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Abstract: Autophagy is involved in the development and differentiation of many cell types.
It is essential for the pre-adipocytes to respond to the differentiation stimuli and may contribute to
reorganizing the intracellulum to adapt the morphological and metabolic demands. Although AMPK,
an energy sensor, has been associated with autophagy in several cellular processes, how it connects
to autophagy during the adipocyte differentiation remains to be investigated. Here, we studied
the interaction between AMPK and autophagy gene products at the mRNA level during adipocyte
differentiation using public-access datasets. We used the weighted-gene co-expression analysis
to detect and validate multiple interconnected modules of co-expressed genes in a dataset of
MDI-induced 3T3-L1 pre-adipocytes. These modules were found to be highly correlated with the
differentiation course of the adipocytes. Several novel interactions between AMPK and autophagy
gene products were identified. Together, it is possible that AMPK-autophagy interaction is temporally
and locally modulated in response to the differentiation stimuli.
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1. Introduction

Autophagy is essential for the white adipocyte differentiation. The knockdown of Atg5 and/or
Atg7 gene in the 3T3-L1 pre-adipocyte prevents its maturation upon the chemical induction [1,2].
Secondary to that, the pre-adipocyte fails to accumulate triglycerides and to form the fat droplets,
which is a characteristic of mature white adipocytes [3]. This is yet to be reconciled with another
observation in cells known to contain large quantities of lipids (e.g., hepatocytes) where autophagy
takes part in lipid degradation [4]. AMP-activated protein kinase (AMPK), which can be activated
at the low level of energy such as starvation, stimulates autophagy through the inhibition of the
mTOR activity [5,6] and/or the direct phosphorylation of ULK1 [7,8]. Autophagy and AMPK regulate
several aspects of the lipid metabolism and the cell response to changing energy levels. Therefore,
the AMPK-autophagy interaction could be consequential in the context of adipocyte differentiation.

3T3-L1 pre-adipocyte is a mouse fibroblast with the potential to differentiate into
a mature adipocyte when treated with the MDI differentiation induction medium (160 nM
insulin, 250 nM dexamethasone, and 0.5 mM 1-methyl-3-isobutylxanthine) [9]. Upon induction,
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the pre-adipocyte undergoes multiple metabolic and morphological changes to reach maturation.
Evidently, several of these changes can be observed at the transcription level of multiple adipogenic
and lipogenic markers [10,11].

The aim of this work is to identify the potential AMPK-autophagy connections, in the broad
sense of the pathways, that are both novel and consequential in the adipocyte differentiation, mainly
using the weighted-gene co-expression network analysis (WGCNA) [12]. This approach focuses
on identifying co-expressed pairs of genes across the differentiation stages, and enables the direct
use of similar datasets to test and validate the findings even though they might be performed on
different platforms.

In this study, we applied the WGCNA approach to a microarrays dataset of MDI-induced
adipocyte at eight different time points corresponding to three differentiation stages. We identified
two networks/modules among autophagy and AMPK gene products that were correlated with the
differentiation course. By analyzing these modules in one of the datasets, we were able to specify
several potential novel AMPK-autophagy interactions and connect these to candidate functions
through the known annotations. Finally, we checked these findings in three independent datasets of
similar design and found the networks/modules to be well preserved.

2. Results

2.1. Preparing Data and Annotations

First, we retrieved several microarray datasets from the Gene expression omnibus (GEO) [13].
We sought arrays of MDI-induced 3T3-L1 pre-adipocytes at three or more time points. After excluding
the ones with varying designs and limited annotations, four datasets were included in the analysis
(Table 1); one dataset (GSE34150) was chosen for the main analysis, and the rest were reserved for
testing and validation. In GSE34150, the total RNA from 24 samples of MDI-induced pre-adipocytes
were collected at eight different time points corresponding to three adipocyte differentiation stages
(0 day, undifferentiated; two and four days, differentiating; 6–18 days, maturating). The initial
quality assessment included checking the distribution of the intensities from all probes at the log
scale, hierarchal clustering and multi-dimensional scaling analysis (MDS). Groups of samples from
different stage of differentiation showed similar distributions, appropriate clustering and separation
across the two different dimensions of MDS. Furthermore, to ensure the reliability of the analysis,
we examined the expression of a number of differentiation and lipogenesis markers (Appendix A).
The Pparg, Cebpa and Lpl genes, essential factors for adipocyte differentiation, were highly expressed in
differentiating and maturing cells compared to the undifferentiated cells. Expression of most lipogenic
genes (Pparg, Cebpa, Lpl, Scd1, Scd2, Dgat1, Dgat2 and Fasn) was correlated with the development of
3T3-L1 pre-adipocytes into mature adipocytes.

Table 1. MDI-induced 3T3-L1 microarrays’ datasets.

Series ID Platform ID Samples Included (Contact, Year) Reference

GSE15018 GPL6845 54 18 (Chin, 2009) [14]
GSE20696 GPL1261 8 8 (Mikkelsen, 2010) [15]
GSE34150 GPL6885 24 24 (Irmler, 2011) [16]
GSE69313 GPL6246 48 12 (Renbin, 2015) [17]

The gene ontology (GO) terms: AMP-activated protein kinase activity (AMPK) and autophagy
were used to identify 14 and 167 genes of known functions in the corresponding biological processes
(BP), respectively. A total of 181 genes was used in the downstream analysis to limit the input
to WGCNA, over-representation and defining novel interactions between and among AMPK and
autophagy pathways. GO was also used to define the terms involving these interacting gene products
and link them to known molecular functions (MF) and cellular components (CC). Appendix A
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contains a detailed discussion for the data inclusion criteria, quality assessment and obtaining the
GO annotations.

2.2. Detecting Co-Expression Modules of AMPK and Autophagy Genes in Differentiating Adipocytes

Constructing co-expression networks is a multi-step process. First, the Pearson’s correlation
coefficient was calculated between each pair of the genes of interest (n = 181) across all samples
(n = 24). Second, these correlations were raised to the power 5 to obtain an adjacency matrix of all
possible pairs. Third, the adjacency matrix was used to calculate the Topological Overlap Matrix (TOM)
as a reliable similarity measure. Finally, TOM similarity between pairs of genes were used to calculate
the weight of their connection in a network of all possible pairs and a distance (1 - TOM) to cluster the
pairs into highly interconnected modules/colors (Figure 1). Appendix B provides a detailed discussion
of the previous steps and the rationale for the different choices that were made in this analysis.

Figure 1. Clustering of AMPK and autophagy genes by their pairwise distances. Pairwise topological
overlap matrix (TOM) similarities of AMPK and autophagy genes (n = 181) were calculated from their
expression values in the GSE34150 dataset. Distances between each pair of genes were derived as
1 - TOM and shown as color values (small, red or large, yellow). A hierarchal tree and colored segments
of the clusters were shown on the top and side.

Among all possible pairwise correlations between the 181 genes of interest, two groups/modules
of highly co-expressed gene products were formed (blue, 42; turquoise, 66), and the rest were
unassigned (gray, 10). Genes that code for the subunits of the AMPK complex fell into different
modules; four AMPK genes, Prkaa2, Prkab2, Prkag2 and Prkag3, in the blue module along with 38 of
the genes involved in autophagy; and two AMPK genes, Prkab2 and Prkag1, in the turquoise module
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together with 63 of the autophagy genes (Table 2). In the following sections, we describe the significance
and the interactions of the individual members of these modules.

Table 2. AMPK and autophagy genes in different modules/colors.

Module/Color AMPK Autophagy

blue

Acbd5, Atg5, Atm, Bmf, Bok, Casp1, Cln3, Dapk1,
Dhrsx, Fbxl2, Fbxo7, Fis1, Hif1a, Lep, Map1lc3a,

Prkaa2, Prkab1, Mcl1, Mid2, Optn, Pik3c2a, Pink1, Prkaa2, Rab39b,
Prkag2, Prkag3, Smok3b Rab8a, Rragc, Sh3bp4, Sh3glb1, Sqstm1, Tbc1d5, Tnfaip3,

Tpcn1, Tpcn2, Trim8, Trp53inp2, Vcp,
Wdr45, Yod1, Zc3h12a, Zfyve1

turquoise 4921509C19Rik, Prkab2, Prkag1

Ager, Akt1, Bcl2, Becn1, Capn10, Cdkn2a,
D17Wsu92e, Dap, Dcn, Depdc5, Ei24, Eif4g1, Eif4g2,
Foxo1, Fundc1, Fundc2, Hmgb1, Hspa8, Htr2b,
Ifng, Lamp2, Lars, Lmx1b, Lrrk2, Map1lc3b, Map2k1,
Mapt, Mt3, Nbr1, Nlrp6, Pik3c3, Pik3r2,
Pik3r4, Pim2, Plaa, Plekhf1, Plk2, Pycard,
Rasip1, Rnf5, Rraga, Rragb, Sirt2, Smcr8,
Smurf1, Stk11, Tcirg1, Tmem74, Trim21, Trp53inp1,
Tsc2, Ubqln1, Ulk1, Usp10, Usp13, Usp30,
Usp33, Vps4a, Vps4b, Wdr6, Wipi1, Wipi2, Xbp1

2.3. Correlating the Detected Modules to the Stage of Differentiation

To establish the biological significance of these modules, we used the expression values of their
individual members to calculate a representative summary—the first principal component (PC)—for
each module. Then, we calculated the Pearson’s correlation coefficient for the first PC with the stage
of differentiation (undifferentiated, differentiating or maturating) of all 24 samples. Both modules
showed a reasonable correlation with sample stages (>0.8 for the blue and >0.3 for the turquoise
module) (Figure 2A). In other words, the expression values of the members of the blue module, and to
a less extent the turquoise, capture a lot of the observed differences between the cells as they progress
from a differentiation stage to the next.

Figure 2. Correlations and over-representation of the detected modules in differentiation
stages. The expression values of the members of the detected modules in the GSE34150 dataset
(42, blue; 10, gray; and 66, turquoise) were used to calculate two representative summary statistics.
(A) the first principal component (PC) across samples were correlated to the sample stages using
Pearson’s correlation (bars); (B) the fraction of differentially expressed (DE) genes across differentiation
stages (bars).
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2.4. Testing the Over-Representation of the Modules over the Differentiation Course

Again, we considered the expression values of the individual members of each module to calculate
the fraction of the differentially expressed genes (DE) across differentiation stages. Both blue and
turquoise modules had a significant fraction of their member genes (>0.5) either up or downregulated
at the differentiating or maturating stage compared to the control undifferentiated cell stage (Figure 2B).
These fractions were significantly higher than the expected fractions of DE genes in randomly selected
modules of the corresponding sizes. The calculated p-values were adjusted for multiple testing using
the False Discovery Rate (FDR). Adjusted p-values less than 0.1 were considered significant.

2.5. Visualizing Modules and Identifying Novel AMPK-Autophagy Interactions

To visually explore the detected modules, we treated each of their members as a node in a network
graph. Nodes were divided into two networks based on the module to which they belong. Each pair
of nodes was connected by an edge that has a weight calculated from the TOM similarity measure
between the corresponding pair of genes. Edges with weights less than a minimum threshold (0.1)
were excluded to obtain a less condense network (Figure 3). Evidently, some nodes did not share edges
that passes this threshold and were not included in the network graph. In addition, nodes were labeled
with the corresponding official gene symbol and colored as AMPK or autophagy genes; and the edges
were colored by the novelty of the connection. The latter was determined mainly based on previous
reports in the STRING database (textmining evidence), which is evidence extracted from abstracts of
scientific literature.

Figure 3. Network representation of the AMPK and autophagy modules. Members of the blue (A) and
turquoise (B) modules are shown as a nodes. Each pair of nodes is connected by an edge if the
corresponding pairwise topological overlap matrix (TOM) similarity/weight is above the threshold 0.1.
Nodes are colored by gene category (AMPK, green or autophagy, gray). Edges are colored by type of
interaction (STRING, red or Novel, gray).

By representing the modules in graphs, we were able to calculate different statistics to identify
influential genes/nodes and important interactions/edges. Considering various centrality measures,
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we ranked the genes in each module by their influence on the modules (Table 3). Trp53inp2, Map1lc3a,
Wadr45, Pink1 and Dapk1 genes were the most influential nodes in the graph of the blue module
with a hub score more than 0.95, while Foxo1, Dcn and Xbp1 genes had the highest scores in the
turquoise module. Edges between AMPK and autophagy nodes that were not previously reported in
the STRING database (text-mining evidence) were considered novel potential interactions (Table 4).
The protein kinase AMP-activated non-catalytic subunit beta 1 (Prkab1) showed a potential interaction
with several autophagy gene products including Bcl2-modifying factor (Bmf), death associated protein
kinase 1 (Dapk1), Ras-associated protein Rab8a (Rab8a), SH3 domain, GRB2-like, endophilin B1
(Sh3glb1) and transformation related protein 53 inducible nuclear protein 2 (Trp53inp2) as part of
the blue module. Similarly, the gamma subunit 1 (Prkag1) in the turquoise module revealed a novel
binding ability to some well-known autophagy-related gene products such as Becn1, Fundc1, Lamp2 or
Map1lc3b and also showed a novel interaction with some other gene products including calpain-like
cysteine protease (Capn10), cyclin-dependent kinase inhibitor 2a (Cdkn2a) for p16INK4a and p14ARF,
and ubiquitin-associated proteins (Trp53inp1, Nbr1, Usp33). In addition, there were some novel
interactions between AMPK and autophagy gene products across the two modules, indicated as
“inbetween” in Table 4.

Table 3. Top five hubs in the different module networks.

Module/Color Gene Degree Betweenness Closeness Hub Score

blue Trp53inp2 19 14.67 0.16 1
Map1lc3a 19 22.71 0.16 0.99
Wdr45 18 11.23 0.16 0.98
Pink1 18 12.91 0.16 0.97
Dapk1 18 14.48 0.16 0.96

turquoise Foxo1 28 70.89 0.28 1
Dcn 25 36.23 0.28 0.96
Xbp1 24 29.59 0.28 0.93
Plk2 24 60.28 0.27 0.9
Eif4g1 24 41.01 0.27 0.9

Table 4. Summary of reported and novel AMPK-autophagy interactions.

Module/Color AMPK Autophagy

blue Prkab1 Bmf, Dapk1, Rab8a, Sh3glb1, Trp53inp2
Prkag3 Rragc 4

inbetween
Prkab1 Tsc2 2,4, Ubqln1, Wipi1
Prkab2 Zc3h12a
Prkag3 Usp33

turquoise Prkag1
Akt1 1,3,4, Bcl2, Becn1, Capn10, Cdkn2a, Dcn 3,4, Eif4g1, Foxo1 2,
Fundc1, Lamp2, Lars, Map1lc3b, Nbr1, Plk2, Sirt2 3,4, Trim21,
Trp53inp1, Usp33, Vps4a, Wipi2 3,4, Xbp1

1 Coexpression in the same or in other species (transferred by homology). 2 Database gathered from curated
databases. 3 Experiments gathered from other protein–protein interaction databases. 4 Textmining extracted from
the abstracts of scientific literature.

2.6. Testing for Molecular Functions and Cellular Components Enrichment by the Detected Modules

We used a list-based enrichment to specify the contributions of the modules to the differentiation
process. The mouse gene ontology Molecular Function (MF) and Cellular Components (CC) terms were
submitted to an enrichment analysis by the gene members of the detected modules (42 for blue and 66 for
turquoise). The significant terms (FDR < 0.1) are shown in Figure 4 stratified by the category (MF/CC)
and the module (blue/turquoise). As expected, the two modules share a number of MF terms, namely;
ubiquitin-like protein binding, ubiquitinyl hydrolase activity and phospholipid binding. At the same
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time, several terms had significance by mutually exclusive enrichment by the modules. This includes the
nucleoside binding and the ubiquitin-like protein transferase activity by the blue module; and a few protein
kinase terms by the turquoise module. Similarly, two of the CC terms; extrinsic component of membrane
and outer membrane were enriched by both modules, while others related to only one of the two modules.

Figure 4. Enrichment of the gene ontology terms by the detected modules. The list of genes in the two
detected modules (42, blue and 66, turquoise) were used to test for gene ontology terms enrichment.
All terms in the Molecular Function (MF) and the Cellular component (CC) categories of the gene
ontology were considered. Only significant terms at a false discovery rate (FDR) less than 0.1 are
shown. For each term, the count (n) and the fractions of hits (bars) in the module are shown.
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Building on these two pieces of the analysis, the suggested novel AMPK interactions and the
gene ontology enrichment by the members of the modules, we set out to specify the kind of functions
that the AMPK-autophagy interactions were likely to be involved in. Table 5 shows how AMPK is
functionally connected to autophagy gene products through several gene ontology terms such as
membrane components, and regulation of kinases, enzymatic and ubiquitin activity. For examples,
Prkab1 interacts with Sh3glb1, a Bax-interacting protein at the mitochondrial outer membrane and also
with Trp53Inp2 for the uniquitin-like activity. In addition, Prkag1 associates with many autophagy
gene products such as Usp33 for the uniquitin activity at the membrane anchoring junction, Cdkn2a
for the regulation of kinase activity, and other cellular components for their molecular functions.

Table 5. AMPK and autophagy interactions by gene ontology term.

Module/Color Ontology AMPK Term Autophgy

blue

CC Prkab1 outer membrane Sh3glb1

MF nucleoside binding Dapk1, Rab8a
ubiquitin-like protein binding Trp53inp2

Prkag3 nucleoside binding Rragc

turquoise

CC Prkag1 anchoring junction Usp33
extrinsic component of membrane Becn1, Wipi2
Flemming body Vps4a
intrinsic component of organelle membrane Fundc1, Lamp2
midbody Sirt2, Vps4a
mitochondrial membrane part Fundc1
outer membrane Bcl2, Capn10, Fundc1
phosphatidylinositol 3-kinase complex Becn1

MF 14-3-3 protein binding Akt1
enzyme activator activity Lars
kinase regulator activity Cdkn2a, Dcn
nucleoside-triphosphatase regulator activity Lars
p53 binding Cdkn2a
phosphatidylinositol 3-kinase binding Becn1, Xbp1
phospholipid binding Akt1, Wipi2
protein N-terminus binding Cdkn2a, Dcn
ubiquitin-like protein binding Nbr1, Sirt2
ubiquitinyl hydrolase activity Usp33

2.7. Preservation of AMPK-Autophagy Networks across Independent Datasets

Finally, we validated these findings in three independent datasets of similar MDI-induced 3T3-L1
cells at different time points or differentiation stages. Three GEO microarray datasets (GSE15018,
GSE20696 and GSE69313) were used to perform this step of the analysis (Table 1). The average log
expression of the 181 genes of interest from the three datasets were first compared to these in the
main dataset (Figure 5). As expected, the averages are highly correlated between the datasets (>0.74),
a pre-requisite for the following module preservation analysis. A moderate to high preservation of
the modules was observed in the three independent datasets (Figure 6). Generally, modules with
a Z summary values between 5 and 10 are considered moderately preserved and these above 10
are considered highly preserved. In fact, the two modules: blue and turquoise, showed a summary
statistics in that first category with at least 6 and 7, respectively, indicating that the interaction modules
of the main dataset are well preserved in other independent datasets.
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Figure 5. Average expression of AMPK and autophagy in multiple MDI-induced 3T3-L1 microarrays
datasets. The log average expression values of AMPK and autophagy genes (n = 181) in the
MDI-induced 3T3-L1 datasets (GSE15018, GSE20696 and GSE69313) are compared to the corresponding
averages in the main dataset (GSE34150). Individual values are shown as colored points by their
assigned modules. The Pearson’s correlation coefficient of the corresponding values is shown on top.

Figure 6. Module preservation Z summary across multiple MDI-induced 3T3-L1 microarrays datasets.
The GSE34150 dataset was used to detect the highly co-expressed modules among AMPK and
autophagy genes (42, blue; 66, turquoise; 10, gray, unassigned; and 55, gold , randomly assigned).
The detected modules were used as a reference to calculate several preservation statistics in three
independent datasets of similar design (GSE15018, GSE20696 and GSE69313). Z summary statistics
and sizes of four modules are shown as colored points.

2.8. Validation of Selected Gene Products Correlations with Prkab1 and Prkag1

We selected several autophagy gene products that are highly correlated with the AMPK subunits
for experimental validation using RT-qPCR (Figure 7A,B). The relative mRNA level of each group of
genes were used to calculate the Pearson’s correlation coefficients with two AMPK subunits: Prkab1
and Prkag1. Although the resulting coefficient may vary, these calculated earlier due to the different
sensitivities between microarrays and RT-qPCR, the directions of the correlation were the same as ones
that we observed in the dataset (Figure 7C,D). In agreement with the suggested potential interaction of
Prkab1 with Wipi1, Rab8a and Trp53inp2, strong correlations were validated. Prkag1 showed strong
to moderate correlations with Becn1, Sirt2 and Trim21 as previously predicted by WGCNA.
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Figure 7. Validation of selected gene products expression and co-expression with AMPK subunits.
Three independent samples of MDI-induced 3T3-L1 cells at four different time points corresponding
to confluent, undifferentiated, differentiating and maturating stages were used to check the mRNA
level of several gene products. (A,B) the ∆∆Ct values of five and four gene products, respectively,
normalized by 18S and relative to the confluent cell stage are shown as points; (C,D) the Pearson’s
coefficient of four and three gene products with Prkab1 and Prkag1, respectively, are shown as bars.

3. Discussion

The adipocyte differentiation is a well regulated complex process. On one hand, this complexity
allows for flexibility in response to different stimuli. For example, the over-expression of LC3 in 3T3-L1
pre-adipocytes produced a downstream activation of key regulators of adipogenesis and resulted in
a differentiation pattern similar to that of the MDI induction [18]. On the other hand, this process likely
involves a wide range of changes in transcription, translation and protein modification. In a previous
study from our laboratory, we suggested that many autophagy genes were functionally associated with
adipocyte differentiation using the RNA-Seq expression data [19]. We also showed that the mRNA
level of key autophagy genes is specifically regulated at different time points, and clusters of these
genes respond to the differentiation stimulus in a time-dependent manner. In particular, the subsets of
organelle specific autophagy (e.g., mitophagy, reticulophagy, etc.) are highly regulated, suggesting
a role in reorganizing the interacellulum and removing parts of the cell to adapt the morphological
and metabolic changes of the mature adipocyte. Here, we explore the connection between autophagy
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and AMPK, which was established in conditions such as starvation, as it applies to the pre-adipocytes
response to differentiation stimuli.

One aspect of this connection can be deduced from the observed positive correlation of the
detected modules with the differentiation course (Figure 2A). In addition, the blue and the turquoise
modules scores a significant (p-value < 0.001) protein–protein interaction (PPI) enrichment with
an average clustering co-efficient of 0.4 and 0.5, respectively (STRING web interface). Although
a detailed molecular link would be less clearer, AMPK gene products were evenly split among these
modules, and had multiple edges with highly influential nodes (hubs) of well studied autophagy genes
(Tables 3 and 4). Thus, AMPK gene products are part of biologically connected autophagy modules,
which seem to be fairly consequential in the process of adipocyte differentiation.

The AMPK complex is formed of one catalytic subunit (α) and two non-catalytic regulatory
subunits (β and γ), each has more than one isoform encoded by a separate gene [20]. The different
subunits contribute to the stability and activity of the complex, whereas the combinations of the
different isoforms give rise to complexes that behave differently and/or are specific to certain
tissues [21,22]. Probes corresponding to the genes that code the different isoforms of the subunits were
consistently expressed at different levels. Moreover, they showed varying correlations with the cell
differentiation stage (data not shown). We considered the subunits and the isoforms of the AMPK
complex individually. Prkab1 and Prkag1 were expressed at higher levels, and they, therefore, are the
main AMPK side of the reported interaction with the autophagy pathway (Tables 4 and 5).

The adipocyte differentiation is characterized by events of increased lipogenesis and intracellular
remodeling. AMPK is known for inhibiting the former and stimulating the latter. The absence
of a reliable signal from the catalytic subunits of AMPK in our analysis may only enable a partial
view. Nevertheless, we observe enrichment of ubiquitin activity and certain cellular component
terms, probably akin to a form of localization, by autophagy genes co-expressed with the regulatory
(β and γ) subunits of AMPK (Figure 4). One of these terms, ubiquitin-like protein binding, includes
two gene products, Trp53inp2 and Nbr1. Both are known to help the formation of autophagosome
and the selective removal of ubiquitinated proteins through binding to LC3 [23–25]. Few other terms
related to the organelle membranes appear interesting. Perhaps, the localization of AMPK at certain
intracellular locations mediates the autophagy selectivity, as suggested before [26]. This is consistent
with the description of two emerging mechanisms of AMPK regulation, namely by ubiquitination and
sub-cellular distribution [27].

Together, it is possible that AMPK-autophagy connection is determined by the energy supply and
demand of the differentiating cells. It is more likely that the two pathways interact dexterously with
some temporospatial agility. For example, AMPK activates autophagy early in the differentiation course
in response to the differentiation stimulus. In a later stage, autophagy might remove ubiquitinated
AMPK to allow the accelerated fat accumulation. Finally, the localization of AMPK to certain
intracellular organelles could guide their recycling or removal by selective autophagy. The implications
of these features do not escape us, both AMPK and autophagy are involved in disorders such as obesity
and diabetes [28,29]. The manipulation of one pathway could affect the outcomes controlled by the
other. In addition, the timely intervention during adipocyte differentiation could preferentially favor
certain consequences of the pathways’ interplay.

Nassiri and colleagues provided a system view of the adipogenesis and ranked the involved
biological processes to identify the coordinated activity among them using the NASFinder method
of publicly available omics data [30]. According to their analyses, the translational machinery,
mitochondrial associated pathways, PPAR signaling, insulin and leptin signaling, and some membrane
associated complexes are coordinately upregulated after adipocyte induction. Although they might be
associated with AMPK or autophagy at the broad concept, they do not show any specific coordination
between AMPK pathway and autophagy process. Here, we used the widely known WGCNA method
to detect the conserved genetic networks of AMPK-autophagy gene products that might contribute
to the process of differentiation [31,32]. Typically, it needs to input the list of differentially expressed
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genes among three or more experimental conditions [12]. In this study, we limited the analysis to the
probes that mapped uniquely to AMPK and autophagy genes as defined in their gene ontology terms.
The downside of limiting the analysis to a predefined set of genes is that the prospective findings
would be limited to the available annotation, potential loss of signals from probes that map to genes
not in the predefined gene set and the inclusion of probes that map to genes that are not actively
changing among the conditions. On the other hand, this approach allows for simplifying the analysis
steps and the interpretation of the results. The detected networks are more likely to have biologically
meaningful consequences since they are formed of nodes that are known for certain functions in
their pathways/gene sets. In addition, this allows for including genes that are highly correlated even
though they don’t show the highest degree of differentiation among conditions. Certainly, some of
these genes are involved in the biology of adipocyte differentiation either by maintaining essential
cellular processes or they show subtle changes that wouldn’t be typically picked by the differential
expression approach.

4. Materials and Methods

4.1. Data and Annotation Sources

4.1.1. Gene Ontology

The Gene Ontology (GO) terms AMP-activated protein kinase (AMPK) (GO:0004679) and
autophagy (GO:0006914) were used to identify the gene products (14 and 167, respectively) with
known functions in the corresponding biological processes [33]. Similarly, GO was used to identify the
molecular function (MF) and cellular component (CC) terms containing these gene products. GO was
accessed through the GO.db and the mouse organism package org.Mm.eg.db [34,35].

4.1.2. Microarrays Expression Data

To identify the relevant datasets, we queried the NCBI Gene Expression Omnibus (GEO) metadata
by GEOmetadb [36]. The term ‘3T3-L1’ was used to search the titles of all entries, the query results
were then searched manually and datasets of similar induction time-course design were included.
The expression and the annotation data were then obtained using a GEOquery [37]. Table 1 summaries
the four datasets that were used in this analysis. GSE34150 consists of 24 samples of MDI-induced
3T3-L1 pre-adipocytes at eight different time points corresponding to three differentiation stages (0 day,
undifferentiated; two and four days, differentiating; 6–18 days, maturating).

4.1.3. Protein–Protein Interactions

The STRING database was used to query all possible AMPK-autophagy protein–protein
interactions that are reported with different evidence types [38]. The HUGO symbols of 181 genes
were mapped to the ENSEMBL IDs before querying the database. STRINGdb was used to do the
mapping, construct the query and obtain the results. The interactions were matched against the edges
of the co-expression networks of the detected modules to label the edges with the type of evidence
when they were previously reported.

4.2. Weighted-Gene Co-Expression Network Analysis

The package WGCNA was used to apply most of the necessary steps for weighted-gene
co-expression network analysis on the GSE34150 dataset as described in the original publications [39].
Briefly, a co-expression measure (Pearson’s correlation coefficient) was calculated between each pair
of genes. The coefficients were raised to the power of 5 to form an adjacency matrix. The adjacency
matrix was then used to calculate the topological overlap similarity matrix (TOM). To detect modules
and assign genes to them, a dissimilarity matrix is obtained (1 − TOM) and used as distances between
genes. A hierarchical clustering was then performed and a gene tree is built. Upon cutting the tree
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at a certain height, genes nearby are assigned to modules, referred to as colors (names are arbitrarily
assigned). The detected modules were then used to find the correlation with the phenotype and
the preservation in independent datasets. To correlate the modules to the sample phenotypes or
to each other, an eigengen or the principal components (PC) were calculated from the expression
of their respective members and used as a representative summary. Finally, a module preservation
analysis was performed by calculating various summary statistics on the detected modules in the test
datasets [40].

4.3. Network Visualization and Analysis

The igraph package was used to visualize and analyze the detected modules [41]. The genes
of interest were treated as nodes in a network graph and were connected by an edge if its
weight—calculated from the TOM similarity between each pair of genes—passed a minimum
threshold. Several graph statistics were used to determine the importance/centrality of genes and
their interactions.

4.4. Gene Modules Over-Representation

The limma package was used to test for the over-representation of the detected modules in the
GSE34150 dataset [42]. An index of the modules as gene sets, the expression data and comparison
matrix based on the differentiation stage were used as input. A gene set is considered over-represented
when it has a significantly higher fraction of differentially expressed genes than a randomly selected
module of the same size. The clusterProfiler package was used to apply a similar list-based enrichment
of GO terms by the detected modules [43]. Tests were adjusted for multiple testing using the False
Discovery Rate (FDR) and a cutoff (0.1) was applied.

4.5. Cell Culture and RT-qPCR

3T3-L1 pre-adipocytes were cultured and induced for differentiation using MDI protocol as
described before [19]. Total RNA was collected at four different time points corresponding the
the major differentiation stages of the adipocytes (−2 day, full confluence; 0 day, undifferentiated;
10 h differentiating; and −6 day, maturating). The list of the primers that were used in the reaction are
provided in (Appendix A). The Ct values from the RT-qPCR reaction were normalized by a reference
gene 18S and calibrated by the confluent samples (∆∆Ct) using the pcr R package [44].

4.6. Software Environment and Reproducibility

The data were obtained, processed and analyzed in an R environment and using multiple
Bioconductor packages [45,46]. The full analysis was done and reproduced in an isolated environment
based on docker (bioconductor/release_base2) [47]. The scripts for reproducing the analysis, figures
and tables are available at https://github.com/MahShaaban/aacna. The instructions for reproducing
the analysis are described in Appendix C.

5. Conclusions

In summary, we used the WGCNA to investigate the interactions of AMPK and autophagy gene
products in the context of adipocyte differentiation. Two co-expression networks were found to be
highly correlated with the time course of differentiation. We were able to validate the case of these
networks in other independent datasets of similar experimental designs. These networks appear to be
consequential in the response of the pre-adipocyte to the differentiation stimulus. Finally, we present
several novel potential interactions between AMPK and autophagy gene products and link them to
potential functions and cellular sites.

https://github.com/MahShaaban/aacna
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Appendix A. Datasets and Annotations

This appendix contains details of the datasets and the gene annotation used in the study.

Appendix A.1. Time Point of Samples in the Microarrays Datasets

We queried the metadata of the Gene Expression omnibus (GEO) for microarrays datasets of
MDI-induced 3T3-L1 pre-adipocytes at different time points that covers the various differentiation
stages. The datasets were then manually checked for containing sufficient phenotype and annotation
data. A few datasets were generated using custom microarrays chips of a few thousand probes and
were excluded for not containing a sufficient number of the probes of interest. In Table A1, we listed
four datasets included in this study and the time points (in hours) of their samples.

Table A1. Sample time points in the different datasets.

Time Point (hours) GSE15018 GSE20696 GSE34150 GSE69313

−48 2
0 2 3 3
1 1
2 1
3 1
4 1
5 1
6 1 3
7 1
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Table A1. Cont.

Time Point (hours) GSE15018 GSE20696 GSE34150 GSE69313

8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
24 3
48 2 3
72 3
96 3

144 3
168 2
192 3
240 3
336 3
432 3

Appendix A.2. Comparing the Average Expression in Four Datasets

To ensure that the different datasets are exhibiting comparable probe expression, we compared
the average expression of all common probes in three datasets (GSE15018, GSE20696 and GSE69313)
with the main (GSE34150) dataset (Figure A1).

Figure A1. Average expression of all probes in multiple MDI-induced 3T3-L1 microarrays datasets.
The log average expression values of all probes in the MDI-induced 3T3-L1 datasets (GSE15018,
GSE20696 and GSE69313) are compared to the corresponding averages in the main dataset (GSE34150).
Individual values are shown as points. The Pearson’s correlation coefficient of the corresponding
values is shown on top.

Appendix A.3. Data Quality Assessment

The accession number (GSE34150) was used to obtain the expression matrix and the metadata of
the dataset. Several quality assessment measures were applied to ensure the suitability of the data for
the downstream analysis (Figure A2).
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Figure A2. Quality assessment and exploration of the main microarrays dataset. Twenty-four samples
of MDI-treated 3T3-L1 cells of the microarray series (GSE34150) were obtained from GEO along with
the corresponding annotation data (GPL6885); (A) the distribution of the log expression of (n = 25,697)
probes from all samples as box plots; (B) hierarchical clustering based on the euclidean distances of
all samples; (C) multi-dimensional scaling (MDS) of all samples. Colors represent the cell stage/time
point (green, undifferentiated; dark green, differentiating and red, maturating).

Appendix A.4. Confirming Differentiation and Lipogenesis

Several adipogenic and lipogenic of markers transcriptional changes are expected during the
course of the 3T3-L1 cell differentiation. Figure A3 show the log expression level of some of these
markers at different stages in the GSE34150 dataset.

Figure A3. Differentiation and lipogensis markers in differentiating adipocytes. Average log expression
values from 24 samples of MDI-induced 3T3-L1 cells (GSE34150) at 3 differentiation stages and 8 time
points (0 day, undifferentiated (red); 2 and 4 days, differentiating (green); 6–18 days, maturating (blue))
from (A) differentiation markers and (B) lipogenesis markers are shown as bars and lines, respectively.
Cebpa, CCAAT/enhancer binding protein (C/EBP), alpha; Lpl, lipoprotein lipase; Pparg, peroxisome
proliferator activated receptor gamma; Acly, ATP Citrate Lyase; Dgat, Diacylglycerol O-Acyltransferase;
Elov6, Fatty Acid Elongase 6; Fasn, Fatty Acid Synthase; Scd, Stearoyl-CoA Desaturase.
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Appendix A.5. RT-qPCR Primer Sequences

The following nine primers were used to validate the expression and correlations of the
corresponding genes products with the subunits of AMPK during the time course of 3T3-L1
differentiation (Table A2).

Table A2. RT-qPCR primer sequences.

Name Forward (5′ to 3′) Reverse (3′ to 5′)

18S ACCGCAGCTAGGAATAATGGA GCCTCAGTTCCGAAAACCA
Becn1 CAGGAACTCACAGCTCCATTAC CCATCCTGGCGAGTTTCAATA
Prkab1 GAGATCAAGGCTCCAGAGAAAG GTTGAAGGACCCAGACAAGTAG
Prkag1 GAACTGGAGGAGCACAAGATAG GGGAGCCTGTGGATCTTATTT
Rab8a GCTCGATGGCAAGAGGATTA CTGTAGTAGGCTGTCGTGATTG
Sirt2 CATAGCCTCTAACCACCATAGC GTAGCCTGTTGTCTGGGAATAA

Trim21 GATAGCCCAGAATACCAAGAAGAG GCCCATCTTCCTCACAGAATAG
Trp53inp2 GGTGAAGCGCTGGAACAT CACAACTACCTCAGCGCAGC

Wipi1 GTGTGTCTAGACGACGAGAATG GACTTCTGAGGTAGGCTTCTTG

Appendix A.6. Gene Ontology Annotation

To define the sets of genes involved in the AMPK and autophagy pathways, we turned to the gene
ontology (GO) annotations. GO identifies the AMP-dependent protein kinase activity (GO:0004679)
as catalysis of the reaction: ATP + a protein = ADP + a phosphoprotein. In total, 14 genes were
identified to be involved in the pathway and its regulation and are referred to as AMPK genes in the
manuscript. Similarly, GO defines the term autophagy (GO:0006914) as the catabolic process in which
the cells digest parts of their own cytoplasm. It contains 10 children/subcategory terms and 167 genes.
The gene symbols of AMPK and autophagy gene sets are listed in Table A3.
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Table A3. Gene members of the AMPK and autopahgy gene ontology terms.

Category Term Genes

AMPK AMP-activated protein kinase activity Prkab1, Prkag1, Smok1, Smok2a, Prkaa1, Prkaa2, Prkab2, Prkag2,
Smok2b, Prkag3, 4921509C19Rik, Smok3a, Smok3b, Smok3c

autophagy

autophagy of mitochondrion

Atg5, Rb1cc1, Cdkn2a, Capn10, Park2, Wipi1, Wdr45, Becn1,
Fis1, Atg4b, Map1lc3a, Wdr45b, Cisd2, Fundc2, Map1lc3b, Atg12, Atg3,
Pink1, Fbxo7, Fundc1, Atg7, Wipi2, Atg2b, Usp30, Atg9b,
Ambra1, Atg4d, Atg4c, Atg9a, Atg2a, Atg4a

autophagy of nucleus Atg5, Wipi1, Wdr45, Becn1, Atg4b, Wdr45b, Atg12, Atg3,
Wipi2, Trappc8, Atg2b, Becn2, Atg4d, Atg4c, Atg2a, Atg4a

autophagy of peroxisome Rb1cc1, Acbd5, Pik3r4, Trappc8, Pik3c3

chaperone-mediated autophagy Hspa8, Lamp2

late endosomal microautophagy Hspa8, Vps4b, Vps4a

macroautophagy

Atg5, Cln3, Ei24, Nbr1, Sqstm1, Pik3c2a, Plaa, Ulk1,
Tcirg1, Ubqln1, Becn1, Ubxn6, Map1lc3a, Map1lc3b, Atg3,
Trp53inp2, Tbc1d5, Atg7, Pik3r4, Zfyve1, D17Wsu92e, Pik3c3, Yod1,
Tmem74, Pik3c2b, Vcp, Atg14

negative regulation of autophagy

Akt1, Bcl2, Eif4g2, Htr2b, Il3, Lep, Lepr, Mcl1,
Mt3, Ptpn22, Tnfaip3, Rnf5, Mtor, Sirt2, Rraga, Washc1,
Rasip1, Zkscan3, Dapl1, Wdr6, Tbc1d14, Lars, Bmf, Eif4g1,
Dap, Kdm4a, Herc1, Rubcn

positive regulation of autophagy

Ager, Dcn, Hif1a, Ifng, Pim2, Prkd1, Plk2, Trim21,
Stk11, Tfeb, Tsc2, Xbp1, Mid2, Map2k1, Irgm2, Mefv,
Sh3glb1, Nprl2, Becn1, Tmem59, Foxo1, Trp53inp1, Lrrk2, Mtdh,
Trp53inp2, Dapk1, Optn, Plekhf1, Atg7, Svip, Uvrag, Tlr9,
Trim8, Sh3bp4, Prkaa1, Ticam1, Prkaa2, Flcn, Ambra1, Zc3h12a,
Dhrsx, Tpcn1, Rnf152, Trim65, Atg14

protein targeting to vacuole involved in autophagy Smurf1

regulation of autophagy

Atm, Bcl2, Casp1, Hmgb1, Lmx1b, Rab8a, Mapt, Pik3r2, Pip4k2a, Usp10,
Xbp1, Park2, Bok, Rragd, Rragc, Iigp1, Trp53inp1, Lrrk2, Pycard, Cisd2,
Dram2, Soga3, Kat8, Rab39b, Rraga, Mtcl1, Dram1, Mfsd8, Fbxl2, Usp13,
3110043O21Rik, Rptor, Chmp4b, Nlrp6, Pip4k2b, Pip4k2c, Usp33, Wdr41,
Tpcn2, Smcr8, Lamp3, Rragb, Wdr24, Depdc5, Soga1, Fbxw7as1
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Appendix B. Rational of Analysis Directive

This appendix contains a brief discussion of some of the decision that were made at different
steps of the analysis and the rationals behind them. Specifically, we describe the steps of constructing
the co-expression networks and the centrality measures that were applied to them.

Appendix B.1. Choosing the Network Power Threshold

A critical choice in constructing the co-expression networks is setting the soft threshold (power) to
which the adjacency matrix is raised. A Scale Free Topology (SFT) measure is calculated by multiplying
the a slope and a fitted R square and a mean connectivity of the networks at different power values
(Figure A4). A power value of 5 was chosen to satisfy the SFT the most.

Figure A4. Scale free topology for multiple power values. Expression data from 24 samples (GSE34150)
MDI-induced 3T3-L1 at different time points were used to calculate an (n × n) similarity matrix
(n = 181 genes), which were used to obtain the weighed networks by raising them to multiple power
values. For each value, a scale free topology index was calculated. (A) the fit indices, the slopes
multiplied by the R squared R2 values, are shown for each power value as points; (B) the mean
connectivity, average edges shared by a node, for the resultant network at each power value are shown
as points. Red lines represent the choice of power that satisfy both high R squared R2 values and
high connectivity.

Appendix B.2. Steps of Constructing the Weighed Co-Expression Networks

In this section, we discuss the different steps for calculating the similarity measures that was
used in constructing the networks as well as comparing to the intermediary forms in representing the
notation of co-expression. Particularly, the issue of penalizing the low correlation values. Three main
steps are necessary:

• The absolute values of either Pearson’s (default) or Spearman’s coefficient can be used to provide
an initial similarity measure sij between each pair of nodes (ij) as in: sij =| cor(ij) |.

• The similarity matrix is then transformed to and adjacency matrix by elevating it to a selected
power β as in: aij = sβ

ij.
• This matrix is then used to calculate the connectivity/weight of each pair of nodes as follows:

wij =
lij + aij

min{ki + k j}+ 1− aij
,
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where lij = ∑u aiuauj and ki = ∑u aiu. These weights (also not shown) are finally used to calculate
a dissimilarity measure for clustering and detecting the gene modules as in: dw

ij = 1− wij.

Figure A5A shows the cumulative distribution functions of the final TOM similarity measure and
the two intermediaries; Pearson’s correlation and the adjacency (after being raised to the power of 5).

Figure A5. Gene similarity and node centrality measures. (A) the cumulative distribution function
(CDF) of three correlation/similarity measures of AMPK and autophagy genes (n = 181) are shown
as colored lines (green, Pearson’s correlation coefficients; red, adjacency; and blue, TOM); (B) three
centrality measures for all nodes in the two detected modules are as points. The degree centrality on
the x-axis, the betweenness centrality on the y-axis and the hub score as the point size.

Appendix B.3. Node Centrality Measures

To determine the importance of each node/gene in the networks, we relied on multiple measures
of centrality or node influence. These measures are calculated as follows:

• Degree Centrality: the number of edges/connections shared by a node. The Degree of a node v is
given by:

Degree(v) = ∑
j

av,j,

where av,j is the adjacency matrix of the network or the sum of the corresponding row.
• Betweenness Centrality: The number of the occasion of a node falls on the shortest between two

other nodes. The Betweenness of a node v is given by:

Betweenness(v) = ∑
s 6=v 6=t∈V

σst(v)
σst

or the fraction of the shortest paths between each pair of nodes (s, t) that passes through v.
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• Hub Score/Eigenvector: a measure of the influence of a given node in a network. The Eigenvector
of a node v is given by:

Eigenvector(v) =
1
λ ∑

t∈M(v)
xt =

1
λ ∑

t∈G
avtxt

or the sum of the scores xi of its neighboring nodes M(v) in the network G.

Figure A5B shows the different centrality measures and the correlations between them. Specifically,
we found that the degree centrality is highly correlated with the hub scores (Pearson’s coefficient
about 0.73) and less so with the betweenness centrality (Pearson’s coefficient about 0.44).

Appendix B.4. Network Preservation

The authors of the WGCNA method suggests using composite preservation summaries to evaluate
the evidence of the preservation of the detected modules in the test dataset/s as opposed to using
individual statistics as they measure different aspect of the preservation. In the main text, we showed
the Zsummary for the preservation of the two detected modules in three test datasets. Here, we briefly
expand on what this statistics composed of and show additional statistics supporting the preservation
of the modules.

The Zsummary statistics is given by:

Zsummary =
Zconnectivity + Zdensity

2
.

Each of the two Z summaries are further composed of several statistics, the details of which are
provided in the references.

As opposed to the Zsummary as evidence for module preservation, the median rank of the
preservation is more robust to the module sizes. However, it is more informative in comparing
preservation of modules relative to each other, as it is based on the ranks of the observed preservation
statistics of the module. The lower the median rank of the module, the more preservation it exhibits in
the test set. Figure A6 shows the median ranks/relative preservation of the modules with their sizes.

Figure A6. Module preservation ranks across multiple MDI-induced 3T3-L1 microarrays datasets.
The GSE34150 dataset was used to detect the highly co-expressed modules among AMPK and
autophagy genes (42, blue; 66, turquoise; 10, gray, unassigned; and 55, gold, randomly assigned).
The detected modules were used as a reference to calculate several preservation statistics in three
independent datasets of similar design (GSE15018, GSE20696 and GSE69313). The median ranks of the
preservation statistics and the sizes of four modules are shown as colored points.
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Appendix C. A Note on Reproducing the Analysis

This is a detailed description of the details required to reproduce the analysis from the source code.
We first introduce the way to obtain the source code, the software environment and the commands to
run the analysis script and generate the figures and tables that appear in this manuscript. In Figure A7,
we show the workflow of the study listing the steps, datasets and software packages that were used in
the analysis.

Figure A7. Workflow of the study.

Appendix C.1. Setting up the Docker Environment

The analysis was run on a docker image based on the the latest bioconductor/release_base2.
Other R packages were added to the image and were made available as an image that can be obtained
and launched on any local machine running docker:

$ docker pul l mahshaaban/ a n a l y s i s _ c o n t a i n e r s : bioc_wgcna ,
$ docker run − i t mahshaaban/ a n a l y s i s _ c o n t a i n e r s : bioc_wgcna bash .

Appendix C.2. Obtaining the Source Code

The source code is hosted publicly on a repository on github in a form of research compendium.
This includes the functions used throughout the analysis as an R package, the scripts to run the
analysis and finally the scripts to reproduce the figures and tables in this manuscript. From within the
container, git can be used to cloned the source code. The cloned repository contains a sub-folder called
’analysis/scripts’, which can be used to reproduce the analysis from scratch:
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• 01.analysis.R This script loads the required libraries, download the data and run all the steps of
the analysis described in the manuscript,

• figures/A sub-folder with a separate file for each graph in the manuscript,
• tables/A sub-folder with a sepearte file for each table in the manuscript.

The following code clones the repository containing the source code:

$ g i t c lone http :// github . com/MahShaaban/aacna .

Appendix C.3. Running the Analysis

The analysis scripts is organized to be ran using a single ’make’ command. This will first load the
necessary functions and run the main analysis and save the data in an R object ’wgcna.rda’. This will
be used to generate the figures and graphs. In addition, a log file is generated in the sub-folder ’log/’
for each script that can be used for troubleshooting.

To do that, the ’make’ command should be invoked from withing the ’analysis/’ sub-folder.

$ cd aacna/ a n a l y s i s /
$ make

Appendix C.4. Details of the R Environment

The version of R that was used to perform this analysis is the 3.4.2 (28 September 2017) on
x86_64-pc-linux-gnu. The ’DESCRIPTION’ file in the main repository contains further details about
the dependencies and the license of this work.
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