistent with the different response of these tissues to the disruption of the Meg3 promoter
region. A transgene insertion at the Meg3 promoter in the paternal allele does not change Dio3
expression in the placenta, but reduces it in the fetus [78]. In contrast, maternal inheritance of this
insertion causes a marked increased in placental Dio3 expression while leaving fetal Dio3 expression
unchanged [77]. These observations illustrate the functional role for maternally expressed genes in
controlling Dio3 expression, and suggest that there are important, unidentified intrinsic differences in
how the imprinting of Dio3 is regulated in the placenta and fetus. These differences may also apply to
other tissues, including the developing testis and retina, which show biallelic Dio3 expression [37].

Dio3 imprinting variations across tissues and developmental stages are characteristics that are
consistent with observations in other imprinted genes [17].

4.5. Dio3 Genomic Imprinting in the CNS

We have used a genetic model of DIO3 inactivation to assess allelic contributions to the overall
levels of Dio3 expression in brain regions. These studies showed that Dio3 is imprinted in the fetal
mouse brain, and preferentially expressed from the paternal allele. However, the contribution of the
maternal allele to brain Dio3 expression is not negligible [37]. In the fetal brain, preferential paternal
Dio3 expression is observed in the most abundant and well-characterized 2.2 kb Dio3 transcript,
as well as in larger, uncharacterized Dio3 transcripts [37].

In the mouse newborn brain, the degree of preferential Dio3 expression from the paternal allele
varies significantly across brain regions (Figure 3b), being strongest in the hypothalamus and moderate
in the cerebral cortex, hippocampus and striatum [37]. In the neonatal cerebellum, biallelic Dio3
expression is observed. At weaning age, overall levels of Dio3 expression decrease in many brain areas
(except the cerebral cortex and hippocampus), and the degree of monoallelic Dio3 expression tends to
be further reduced [37].

This variability in imprinting is not necessarily associated with changes in the methylation status
of the IG-DMR (Figure 3b). In the neonatal cerebral cortex and retina, increased IG-DMR methylation is
associated with a reduced degree of monoallelic Dio3 expression [37]. In these cases, the presumed gain
of methylation in the maternal allele may explain an increased contribution of this allele to overall Dio3
expression. However, in other brain regions including the cerebellum (and the placenta mentioned
above), the reduced degree of monoallelic expression cannot be explained by gains of methylation in
the IG-DMR [37,65].

Furthermore, observations in rats also indicate preferential Dio3 expression from the paternal allele
in the fetal brain, and a relaxation towards biallelic expression in the adult brain [80,81]. These studies
also found variations in Dio3 imprinting across brain regions. Interestingly, they reveal that the adult
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hippocampus exhibits preferential Dio3 expression from the maternal allele [80,81]. Although not
overt, this allelic expression pattern is not associated with changes in IG-DMR methylation status,
again suggesting the existence of unidentified underlying mechanisms.

Most of the variations in allele-specific expression of Dio3 across brain regions are accompanied
by correlating changes in DIO3 activity [37], indicating that the imprinting status of a specific brain
region may impact local T3 availability and action. However, there is insufficient data available
about whether aberrant Dio3 imprinting affects the expression of local T3 target genes, or which
brain regions or developmental stages are more sensitive. In addition, in models of altered Dio3
imprinting, developmental systemic levels of T3 are also altered [37], and may impact brain T3
responses. Thus, more work with suitable experimental models is needed in this regard.

It is worth noting that, in contrast to the well-characterized 2.2 kb transcript predominantly
expressed during development, larger Dio3 transcripts are more abundant in the normal adult
brain [27]. Thus, these observations raise the possibility that the genomic imprinting of Dio3 is
not only tissue-specific, but also transcript-specific, a characteristic that has also been observed for
other imprinted genes [82].

4.6. Other Genomic Elements in the Dio3 Gene Locus

Additional conserved genomic features close to the Dio3 gene may be of functional significance to
its expression. These include a long non-coding RNA, Dio30s (for Dio3 opposite strand) and a conserved
enhancer [83,84]. Dio3os is located head-to-head with the Dio3 promoter region, and transcribes
from the opposite strand multiple transcripts via alternative splicing [84]. Dio30s shows preferential
monoallelic expression in multiple cattle tissues [85], but there is insufficient data about its imprinting
status in mice and humans. Dio30s expression strongly correlates with that of Dio3 in human cell
lines [86], rat brown preadipocytes [87], rat brain [88], and mouse uterus [89]. The biological function
of Dio3os is unclear, but given the overlap of the Dio3 and Dio30s promoter regions, it is possible that
Dio3os transcription modulates that of Dio3, as suggested by studies on mouse decidual tissue [89].

The enhancer is located 3’ of the Dio3 gene, and features serum and AP1 response elements that
are well conserved between species [90]. This enhancer is capable in vitro of transactivating the Dio3
promoter [90] in response to serum and growth factors, but its functional significance in vivo has not
been determined.

In view of the observations above, Dio3 appears to be the only gene in the domain that does
not exhibit strict imprinting, suggesting the existence of other unidentified epigenetic factors that
influence Dio3 imprinting in certain tissues, including the developing and adult brain. In addition,
given that brain Dio3 expression is largely located in neurons [27], and that these cells contribute only
a minor proportion of the brain DNA pool, it is possible that overall methylation in brain tissue does
not accurately reflect the methylation status of Dio3-expression cells. It is also possible that a high
degree of Dio3 imprinting in more restricted brain regions or neuronal types is not appreciated when
larger brain areas are examined. Additional research is required to address this issue.

4.7. Genomic Imprinting of Human DIO3

The DIk1-Dio3 imprinted domain and their predominant patterns of allelic expression are highly
conserved in humans [91] and multiple mammalian species [85,92-95].

In the human DLK1-DIO3 imprinted domain, the pattern of allele-specific gene expression
is largely conserved [67,96]. Human studies have suggested that DIO3 is not imprinted in the
placenta [97,98], an observation that is consistent with the relaxed placental imprinting of the mouse
Dio3 [79]. A recent study in foreskins from infants indicates that human DIO3 is an imprinted gene,
showing a strong pattern of preferential expression from the paternal allele [99] similar to that observed
in the mouse fetus. In this human newborn tissue, DLK1 is exclusively expressed from the paternal
allele [99], consistent with previous studies in other human fetal tissues [96].
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In addition, human DIO3 was found to be preferentially expressed from the maternal allele in
an adult skin biopsy [99]. Since in many adult human tissues—including the brain—larger DIO3
transcripts are the most abundant [84], this observation is consistent with findings in the adult rat
hippocampus [80], and with the untested hypothesis that larger DIO3 transcripts, which are more
abundant in the adult rodent brain and apparently expressed from an unidentified alternative promoter,
exhibit preferential expression from the maternal allele in adulthood.

5. Dio3 Imprinting in Brain Disease and Evolution

5.1. Altered DIk1-Dio3 Imprinting in Mice and Humans

Many imprinted genes are highly expressed in the placenta and fetus and play critical roles in
growth, development and behavior [62,100]. The importance of imprinting at the human DLK1-DIO3
domain is evident from patients with Temple or Kagami-Ogata syndromes [101]. These syndromes
are the result of aberrant imprinting due, respectively, to maternal or paternal uniparental disomy
(UPD) of chromosome 14 (UPD14) [102], where the DLK1-DIO3 domain is located [96]. These patients
exhibit abnormal expression of the imprinted genes in the DLK1-DIO3 domain, and may manifest
growth retardation, craniofacial dysmorphisms, abnormal rib cages, altered puberty onset, hypotonia,
hydrocephalus, and mental retardation [103,104].

Consistent abnormalities are observed in mouse models of altered DIk1-Dio3 imprinting.
Paternal or maternal UPD12 impacts perinatal viability, placental and fetal growth, and skeletal
development [105]. Mice carrying a deletion of the IG-DMR in the maternal allele exhibit comparable
defects [79]. In addition, a transgene insertion at the Meg3 promoter region disrupts allelic expression
in the domain, and influences metabolic adaptation to independent life when maternally inherited [77],
or disrupts growth, growth hormone axis physiology and adult metabolism when paternally
inherited [78].

Despite the evidence demonstrating the deleterious consequences of altered DIk1-Dio3 gene
dosage, it is difficult to discern the contributions of the individual genes in the domain to the
abnormalities observed. Genetic mouse models that disrupt the allelic expression of specific genes
may shed some light on this issue, although these mutations tend to be associated with aberrant
expression of other genes in the domain, making it difficult to exclude secondary alterations in
neighboring imprinted genes as the causes of the observed phenotypes. Concerning DIO3, although
some phenotypes of mouse DIO3-deficiency are consistent with those of aberrant DIk1-Dio3 imprinting
in mice and human syndromes, others are not or not known. Thus, the particular contribution of
increase T3 action during development to the generation of these syndromes remains to be determined.

5.2. Altered DIk1-Dio3 Imprinting and Brain Development and Function

If altered Dio3 expression were partially responsible for the phenotypes caused by abnormal
imprinting in the DIk1-Dio3 region, one would expect that some phenotypes of the Dio3 ™/~ mouse
will be partially consistent with the abnormalities observed in mouse and human models of abnormal
DIk1-Dio3 imprinting that exhibit deficient expression of Dio3. In this regard, the impaired perinatal
viability and growth retardation of Dio3~/~ mice [42] are consistent with observations in mice with
maternal UPD12 [105] and with the poor suckling behavior, failure to thrive, and stunted growth of
infants with Temple syndrome [106].

Concerning neurological defects, no information is available from mice with maternal UPD12,
since these animals die before reaching adulthood. However, the reduced cerebellum [50] and
hydrocephalus [44] of Dio3™/~ mice is consistent with the reduced head circumference and
hydrocephalus observed in Temple syndrome patients [106]. Although these patients also exhibit mild
mental retardation, no abnormalities have been reported in relation to anxiety, depression, aggressive
behavior or hyperactivity, as those manifested by Dio3~/~ mice.
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Thus, DIO3 deficiency, and the excessive T3 action associated with it, may contribute specifically to
the abnormalities caused by altered imprinting in the DIk1-Dio3 domain. Despite the tissue variability
in Dio3 imprinting, developmental T3 excess has been demonstrated in mouse models with no Dio3
expression from the paternal allele [14,37]. It is thus possible that allele-specific inactivation of Dio3
leads to neurological phenotypes, especially those dependent on brain regions exhibiting highest
degree of monoallelic and overall Dio3 expression.

Deficiencies in paternally expressed Dio3 and in maternally expressed microRNAs in the
imprinted domain seem to have opposite effects on neurological phenotypes. Deletion of the
miR-379/miR-410 gene cluster at the imprinted domain enhances anxiety-related behavior [107],
in contrast with the decreased anxiety-related behavior observed in Dio3~/~ mice. Also, loss of
non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural
differentiation potential in human embryonic stem cell lines [108], while T3 signaling, which is
increased in DIO3-deficiency, is known to enhance neurogenesis [109,110]. The role of the DIk1-Dio3
imprinted domain in neural cell homeostasis is further supported by the observation that a postnatal
loss of DIkI imprinting in stem cells and niche astrocytes regulates neurogenesis [111].

In addition, a microRNA signature associated with schizophrenia includes the down-regulation of
17 microRNAs expressed from the DIk1-Dio3 domain [112]. It is not uncertain whether other imprinted
genes in the domain including Dio3 may also be affected in this condition, but a relationship between
Dio3 and microRNAs in the domain has been observed. In a model of myocardial infarction, Dio3
expression is associated with the induction of a pluripotency microRNA signature from the DIk1-Dio3
genomic region [113], suggesting a reciprocal association between the expression of paternal Dio3
expression and maternal microRNAs.

The inverse relationship in the brain between the expression of Dio3 and non-coding RNAs
is further supported by their expression pattern in brain cells. Like Dio3, and according to data
from cell-specific gene expression profiling in the cerebral cortex of the developing mouse [114],
Meg3, Rian and Mirg are highly specific to neurons, suggesting that an adequate balance of paternal
(Dio3) and maternal (non-coding RNAs) gene expression in the domain is necessary for adequate T3
action on this cell type.

5.3. Dio3 Imprinting and Environmental Factors

Due to their finely tuned epigenetic regulation, the expression of imprinted genes is particularly
susceptible to environmental or exogenous factors [115]. Exposure to chemicals, diet, and stressors
are but a few of the factors that can interfere with the epigenetic mechanisms that govern genomic
imprinting [115].

Few factors have been identified to alter Dio3 allelic expression. Ascorbic acid has been found
to prevent loss of imprinting at the DIk1-Dio3 domain in stem cells [116,117], and maternal immune
response or cannabinoid exposure in adolescence alters the imprinting of DIk1-Dio3 in the entorhinal
cortex, a region implicated in schizophrenia [118].

An important body of work specifically concerning Dio3 imprinting and environmental factors
has been produced by the group of Eva Redei. Her laboratory has studied a rat model of fetal alcohol
exposure using rat strains that carry a single nucleotide polymorphism in the Dio3 exon, allowing
for Dio3 allele discrimination. Fetal alcohol exposure leads to an abnormal behavioral profile in
adulthood of relevance to autistic spectrum disorders, including deficits in social behavior, anxiety and
fear-induced memory [119-121]. This developmental insult also results in abnormal Dio3 imprinting
and subsequent increase of Dio3 expression in the hippocampus, but not other brain regions such as
the amygdala [121,122]. Part of the effects of alcohol exposure on behavior and Dio3 expression can
be modified by developmental treatment with T4 or metformin [120,121]. Notably, maternal alcohol
exposure resulted in decreased fetal and placental Dio3 expression [123]. Although these studies
cannot discern the extent to which changes in brain Dio3 expression contribute to the behavioral
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abnormalities caused by alcohol exposure, they demonstrate that this environmental factor, as well as
T4 or metformin treatments, influences Dio3 imprinting and subsequent TH action in the brain.

Fetal alcohol exposure also leads to behavioral phenotypes and abnormal Dio3 imprinting
in subsequent F1 and F2 generations [119,120]. These effects can be corrected by thyroxine
treatment, and are sexually dimorphic and dependent on parental lineage. For instance, fetal alcohol
exposure increases anxiety related behavior in F1 generation males, but decreases it in corresponding
females [119]. In this model it is possible that other genomic loci of relevance to the CNS function
are also affected and contribute to the behavioral phenotypes. However, these findings show that
Dio3 imprinting and expression are susceptible to alcohol exposure in a manner that can be inherited
via epigenetic mechanisms, and that interventions in future generations (e.g., treatment with T4 or
metformin) can modify and potentially normalize the aberrant epigenetic information inherited at the
Dio3 locus.

Overall, the above work opens multiple research avenues about how environmental factors
influence Dio3 epigenetic information in current and future generations, and about the neurological
traits that may be affected as a result (Figure 4).

Environmental factors
*  Alcohol exposure

¢  Thyroxine
Metformin
Otherfactors ?

DIk1-Dio3locus
epigenetic information

¥

Dio3 expression

3

Brain thyroid
hormone action

Brain development
and function
Behavior

v

Epigenetic effects
on future generations

Figure 4. Environmental factors and Dio3 imprinting. Environmental factors may influence Dio3
imprinting and expression, with consequences for TH action in the brain in affected (grey arrows) and
future generations (dotted red arrow).

5.4. Dio3 Imprinting and Brain Evolution and Adaptation

The monoallelic gene expression associated with genomic imprinting does not appear
advantageous for survival, so the evolutionary reasons that supported the establishment of this
phenomenon are unclear. Theories in this regard [124-126] are supported by some current information
about genomic imprinting and the function of imprinted genes. Genomic imprinting is essentially
limited to mammals [127], and imprinted gene functions typically influence the allocation of
developmental resources, as they regulate placental function, fetal growth, suckling, and postnatal
metabolic adaptations [77,128-130]. Thus, the most prevalent theory suggests that genomic imprinting
may have evolved from a conflict between parental genomes, with genes from the father seeking
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to maximize resource usage and offspring survival, and maternal genes limiting resources to avoid
compromising reproductive function while at the same time seeking the viability of all offspring
regardless of paternity. Additional theories, not necessarily mutually exclusive, have also been
proposed [131-134].

Genomic imprinting evolved during an evolutionary period of rapid mammalian speciation [127],
which has driven speculation that environmental factors and natural selection also influenced genomic
imprinting as an efficient manner of adaptation to the environment. Given the importance of THs for
brain development and their unique need of iodine for synthesis, it is possible that Dio3 imprinting was
favored as a way to save iodine as mammals moved into more land-based, iodine-poor ecosystems.

The functions of many imprinted genes, including Dio3, also converge on the regulation of
behavior [55,135]. An intriguing study in chimeric mice shows that androgenetic and parthenogenetic
cells contribute very differently to brain structures. While androgenetic cells comprise most of
the hypothalamus, preoptic area, septum, and bed nucleus of the stria terminalis, parthenogenetic
cells drive brain size and proliferate in the striatum and cerebral cortex [136]. These observations
on androgenetic cells correlate with the patterns of diencephalic expression of two imprinted
genes (Mest and Peg3) that are paternally expressed [136]. This suggests that paternally expressed
genes contribute to brain areas associated with neuroendocrine functions and primordial behaviors,
while maternally expressed genes do so to brain regions associated with cognition. Information about
Dio3 is highly consistent with these findings based on its brain expression, imprinting patterns,
and environmental susceptibility, as described in this article. As the brain evolved in different
mammalian species, it is likely that the conflict between parental genomes and Dio3 genomic imprinting
also changed to achieve optimal brain function, raising the possibility that imbalances in genomic
imprinting contribute to the etiology of neurological disorders in present humans [137].

Finally, a comparative analysis indicates that the genomic distance between DIk1 and Dio3 is
reduced in lower organisms when compared to that in birds and mammals [91]. This suggests
that the two genes were already linked before the establishment of genomic imprinting in the
domain, an event that coincided with the appearance in the locus of maternally-expressed, non-coding
RNAs [91]. These RNAs exhibit predominant expression in the developing and adult brain, are specific
to neurons [114], and their coordinated transcription from the maternal allele suppresses Dio3
transcription in cis. Thus, reciprocal allelic expression of Dio3 and non-coding RNA in the CNS
may be driven by environmental adaptations increasing the plasticity of brain TH action in a manner
that generates the optimal complement of neurological phenotypes.

6. Summary

The level of T3 action in the CNS needs to be restricted to a range that is adequate to the
developmental stage and the biological requirements of the particular target cell or brain region. In this
context, DIO3 plays a critical role in protecting neural tissue from an excessive level of T3. This is
illustrated by the consequences of DIO3 loss of function in mice for brain thyroid status, patterns
of brain gene expression, brain morphology, neuroendocrine and sensory functions, and mood and
social behaviors. The variable genomic imprinting of Dio3 across regions of the developing and adult
brain and the environmental susceptibility of imprinted genes implicate epigenetic mechanisms in the
fine-tuning of T3 action on the CNS, pointing to the Dio3 imprinted locus as a potential mediator of
environmentally-driven CNS abnormalities. Given the broad spectrum of neurological traits affected by
DIO3 deficiency and their relevance to human conditions, altered Dio3 imprinting appears as a potential
epigenetic mechanism contributing to the developmental and non-genetic but heritable-etiology of
neurological disorders.
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Abbreviations

THs Thyroid hormones

CNS Central nervous system

UPD(14) Uniparental disomy (of chromosome 14)
IG-DMR Intergenic differentially methylated region
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