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Abstract: Vertebrate neuromuscular junctions (NM]Js) have been conceived as tripartite synapses
composed of motor neuron, Schwann cell, and muscle fiber. Recent work has shown the presence
of sympathetic neurons in the immediate vicinity of NMJs and experimental and clinical findings
suggest that this plays an eminent role in adult NM]J biology. The present study examined the
postnatal development and distribution of sympathetic innervation in different muscles using
immunofluorescence, confocal microscopy, and Western blot. This demonstrates the proximity of
sympathetic neurons in diaphragm, extensor digitorum longus, tibialis anterior, soleus, and levator
auris longus muscles. In extensor digitorum longus muscle, sympathetic innervation of NMJs was
quantified from perinatal to adult stage and found to increase up to two months of age. In diaphragm
muscle, an extensive network of sympathetic neurons was prominent along the characteristic central
synapse band. In summary, these data demonstrate that an elaborate sympathetic innervation is
present in several mouse skeletal muscles and that this is often next to NMJs. Although the presence
of sympathetic neurons at the perisynaptic region of NMJs increased during postnatal development,
many synapses were already close to sympathetic neurons at birth. Potential implications of these
findings for treatment of neuromuscular diseases are discussed.

Keywords: endplate; neuromuscular junction; sympathetic neuron; tyrosine hydroxylase; neuropeptide Y

1. Introduction

Congenital myasthenic syndromes (CMS) are neuromuscular transmission disorders that are due
to mutations in one of several components needed for the function or maintenance of the synaptic
apparatus of neuromuscular junctions (NMJs), such as choline acetyl transferase, agrin, or docking
protein 7 (DOK-7) [1]. These mutations result in fatigable muscle weakness which can be partially
treated by different drugs, depending on the gene affected and the type of mutation. In recent years,
sympathicomimetic drugs, such as ephedrine or salbutamol, have proven to be rather effective in
many CMS patients, but the underlying mechanisms of action have remained unclear [2]. A potential

Int. ]. Mol. Sci. 2018, 19, 1935; d0i:10.3390/ijms19071935 www.mdpi.com/journal/ijms


http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-4485-8346
https://orcid.org/0000-0003-4127-254X
https://orcid.org/0000-0002-0833-1053
http://www.mdpi.com/1422-0067/19/7/1935?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19071935
http://www.mdpi.com/journal/ijms

Int. ]. Mol. Sci. 2018, 19, 1935 20f15

link of these clinical findings to NM]J biology has been the recent observation of extensive interaction
between sympathetic neurons and NMJs [3,4]. Indeed, in adult mouse extensor digitorum longus
and diaphragm muscles, sympathetic neurons were found to form ample networks between motor
neurons, blood vessels, and muscle fibers [4]. In particular, most NMJs were in immediate proximity to
tyrosine hydroxylase (TH)-positive sympathetic neurons in soleus and extensor digitorum longus
muscles. Moreover, functional in vivo-imaging using fluorescent biosensors expressed in tibialis
anterior muscles showed rapid activation of postsynaptic beta-adrenergic receptor and 3',5'-cyclic
adenosine monophosphate (cAMP) signaling as well as nuclear import of the transcriptional co-activator,
peroxisome proliferator-activated receptor gamma coactivator 1-alpha, upon electric stimulation of the
ganglia mediating sympathetic outflow to the hindlimbs [4]. Local chemical sympathectomy led to
massive muscle atrophy and a decay of NM]J integrity and function. These features were similar to those
observed in a CMS mouse model and were rescued by simultaneous treatment with a sympathicomimetic
drug [4]. With this in mind, one might ask, if sympathetic innervation of skeletal muscle and NM]Js
was not addressed before. Indeed, the first accounts on a potential ‘dual innervation” by myelinated
and non-myelinated fibers of NMJs were published already in the early twentieth century [5-7], but for
different reasons, including lack of molecular specificity and functional proofs, these studies were later
dismissed [8] and largely forgotten. Sporadic studies reported on the distribution of sympathetic neurons
in skeletal muscle as a whole [9] or at muscle spindles [10], on the dual innervation of special NM]Js
in the esophagus [11,12], or on the presence of the catecholaminergic neuron marker, TH, opposite to
acetylcholine receptor (AChR) stainings in mouse and human muscle cross-sections [13,14]. The latter
studies, though, interpreted their findings such that the cholinergic motor neuron itself might have
TH activity rather than suggesting the presence of another, sympathetic, neuron at the perisynaptic
region. Such a conclusion was reasonable in the framework of the long-held concept of a tripartite
structure of NM]Js and given that the observations were made on muscle cross sections, which do not
allow the visualization of axons approaching the synapse. This was different in the most recent study,
which used optical tissue clearing in combination with reporter mice expressing a fluorescent protein
under dopamine beta-hydroxylase promoter control and which showed axons different to those of
lower motor neurons approaching the NMJs [4]. Additional recent work argues in favor of an important
role of sympathetic innervation for muscle trophic status [15] and in the context of CMS [1,16,17] and
other neuromuscular diseases including spinal muscular atrophies and amyotrophic lateral sclerosis [18].
Thus, the sympathetic innervation of muscle, and of NM]Js in particular, is a new field of research and
nothing is known so far about its developmental aspects. In the light of early-onset neuromuscular
disorders, such as certain types of CMS, the early postnatal development of the sympathetic-NM]
relationship is especially relevant. This was addressed in the present work and, in addition, the list of
muscles showing sympathetic innervation at NMJs was further increased.

2. Results

2.1. Sympathetic Innervation is Widely Distributed in Hindleg Muscles

First, we studied the general distribution of sympathetic innervation in the tibialis anterior hindleg
muscle. Longitudinal sections were prepared and stained with an antibody specific for the sympathetic
neuron marker, TH. As shown in Figure 1A, TH immunofluorescence signals were visible along the
entire extension of the muscle belly. Partially, longer stretches of TH-positive signals were found to
run along individual muscle fibers if those were nicely cut in length as indicated for some examples
by arrowheads in Figure 1A. In other regions, where muscle fibers were rather seen in cross-section,
TH-positive signals appeared as dots (arrows in Figure 1A). This suggests, that TH-positive axons
generally align for some distance along the muscle fibers. This was confirmed by further analyses,
where slices were additionally stained with an antibody against x-actinin to highlight the muscle fiber
sarcomeres (Figure 1B,C). TH-positive signals were seen to run in anastomosing patterns along the
outside of the fibers. In general, the data show that sympathetic innervation is richly developed in
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mouse tibialis anterior muscle and that the sympathetic neurons might communicate at many places
with muscle fibers.

Figure 1. Sympathetic innervation is richly developed in mouse hindleg muscle. Tibialis anterior
muscles of adult wildtype mice were cryosectioned longitudinally, then stained with antibodies
against TH (A-C, green) and, in addition, against «-actinin (B,C, red). Nuclei were stained with
4’ 6-diamidino-2-phenylindole (DAPI; B,C, blue). Pictures show single confocal sections, (C) depicts the
detail in the boxed region of (B). Arrowheads and arrows in (A) indicate alignment of sympathetic
neurons with longitudinally and vertically cut muscle fibers, respectively. Scalebars show 500 um,
50 um, and 5 pm in (A-C), respectively.

2.2. Sympathetic Innervation Contacts NM]Js in Different Muscles

Next, we concentrated on the interaction between sympathetic innervation and NMJs in different
adult muscles, i.e., tibialis anterior, diaphragm, soleus, and levator auris longus. Except for diaphragm,
fiber bundles were teased and co-stained with an anti-TH antibody and fluorescent a-bungarotoxin
(BGT) for labelling sympathetic neurons and NMJ postsynapses, respectively. Confocal microscopy of
these samples confirmed a rich innervation in all assessed muscles and showed that most NMJs were
in very close proximity to at least one ramification of a sympathetic neuron (Figure 2). The formation of
plaque-like TH-positive structures directly underlying the postsynaptic apparatus, as it was described
previously for extensor digitorum longus muscle [3,4], was also evident in tibialis anterior muscle
(Figure 2, upper two panel rows) and diaphragm (Figure 2, third panel row), less clear in soleus
(Figure 2, middle two panel rows) and apparently absent in levator auris longus (Figure 2, lower panel
row). This suggests, that although the immediate vicinity of NM]Js to sympathetic ramifications
appears to be a general feature, the precise form of morphological interaction may vary between
different muscle types. Interestingly, the TH-signals in the plaque-like structures underneath the
NM]Js, as observed in the tibialis anterior (Figure 2, upper two panel rows) and diaphragm (Figure 2,
panel rows 3 and 4), was rather outlining the postsynaptic BGT staining. This is in contrast to lower
motor neuron signals that perfectly match the postsynapse (for review see e.g., [19]).



Int. J. Mol. Sci. 2018, 19, 1935 40f 15

overlay

tibialis anterior

diaphragm

soleus

levator auris longus

Figure 2. Sympathetic innervation approaches NMJs in various skeletal muscles. Diaphragm muscle
was from P30, tibialis anterior, soleus, and levator auris longus muscles were from P90 wildtype mice.
Except for diaphragm muscle, which was prepared as a whole mount, fiber bundles were teased from
these muscles as indicated and stained for NM]Js (BGT, red in overlays) and sympathetic neurons
(TH, green in overlays). Images show maximum z-projections of confocal image stacks. Scalebars, 20 pm.
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2.3. Sympathetic Innervation of NMJs Increases during Postnatal Development

To address the postnatal development of the interaction between sympathetic neurons and NMJs,
we performed immunofluorescence and Western blot analyses. For the immunofluorescence study,
extensor digitorum longus muscles were harvested from wildtype mice at different ages ranging
from PO to adult, cross-sectioned, and stained with BGT for NM]Js in addition to either anti-TH
or anti-neuropeptide Y (NPY) antibodies to mark sympathetic neurons; with anti-p2-adrenergic
receptor antibodies to label target structures of sympathetic neurons, or anti-VAChT antibodies against
cholinergic motor neurons as a positive control. Samples were then imaged using confocal microscopy
and quantitatively analyzed for colocalization using Image]. Figure 3 shows representative confocal
slices for each of these stainings at PO, P21, and adult. Quantitative analysis revealed that the amount
of NMJs positive for the sympathetic neuron markers significantly increased from about 40% in the
case of TH and less than 10% for NPY at PO to almost 90% (TH) and 60% (NPY) in adult muscles
(Figure 3A,B). Conversely, the number of NM]Js positive for 32-adrenergic receptor immunostaining
remained constantly high at around 80 to 90% up to P30 and slightly decreased to about 70% in the
adult (Figure 3C). As expected, the percentage of VAChT-positive NM]Js did not vary significantly and
ranged at all analyzed stages between 90% and 100% (Figure 3D).

Furthermore, using Western blot analysis of lysates from tibialis anterior muscles, we also studied
the postnatal whole-muscle expression profile of TH and (32-adrenergic receptors (32AR). In contrast
to the immunofluorescence data, no significant variation in the amount of TH or 32AR was detected
throughout the different samples (Figure 4). In summary, the combination of immunofluorescence
and Western blot data suggests, that although the overall sympathetic innervation density seemed to
remain unaltered during the postnatal development in the studied hindleg muscles, NMJs became
increasingly approached by TH-positive sympathetic neurons. Conversely, in the same samples,
2AR total amounts and distribution at NM]Js were similar during the entire observation period.
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Figure 3. Sympathetic innervation of NMJs increases during postnatal development in mouse
hindlimb muscle. Mouse extensor digitorum longus muscles from animals aged zero days (P0) to
six months (adult) were sampled, fixed, transversally sectioned, and stained for NMJs (BGT, red
in merges) and various marker proteins (green in merges). Therefore, antibodies against TH (A),
NPY (B), p2-adrenergic receptor (C, f2AR), and vesicular acetylcholine transporter (D, VAChT)
were employed. Labeled sections were imaged by confocal microscopy and colocalization between
BGT-signals and immunolabelling was determined. Fluorescence micrographs show single optical
sections of representative tissue slices from PO, P21, and adult. Scalebars, 10 um. Bar graphs show
quantitative analysis of immunopositive NM]Js as percent of all analyzed NMJs (mean £ SEM; n = 3).
In total, more than 8400 NM]Js were analyzed. * p < 0.05, ** p < 0.01.
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Figure 4. Total amounts of TH and 32AR in hindleg muscles do not vary significantly during postnatal
development. Mouse tibialis anterior muscles from animals aged zero days (P0) to six months (adult)
were sampled, lysed, and subjected to SDS-PAGE followed by Western blot analysis. In each lane,
the same amount of protein was loaded. Western blot used antibodies against TH (A) or f2AR (B).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was employed as a loading control. Bar graphs
depict TH or f2AR band intensities relative to their corresponding GAPDH band (mean + SEM; n = 4
mice for each time point).
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2.4. Sympathetic Innervation in Mouse Diaphragm Aligns with the Synapse Band

Finally, we investigated the distribution of sympathetic innervation in diaphragm muscle. To that
end, diaphragms from newborn and one-month old mice were taken, fixed, and stained with BGT and
antibodies against TH. After embedding, whole mounts were imaged with confocal microscopy using
a Leica HC PL APO 20x/0.75 IMM CORR objective with voxel sizes of 758 nm in xy and 1-1.2 um (P0)
or 7 um (P30) in z. Tile stacks were then stitched and deconvoluted. Figure 5A shows a z-projection of
a PO hemidiaphragm with the well-known distribution of NM]Js (red spots) in two discrete synapse
bands in the costal and crural muscle domains. Notably, although TH-positive axons were found
throughout the hemidiaphragm, the highest density of these nerve fibers was present along the synapse
bands. The strongest TH-signals were those along the phrenic arteries, but finer processes ran into
proximity of most NMJs. Moreover, also intercostal arteries were nicely outlined by TH fluorescence
signals. To get a better idea of the local relationship between the localization of sympathetic axons and
NMyJs, single confocal sections of blow-ups from boxed regions 1, 2, and 3 in the overview are depicted
in the small insets numbered accordingly in Figure 5A. These show that most NMJs were found in the
immediate vicinity of TH-fluorescence positive ramifications. Inspection of P30 diaphragms revealed
an increasing complexity of sympathetic innervation (Figure 5B). Although many NMJs were still
found to align on bands close to the phrenic arteries and their accompanying sympathetic neurons
(in particular on the ventral half of the diaphragm, see arrowheads in Figure 5B), the widening NM]J
bands in other parts of the muscle were approached by numerous fine anastomoses of sympathetic
projections. These ramifications mostly originated from the blood-vessel aligned TH-positive processes.
As depicted in insert 1 to Figure 5B, sympathetic projections from intercostal and phrenic blood vessels
were crossing at the center of the costal diaphragm domain and then extended in a dense meshwork
of thin axons running along muscle fibers for hundreds of microns. Conversely, the sympathetic
innervation was much sparser in the tendon region (see lower part of insert 1 in Figure 5B). Insert 2 of
Figure 5B depicts a central part of the costal domain and demonstrates the high density of sympathetic
innervation at P30. The alignment of TH-positive axons with blood vessels is here as evident as
the emanation of finer branches from the principal projections. It can be noted, that the matrix of
sympathetic projections enables that nearly all NM]Js are at close distance to one or more of these.

To gain more concrete insights into this feature, we carried out a quantitative assessment of how
close NMJs really were to the sympathetic neurites. As a positive control, we first used a proximity
calculation between VAChT immunostaining and NM]Js. Since, in skeletal muscle, VAChT is almost
exclusively present in all cholinergic presynapses, this should indicate the quality of our data
processing. Thus, PO diaphragms were stained, imaged (Figure 6A) and then analyzed using the DiAna
plugin for Image]J [20]. As illustrated in the distribution plot in Figure 6D, more than 90% of NM]J
postsynapses as identified by BGT were found at less than 2 um to the next VAChT immunofluorescence
signal. This shows that the segmentation and analysis tool were sufficient to address the proximity
analysis, at least for plaque-like fluorescence signals such as those obtained with VAChT and BGT
staining. However, the TH staining tended to become less intense in the finer ramifications and
plaque-like TH-positive structures as found in tibialis anterior muscles and P30 diaphragms (Figure 2)
were not seen in the PO diaphragms. Accordingly, only about 30% of NM]Js were found in a range of
less than 2 pm diameter to the next TH signal (Figure 6D) in PO diaphragms. Therefore, we decided to
compare these values to another positive control, i.e., neurofilament L, a filamentous axonal marker,
which appeared to primarily stain motoneurons in our preparations (Figure 6B). The quantitative
proximity data retrieved with this marker were much more like those of TH (Figure 6D). In conclusion,
these data indicate that many NM]Js are in close vicinity to TH-positive neurons in the diaphragm.
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Figure 5. Sympathetic innervation of mouse diaphragm muscle gains complexity during postnatal
development. Mouse diaphragm muscles from P0 (A) and P30 (B) mice were fixed, stained with BGT
against NM]Js (red) and antibodies against TH (green). Then, muscles were imaged by high-resolution tile

scanning confocal microscopy with a lateral resolution of 758 nm and a vertical step size ranging between
1 and 1.2 ym (P0) and 7 um (P30). Image acquisition was followed by deconvolution. Large pictures
in (A,B) depict maximum z-projections of hemidiaphragms. Insets 1, 2, 3 show single optical sections
(A) or enhanced details (B) from correspondingly numbered boxed regions in the overview images.
Arrowheads in (B) indicate a zone, where a main branch of the phrenic artery is lined by TH label.



Int. J. Mol. Sci. 2018, 19, 1935 9 of 15

W PO - VACHhT
PO - NF

PO-TH
60

40

NMJs (% of total)

204

DONTOOVONT O ON ¥ ©
————— NANANNNOOOO®

distance from NMJ to nearest IF-signal (um)

Figure 6. Quantitative analysis confirms interaction of NMJs with sympathetic ramifications in postnatal
diaphragm muscles. Mouse diaphragm muscles from PO mice were fixed, stained with BGT against
NM]Js (red signals in A—C) and antibodies (green signals in A-C) against VAChT (A) or neurofilament L
(B). In (C), primary antibody was omitted. Then, muscles were imaged by high-resolution tile scanning
confocal microscopy with a lateral resolution of 758 nm and a vertical step size ranging between 1 and
1.2 um. Image acquisition was followed by deconvolution. Large pictures in (A—C) depict maximum
z-projections of hemidiaphragms. Insets 1-3 show single optical sections from the correspondingly
numbered boxed regions in the overview images. (D) shows a distribution plot indicating the distance of
individual NM]Js to the nearest corresponding immunofluorescence signal. Image data for PO—TH were
as shown in Figure 5A. In total, 5986 NM]Js were analyzed.

3. Discussion

Skeletal muscle, which is composed of many interweaved tissue components such as skeletal
muscle fibers, blood vessels, and nerve and glial cells, is clearly a target for sympathetic activity, be it
in the context of vasomotor control [21,22] or the regulation of muscle force [23-25]. However, the dual
possibility of regulation by either the hormonal or the neural branch of the sympathetic nervous system
has led to a profound ambiguity on the precise mechanisms and origins of sympathetic stimuli in
many cases. In particular, sympathetic innervation of skeletal muscle fibers has been widely neglected
and, in general, the presence and distribution of sympathetic neurons in skeletal muscles has been
rarely studied [9,26]. To our knowledge, an overview on the sympathetic innervation in a whole mount
muscle has been completely missing so far. The lack of knowledge is even more eminent with respect
to the interaction of sympathetic neurons and NMJs. Indeed, NM]Js are still the classical example
for a tripartite synapse [27] composed of and regulated by three cell types: cholinergic lower motor
neuron, skeletal muscle fiber, and terminal Schwann cell. Although it remains undoubted, that these
are the major components of NMJs, recent work has added sympathetic neurons as a potential fourth
candidate that is frequently found in the immediate vicinity of NM]Js in certain muscles, that appears
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to be functionally linked with the NM]J postsynaptic part, and to be crucial for the maintenance of the
entire synaptic apparatus [4]. This latter study triggered a plethora of questions, which need to be
examined in future investigations with two of these, i.e., which muscles exhibit an NMJ—sympathetic
neuron connection and how is its postnatal development, being addressed here.

In combination with earlier work [3,4], the current investigations could increase the list of muscles
with an apparent strong relationship between NM]Js and sympathetic neurons to the following:
diaphragm, extensor digitorum longus, gastrocnemius, levator auris longus, soleus, and tibialis
anterior. Each of these muscles displayed an ample distribution of sympathetic neurites over large
ranges of the muscle and many NMJs were near such a ramification. However, only diaphragm,
extensor digitorum longus, gastrocnemius, and tibialis anterior muscles displayed a clear TH-positive
extension of the sympathetic neurite underlying the NMJ postsynapse in a plaque-like manner. It needs
to be seen in further investigations if this feature has any relevance for functional interaction between
neuron and muscle, and why some muscles exhibit this kind of connection and others do not. Given that
both, slow (like diaphragm) and fast muscles (like tibialis anterior) showed plaques, it seems unlikely,
that it is linked to muscle fiber type. This was also corroborated by a preliminary fiber typing study,
which showed that sympathetic processes were present along type I, Ila, and IIb myosin-positive muscle
fibers (Figure S1). Furthermore, given that these TH-positive signals were regularly outlining the
postsynaptic BGT-signals, one would expect to consistently find profiles that are typical for sympathetic
neurons with sparse small synaptic vesicles and some large dense core vesicles at the rims of synaptic
NM]J boutons. In addition, it would be interesting to study the precise morphological position of
sympathetic neurons in relation to postsynaptic junctional folds, motor neurons, and Schwann cells by
means of super-resolution microscopy or correlative light-electron microscopy.

The analysis of the postnatal development of the sympathetic neuron—NM]J interaction showed
a gradual increase of innervation density from PO to adult for two sympathetic neuron markers,
i.e., TH and NPY. However, while enrichment of TH-signals juxtaposed to the BGT staining was
already present in many NMJs at birth, NPY immunoreactivity appeared much later at around
week three at that place. It would be important to obtain insights concerning the relevance of this
finding. For example, it would be interesting to know, if there are potentially different functions of
catecholamines versus NPY at the level of the NMJ and why NPY is appearing later in postnatal
development than TH. Conversely, 32AR staining was strong at PO and slightly decreased at later ages.
Clearly, $2AR immunofluorescence signals were not only present at the NM]J site but were also found
in other places. As previously observed [3], motor axons and blood vessels were often immunopositive
and it will be interesting to study putative functions of a local sympathetic—{3-adrenergic interplay.

To our knowledge, this study has delivered the first pictures of the distribution of sympathetic
innervation across muscle whole mounts. In particular, the spreading of TH-signals in the diaphragm
was very interesting. This showed an apparent intimate relationship of sympathetic axons with at least
two major components of muscle tissue, i.e., blood vessels and NM]Js. Indeed, although we here did
not include direct blood vessel staining, it can be inferred from the general function of sympathetic
neurons in regulating vasomotor activity [21,22,28] and earlier work on the distribution of arteries,
veins, and capillaries in diaphragms [29,30] that the major TH-positive signals in our hemidiaphragm
samples were lining up with the phrenic and intercostal arteries and their ramifications. Interestingly,
compared to PO, the sympathetic innervation was more elaborate at P30. While at PO most of the
TH-positive fibers were confined to the large phrenic and intercostal blood vessels and did extend from
there only roughly up to the border of the synapse band, TH-positive processes were also running
along the entire sarcomeric region in P30 diaphragm. The co-alignment of the TH-positive signals with
the NM]J synapse bands was intriguing and triggers open questions. These include, whether there is
a special relationship between NM]Js and macro- and microcirculation and if so, whether this finding is
limited to diaphragm muscles. A preliminary analysis on cross sections of different hindleg muscles
confirmed that TH-positive structures mostly contact both, NMJs and blood vessels (Figure S2), but did
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not yield a special vicinity correlation between NM]Js and blood vessels. However, this certainly needs
further consolidation.

Finally, the present study reveals an ample presence of sympathetic innervation and interaction
with NMJs already at birth. Some neuromuscular disorders, including several forms of congenital
myasthenic syndromes, set in perinatally and an increasing amount of clinical evidence show the
effectiveness of sympathicomimetic drugs, such as ephedrine, salbutamol, or albuterol, for clinical
treatment of certain types of these diseases [1,2,31]. Experimental data in rodent models corroborate
these insights and point to an important function of sympathetic innervation for the maintenance of
NM]Js [4]. The present findings of an elaborate sympathetic plexus ready at birth but with augmenting
complexity and higher interaction rate with NM]Js are compatible with a role of this innervation for
NM]J development as well and could indicate that early postnatal treatment with sympathicomimetics
might be envisaged in certain cases of perinatal neuromuscular disorders.

4. Materials and Methods

4.1. Animals and Sample Preparation

In the current study, PO, P7, P14, P21, P30, P60, and adult C57BL/10] and C57BL/6] (Charles
River) mice were used. Animals were maintained in a local animal facility and their use and care were
approved by German and Italian authorities (Regierungsprasidium Karlsruhe, G-285/14, 11 June 2016
and local ethical committee and Ministry of Health—Ufficio VI, C54).

4.2. Western Blot

For Western blot analysis, tibialis anterior muscles were dissected, snap-frozen, lysed using lysis
buffer (50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 1% NP-40 [A1694; AppliChem, Darmstadt, Germany],
10% glycerol, 1 mM EDTA, 1 mM EGTA, 1x Roche® phosphatase inhibitor cocktail [#88667; Roche,
Mannheim, Germany], 1x Roche® protease inhibitor cocktail [#88665; Roche, , Mannheim, Germany]
and 0.5 mM PMSF [A0999; AppliChem, Darmstadt, Germany]), and subjected to SDS-PAGE followed
by Western blot analysis. In each lane, equal amounts of protein were loaded. Chemiluminescence
signals were obtained using an ECL system in combination with a Syngene G:Box Chemi XX6
chemiluminescence imager (Fisher Scientific, Schwerte, Germany). Western blot analysis employed
the following antibodies: Rabbit anti-TH (Millipore AB152; 1:1000; Merck, Darmstadt, Germany),
rabbit anti-p2AR (AB182136; 1:1000; Abcam, Cambridge, UK), mouse anti-GAPDH (MA5-15738;
1:10,000; Thermo Fisher Scientific, Darmstadt, Germany), goat anti-rabbit IgG (H + L) HRP (Jackson
ImmunoResearch 111035003; 1:10,000; Dianova, Hamburg, Germany), and goat anti-mouse IgG (H + L)
HRP (#32430; 1:10,000; Thermo Fisher Scientific, Darmstadt, Germany).

4.3. Immunofluorescence

Immunofluorescence analyses used the following antibodies: Rabbit anti-TH (Millipore AB152;
1:200 on sections; 1:100 on fiber bundles; 1:50 on whole mounts; Merck, Darmstadt, Germany), rabbit
anti VAChT (#139103; 1:500 on sections; 1:200 on whole mounts; Synaptic Systems, Gottingen, Germany),
rabbit anti-NPY (#11976; 1:200 on sections; Cell Signaling Technologies, Frankfurt am Main, Germany),
rabbit anti-B2AR (sc-569; 1:200 on sections; Santa Cruz Biotechnology, Heidelberg, Germany), rabbit
anti-NFL (#171002; 1:200 on whole mounts; Synaptic Systems, Gottingen, Germany), mouse anti-myosin
heavy chain-type I (1:100, [32]); anti-myosin heavy chain-type Ila (1:100; [32]) and anti-myosin heavy
chain-type IIb (1:100, [32]), goat anti-mouse AlexaFluor555 (Dianova, Hamburg, Germany), donkey
anti-rabbit AlexaFluor 488 (1:1000 on sections; 1:200 on whole mounts (P0), 1:100 (P30); Thermo Fisher
Scientific, Darmstadt, Germany). AChR were labeled with BGT-AlexaFluor 647 (Life Technologies
B35450; 1:1,000 on sections; 1:200 on whole mounts (P0), 1:100 (P30); Thermo Fisher Scientific, Darmstadt,
Germany), blood vessels were stained with FITC-conjugated lectin-B4 (VEC-FL-1201, [33]; 1:100; Biozol,
Eching, Germany). (a) For fiber bundle analysis, muscles were harvested, fixed in 4% PFA for 5 min and
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small fiber bundles were dissected in sterile PBS under a stereomicroscope. Fibers were incubated in
50 mM NH4Cl for 30 min, followed by washing in PBS. Fibers were permeabilized in PBS supplemented
with 0.5% Triton-X100 for 2 h at room temperature and incubated overnight with the primary antibody
diluted in PBS supplemented with 2% BSA and 0.5% Triton-X100 at 4 °C. After three washes in PBS,
fibers were incubated with the secondary antibody for 2 h at room temperature. At the end of the
procedure, fibers were incubated with BGT for 2 h at room temperature at slow agitation. Fibers were
then analyzed at the confocal microscope; (b) For immunofluorescence of cryosections, muscles were
sampled, chemically fixed in 4% PFA (overnight, 4 °C), and cut in 8 pm thick slices. Sections were
washed with 1x PBS (10 min), permeabilized with 0.1% Triton-X100/PBS (10 min), washed with
1x PBS (3 x 5 min), and blocked with 2% BSA/PBS (2 h, 4 °C). Then, sections were incubated with
primary antibodies in 2% BSA /PBS (overnight, 4 °C). After washing with PBS (3 x 10 min), the slides
were incubated with secondary antibodies and BGT in 2% BSA /PBS (1 h) followed by washing with
PBS (3 x 10 min). Slides were embedded in Mowiol; (c) For immunofluorescence of whole mounts,
diaphragms were chemically fixed in 4% PFA (24 h, 4 °C). For immunostaining a modified iDISCO
tissue clearing and staining protocol was applied [34]. In brief, hemidiaphragms were dissected and
incubated in blocking and permeabilization solution (BnP) composed of 1x PBS/1x PTwH (0.2%
Tween in 1x PBS with 10 pg/mL heparin)/0.5% Triton X-100/10% (vol/vol) DMSO/6% (vol/vol)
BSA (1x BnP) for 3 days followed by a 24 h-incubation in quenching solution (1 x PBS/0.5% Triton
X-100/20% DMSO/0.3 M glycine). The primary antibody was diluted in 1x BnP and incubated at
37 °C on an orbital shaker for 24 h (P0) or 4 days (P30). Then, hemidiaphragms were washed with
1x BnP for 4 days and incubated with the secondary antibody and BGT (diluted with 1x BnP) at 37 °C
for 24 h on an orbital shaker. Before imaging, another 4 days of 1x BnP and 24 h of ddH,0 washing was
performed. Then, PO hemidiaphragms were mounted on a glass slide and embedded using Mowiol.
RI matching with glycerol was performed only in hemidiaphragms aged P30 and embedded using
glycerol. If temperature was not specified, incubation was performed at room temperature.

4.4. Microscopy

Muscles were imaged with inverted Leica SP2 and SP8 (Leica Microsystems CMS, Mannheim,
Germany) confocal microscopes equipped with HC PL APO 20x /0.75 IMM CORR, HC PL APO
63x /1.40 OIL CS2, and HC PL APO CS2 63 x /1.2 W CORR objectives. Whole mount microscopy of
hemidiaphragms used automated tile scan imaging with the Navigator module and automated
stitching in the smooth mode with the Stitching module of Leica LAS-X 3.3.0 software suite.
Projections of hemidiaphragms were rendered with the 3D Visualization module of Leica LAS-X
3.3.0 software suite.

4.5. Image Analysis

(a) Accumulation Analysis. The settings used at the Leica SP2 were 400 Hz scan frequency, 1024 x
1024-pixel resolution, two times line average, and a pinhole of 4 Airy Units. For further processing,
the images were exported in TIFF format. Accumulation analysis was conducted using Image]
freeware image processing software (https://imagej.nih.gov/ij/) as previously described [35]. Briefly,
images of the BGT-AF647 channel were median filtered (1-pixel kernel) and thresholded from 30-255
grayscale values. The NM]J region in the BGT-AlexaFluor647 channel was outlined as a region of
interest (ROI). In the AlexaFluor488 channel, the muscle fiber area corresponding to the previous
selected NMJ region was defined. For both (NMJ region and muscle fiber), mean grey value and
standard deviation were determined. The accumulation of the stained proteins within the NM]J
region was counted as positive if the mean grey value within the NMJ region was higher than the
mean gray value within the muscle fiber plus the standard deviation within the fiber. In formula:
[(mean grey value NMJ) — (mean grey value fiber + standard deviation fiber)]; (b) Distance Analysis.
For the analysis of the distance between the immunostaining signals (AlexaFluor488) and the NM]Js
(BGT-AlexaFluor647) hemidiaphragms were imaged with the following settings: 1024 x 1024 pixels,
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voxel size: 0.785 x 0.785 x 1 pm (TH), 0.785 x 0.785 x 1.04 um (VAChT), 0.785 x 0.785 x 1.2 um
(neurofilament L and negative control), bi-directional scan speed 600 Hz, zoom (.75, pinhole setting
of 1 Airy Unit, and a frame average of 3. Deconvolution with Huygens Essential 15.10 software
(https:/ /svi.nl/HomePage) (RRID: SCR_014237) was performed using a maximum of 300 iterations of
the Classic Maximum Likelihood Estimation algorithm with a theoretical PSF. Background correction
employed automatic settings. The signal-to-noise ratio setting was set to 1 and the quality threshold to
0.05. For the distance analysis, the Fiji plugin “DiAna” was used [20]. In brief, “DiAna” is suited for 3D
image segmentation and 3D distance analysis within 3D data sets. For the analysis of the edge-to-edge
distance between BGT-AlexaFluor647 and the closest immunofluorescence (AlexaFluor488) signal,
the following procedure was applied. First, images were intensity thresholded for binarization using
the following intensity boundaries: BGT signals, 20-255; TH, 6-255; neurofilament L, 22-255; VAChT,
20-255. Then, the “classical segmentation” procedure was selected. For BGT signals, minimum and
maximum object sizes of 50 and 20,000,000, respectively, were set. For all immunostainings, object
sizes of 3-2,000,000,000 were set since the filamentous structure of TH and neurofilament L signals
required a higher maximum object size. In the BGT channel, signals at x, y, and z edges were excluded.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/19/7/
1935/s1.
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Abbreviations

AChR nicotinic acetylcholine receptor

BGT a-bungarotoxin

BnP blocking and permeabilization solution

32AR 2-adrenergic receptor

CMS congenital myasthenic syndrome

GAPDH glycerol aldehyde-3-phosphate-dehydrogenase
NM]J neuromuscular junction

NPY neuropeptide Y

PTwH 0.2% Tween in PBS with 10 pug/mL heparin
TH tyrosine hydroxylase

VAChT  vesicular acetylcholine transporter
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