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Abstract: Gentiana section Cruciata is widely distributed across Eurasia at high altitudes, and some
species in this section are used as traditional Chinese medicine. Accurate identification of these
species is important for their utilization and conservation. Due to similar morphological and chemical
characteristics, correct discrimination of these species still remains problematic. Here, we sequenced
three complete chloroplast (cp) genomes (G. dahurica, G. siphonantha and G. officinalis). We further
compared them with the previously published plastomes from sect. Cruciata and developed highly
polymorphic molecular markers for species authentication. The eight cp genomes shared the
highly conserved structure and contained 112 unique genes arranged in the same order, including
78 protein-coding genes, 30 tRNAs, and 4 rRNAs. We analyzed the repeats and nucleotide
substitutions in these plastomes and detected several highly variable regions. We found that four
genes (accD, clpP, matK and ycf1) were subject to positive selection, and sixteen InDel-variable loci
with high discriminatory powers were selected as candidate barcodes. Our phylogenetic analyses
based on plastomes further confirmed the monophyly of sect. Cruciata and primarily elucidated
the phylogeny of Gentianales. This study indicated that cp genomes can provide more integrated
information for better elucidating the phylogenetic pattern and improving discriminatory power
during species authentication.
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1. Introduction

Gentiana is the largest genus in the family Gentianaceae and widely distributed throughout the
northern Hemisphere [1]. Approximately 362 species are recognized in genus Gentiana which have been
divided into 15 sections [2]. Section Cruciata contains 21 species which are mainly distributed in eastern
Eurasia [3]. Most species of this section are restricted to alpine regions, although some of them could
be found at altitudes below 1000 m at higher latitudes [1]. Four species (G. macrophylla, G. crassicaulis,
G. straminea, and G. dahurica) in sect. Cruciata are used as the original plants of traditional Chinese
medicine named Qin-jiao [4]. The roots of these plants contain abundant secoiridoid active compounds
which could be used for the treatment of diabetes, apoplexy, paralysis, and rheumatism [5-8].

Recently, the wild resources of some Gentiana species are dramatically declined due to
overexploitation and some of them have been listed in the National Key Protected Wild Herbs in
China [5,7]. However, the demand of natural sources for these plants remains high due to the
high pharmacological and economical values. Therefore, many economically motivated adulterants
of Qin-jiao products with similar morphological characters have been developed to substitute the
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genuine medicinal materials. Generally, the authentication of herbs was based on the morphological
and histological inspection. But these methods may not be suitable for authenticating some species in
sect. Cruciata due to the following reasons. Firstly, most species of sect. Cruciata shared the similar
morphological characters especially in terms of leaf shape. Secondly, some species in this section are
usually located in the sympatric distributions, thus intermediate morphology could be detected due
to interspecific hybridization [9,10]. Thirdly, pharmacognostical studies showed that some species
such as G. siphonantha and G. straminea usually shared similar chemical profiles [11]. Some other
factors, such as growth conditions, developmental stage, and internal metabolism may affect the
secondary metabolite accumulation in Qin-jiao and limit the application of such chemical analyses for
authenticating the species of sect. Cruciata. In addition, chemical methods for identifying the medicinal
plants are also expensive and not suitable for high-throughput analysis [12]. Therefore, reliable and
cost-efficient methods are needed to authenticate the medical plants of sect. Cruciata.

Chloroplast (cp) genome of angiosperm is characterized by a typical quadripartite structure
that contains a pair of inverted repeat (IR) regions separated by a large single-copy (LSC) and
a small single-copy (SSC) region [13], and it is highly conserved compared to nuclear and
mitochondrial genomes. Although chloroplast genomes are highly conserved, some hotspot regions
with single nucleotide polymorphisms and insertion/deletions could be found and these regions
may provide enough information for species identification [14,15]. Due to low recombination,
uniparental inheritance, and low nucleotide substitution rates, many cp genetic markers have been
used for plant phylogenetic, phylogeographic, and population genetic analyses [16]. It has been proven
that some chloroplast sequences such as trnH-psbA, rbcL, and matK were commonly used as DNA
barcodes for plants discrimination [17]. But in some cases, above commonly used DNA barcodes were
not suitable to distinguish closely related plants due to limited variation loci [16,18]. Recently, it has
been proposed that the complete cp genome could be used as a plant barcode, and various research
have demonstrated that complete cp genome can greatly increase resolution for resolving difficult
phylogenetic relationships at lower taxonomic levels [16,19-22]. In addition, using the cp genome
as a genetic marker for identifying the plant will avoid the problems such as gene deletion and low
Polymerase Chain Reaction (PCR) efficiency [23].

Most species in section Cruciata were recently diverged and originated from a common radiation
in the Qinghai-Tibet Plateau (QTP) before the Pleistocene [1,10], therefore these species were usually
closely related and showed parallel evolutionary relationships [1]. Previous research showed that
commonly used DNA barcodes in some cases may not be suitable to identify the medicinal plant of this
section [24,25]. Therefore, more specific barcodes with enough variation are needed to discriminate
closely related species belong to sect. Cruciata. Nowadays, with the improvement of sequencing and
assembly technologies, it is comparatively simple to obtain comprehensive chloroplast sequences for
identifying Gentiana species. By utilizing the variable information provided from cp genomes, we can
not only obtain more specific barcodes for species authentication in sect. Cruciata, but also shed light
on the complex evolutionary relationships of the species in this section.

In the present study, we obtained the chloroplast genome sequences of G. dahurica, G. siphonantha
and G. officinalis by using de novo assembly of whole-genome sequencing (WGS) data derived from
high throughput sequencing technology. We also comparatively analyzed the chloroplast genomes of
eight species in sect. Cruciata and developed credible cp genome derived InDel markers to authenticate
these species. These markers are not only valuable tools for further evolutionary and population
genetic studies on Gentiana, but also could be used as standardized barcodes for authenticating the
original plants of Qin-jiao.
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2. Results

2.1. Complete Chloroplast Genome Features of Sect. Cruciata

The chloroplast genomes of G. dahurica, G. siphonantha, and G. officinalis were sequenced with
approximately 5.2, 5.8, and 5.6 Gb of paired-end reads, respectively. The raw reads with a sequence
length of 125 bp were trimmed to generate the clean reads for the next assembly. After quality filtering,
10,114,902, 11,405,694, and 11,288,676 clean reads were recovered for G. dahurica, G. siphonantha and
G. officinalis, respectively. Combined with the de novo and reference guided assembly, the cp genomes
were obtained. The four junction regions between the IRs and SSC/LSC regions were confirmed by
PCR amplification and Sanger sequencing. We mapped the obtained sequences to the new assembled
genomes and no mismatch or InDel was observed. We compared the basic genome features of three
newly sequenced cp genomes with five previously published cp genomes [26-28] and found that all the
chloroplast genomes possessed the typical quadripartite structure with the length range from 148,765
to 149,916 bp (Table 1, Figure 1). The whole cp genome contained a pair of inverted repeat regions
(IRs: 24,955-25,337 bp) which were separated by a small single copy region (S5C: 17,070-17,095 bp)
and a large single copy region (LSC: 81,119-82,911 bp) (Table 1). Although genomic structure and size
were highly conserved in eight cp genomes, the IR/SC boundary regions still varied slightly (Figure 2).
All the eight chloroplast genomes contained 112 unique genes arranged in the same order, including 78
protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Two genes (rps16, infA) were inferred to be
pseudogenes (Figure S1). The overall guanine and cytosine (GC) content in each chloroplast genome is
identically 37.7% (Table 1).

Table 1. Summary of complete chloroplast genomes for eight Gentiana species.

Name of Taxon G. dahurica G. siphonantha G. officinalis G. straminea
Genome length 148,803 148,908 148,879 148,991
LSC length 81,154 81,121 81,119 81,240
SSC length 17,093 17,113 17,088 17,085

IR length 25,278 25,337 25,336 25,333
Total gene number 112 112 112 112

No. of protein coding genes 78 78 78 78

No. of tRNA genes 30 30 30 30

No. of rRNA genes 4 4 4 4

GC content in genome (%) 37.7 37.7 37.7 37.7
Name of Taxon G. crassicaulis G. robusta G. tibetica G. macrophylla
Genome length 148,776 148,911 148,765 149,916
LSC length 81,164 81,164 81,163 82,911
SSC length 17,071 17,085 17,070 17,095

IR length 25,271 25,333 25,266 24,955
Total gene number 112 112 112 112

No. of protein coding genes 78 78 78 78

No. of tRNA genes 30 30 30 30

No. of rRNA genes 4 4 4 4

GC content in genome (%) 37.7 37.7 37.7 37.7
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Figure 1. Merged gene map of the complete chloroplast genomes of three Gentiana species. Genes belonging
to different functional groups are classified by different colors. The genes drawn outside of the circle are
transcribed counterclockwise, while those inside are clockwise. Dashed area in the inner circle represent
GC content of chloroplast genome.
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2.2. Comparative Analyses of the Chloroplast Genomes of Species of Sect. Cruciata

Repeat analyses of three newly sequenced cp genomes showed 13/13/13 (G. siphonantha/
G. officinalis/ G. dahurica) palindromic repeats, 12/11/11 dispersed repeats, and 7/6/6 tandem repeats
(Figure 3A,B) with the repeat length range from 15 to 38 bp (Tables S1 and S2). The numbers and
distribution of all repeat types were similar and conserved in these three cp genomes. Overall, 32/30/30
repeats were detected in three cp genomes. Similarly, 37, 34, 34, and 37 repeats were found in previously
reported G. crassicaulis, G. robusta, G. straminea, and G. tibetica cp genomes (Figure 3A,B). Unexpectedly,
61 repeats, including 28 dispersed repeats, 18 palindromic repeats and 15 tandem repeats, were found
in the cp genome of G. macrophylla. We found most of repeats in eight cp genomes were located in the
intergenic or intron regions, and only a few repeats were distributed in protein-coding regions (ycf1, ycf2,
and psaA) (Tables S1 and S2). Simple sequence repeats (SSRs) consisting of 1-6 bp repeat unit are distributed
throughout the genome. In our study, perfect SSRs in eight Gentiana cp genomes were detected. The
results showed that Mono-nucleotide repeats were most abundant type, followed by Tetra-nucleotides,
Di-nucleotides and Tri-nucleotides. The penta- and hexa-nucleotides were very rare across the cp genomes
(Figure 3C,D). Most SSRs are located in intergenic regions, but some were found in rpoC2, rpoC1, atpB, ndhF,
and ycfl coding genes (Table S3). To investigate the evolutionary characteristics of cpDNA genes in eight
Gentiana cp genomes and estimate selection pressures, nonsynonymous (dN), synonymous substitution
rates (dS), and the ratio of dN/dS were calculated for 78 protein-coding genes (Table S4). We obtained 771
pairwise comparison results of dN/dS values and the remaining could not be calculated due to dS = 0.
Only four genes (accD, clpP, matK, and ycfl) had dN/dS values >1 indicating that they had undergone
positive selection.
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Figure 3. Analysis of different repeats in eight chloroplast genomes of Gentiana sect. Cruciata.
(A) Histogram showing the number of palindromic repeats and dispersed repeats; (B) histogram showing
the number of tandem repeats; (C) number of different simple sequence repeat (SSR) types detected in
eight chloroplast genomes; (D) total numbers of different SSR motifs in eight chloroplast genomes.
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To understand the level of sequence divergence, comparative analysis among eight Gentiana cp
genomes was performed using mVISTA with the annotation of G. crassicaulis as a reference. The cp
genomes within sect. Cruciata showed high sequence similarities with identities of only a few regions below
90%, indicating a high conservatism of these chloroplast genomes (Figure 4). The single-copy regions and
intergenic regions were more divergent than the IR regions and genic regions (Figure 5). According to the
comparative analyses, some hotspot regions for genome divergence that could be utilized as potential
genetic markers to elucidate the phylogenies and to discriminate the species in sect. Cruciata. These regions
were psbA-trnH, trnK-rps16, rps16-trnQ, trnS-trnG, trnE-trnT, psbM-trnD, trnT-psbD, trnS-psbZ, ndhC-trnV,
atpB-rbcL, rbcL-accD, accD-psbl, rpl33-rps18, trnR-trnA, and trnV-rps7 (Figure 4).
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2.3. Development of InDel Markers to Discriminate Species of Sect. Cruciata

Based on the alignment of complete cp genome sequences, the 16 most InDel-variable loci were
selected as candidate DNA markers for authentication (Table S5). After PCR amplification, these 16 markers
could successfully amplify the expected polymorphic band sizes (Figure 6). Some of these 16 markers had
unique amplicon sizes specific to different Gentiana species (Figure 6). Especially five markers (QJcpm9,
QJcpm12, QJcpm14, QJcpm15, and QJcpm16) were specific to G. crassicaulis, which all derived from long
InDels in the intergenic regions including rps16-trnQ, psbM-trnD, trnS-psbZ, accD-psbl, and trnK-rps16.
The marker QJcpm1 was specific to G. robusta and G. crassicaulis and was derived from a 54 and 64 bp
InDel in the ndhC-trnV region. The QJcpm2 marker derived from 14 bp tandem repeat (TR) in cemA-petA
region was specific to G. siphonantha and G. crassicaulis. QJcpm3 marker, which was specific to G. officinalis
and G. crassicaulis, was derived from 72, 14 bp InDels, and 7 bp TR in rbcL-accD region. Three markers
(QJcpm4, QJcpm10, and QJcpm11) were specific to G. straminea, G. robusta, and G. crassicaulis. QJcpm4
marker was derived from 12 bp InDels and 6 bp TR in the rpl33-rps18 region; QJcpm10 marker was derived
from 9 bp TR and 33 bp InDel in the trnT-psbD; QJcpm11 marker was derived from 18 bp InDel in rrn5-trnA
region. The QJcpm5 marker, which was derived from 14, 4, and 7 bp TR in atpB-rbcL, was specific to
G. macrophylla, G. robusta, and G. crassicaulis. Three markers QJcpm6, QJcpmS8, and QJcpm13 were derived
from a 42 bp InDel in ycf1, 9 bp InDel in rps8-rpl14 region, and 24 bp TR in the trnS-trnG region, respectively,
and were specific to G. straminea and G. robusta. The marker QJcpm?, which was specific G. dahurica and
G. siphonantha, was also derived from 24 InDel in ycf1 CDS region. Our validation results indicated all these
markers can be used to identify species in sect. Cruciata.
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Figure 6. Validation of 16 molecular markers derived from InDel regions of eight chloroplast genomes
of Gentiana sect. Cruciata. Inserted sequences and tandem repeats are designated by diamonds and
triangle, respectively. Solid and dotted lines indicate conserved and deleted sequences, respectively.
Left and right black arrows indicate forward and reverse primers, respectively. Abbreviated species
names were shown on schematic diagrams: Gd, G. dahurica; Go, G. officinalis; Gm, G. macrophylla; Gsi,
G. siphonantha; Gst, G. straminea; Gr, G. robusta; Gc, G. crassicaulis; M, D600 DNA ladder.

2.4. Phylogenetic Relationships of Species Belong to Sect. Cruciata

Here, 27 cp genomes were retrieved to infer the interspecific relationships of eight species in sect.
Cruciata as well as to clarify the phylogenetic relationships of some Gentianales species (Table S6).
Phylogenetic analyses were performed using Maximum parsimony (MP), Maximum likelihood (ML)
and Bayesian inference (BI) methods, and Arabidopsis thaliana was set as outgroup. Three different
datasets including complete cp genomes, 70 shared protein-coding genes (PCGs) and the most conserved
regions (TMCRs) of cp genomes were used to construct the phylogenetic trees. The results showed the
same phylogenetic signals for these three datasets and the phylogenetic trees inferred from MP/ML/BI
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methods also shared identical topologies (Figure 7, Figures S2 and S3). In these phylogenetic trees,
we found all the species of sect. Cruciata formed a monophyletic clade a with high bootstrap and BI
support values and clustered with another two Gentianaceae species (G. lawrencei and Swertia mussotit)
in the same clade [29,30]. Of these species, G. macrophylla, G. officinalis, and G. siphonantha showed
paraphyletic relationships with each other and formed a monophyletic clade with G. dahurica. G. tibetica
and G. crassicaulis formed a monophyletic clade and located in the basal position of these eight species
in sect. Cruciata. Interestingly, G. robusta and G. straminea with similar morphological characteristics
were clustered in a monophyletic clade with a high resolution value. In addition, our phylogenetic
results supported the monophyly of two families, including Apocynaceae and Rubiaceae, in the order
Gentianales. Unexpectedly, Gynochthodes nanlingensis (Morinda nanlingensis) belongs to Rubiaceae was
embed in the Apocynaceae species.
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Figure 7. Phylogenetic relationships of species belong to Gentiana sect. Cruciata inferred from MP/ML/BI
analysis based on complete chloroplast genome sequences. The numbers associated with each node are
bootstrap support and posterior probability values, and the symbol * in the phylogenetic tree indicated
that the support value of branch is 100/100/1.0.

3. Discussion

Three cp genomes of sect. Cruciata were sequenced using [llumina Hiseq platform, which provided
more resources for evolutionary and genetics studies of Gentiana. The cp genomic information
presented in this study will also contribute to the conservation and management of wild resources of
sect. Cruciata. Although a recent research reported that 11 ndh genes had been lost in the cp genomes
of Gentiana sect. Kudoa [31], eight cp genomes of sect. Cruciata analyzed in present study are rather
conserved in gene structures, contents and arrangement, and no signiﬁcant structural rearrangements,
such as inversions or gene relocations, were detected. Of these eight species, G. macrophylla has
the largest cp genome size and other species showed minor differences in genome size. The length
variations of these cp genomes may result from the length of intergenic regions, similar result has been
reported for Paris (Melanthiaceae) cp genomes [18].

All the eight cp genomes of sect. Cruciata had the same protein-coding genes, tRNA and rRNA
genes. We found that exon2 of rps16 gene was lost in three newly sequenced cp genomes, and rps16
in other cp genomes also showed same structure. Therefore, rps16 pseudogene may commonly exist
in the genus Gentiana [26]. And infA gene, which contains internal stop codons, was also inferred as
pseudogene in these species. This pseudogene had been reported in many species [32-35]. Except for
cp genome of G. macrophylla, the remained cp genomes showed minor variations in the junctions
between the SSC and IRs regions. As most species of sect. Cruciata derived from a common radiation
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and usually showed closely interspecific relationships, we thus speculated that highly conserved
nature of cp genomes resulted in the similar gene distributions at SC/IR boundaries.

Repeat structure plays an important role in genomic rearrangement, recombination, and sequence
divergence in plastomes [36-38]. In the present study, cp genome of G. macrophylla has the largest
number of repeats, while the number of repeats was similar in other cp genomes. Most of the
repeated regions in different species showed similar characteristics and most repeats were located in
intergenic regions or in ycfl/pasA. Repeats in these genes are commonly observed in other angiosperm
lineages [22,32,39]. Cp microsatellites (cpSSR) usually showed high polymorphism within the same
species and which are potentially useful markers for population genetics [40]. Here, 326 SSRs varying
in number and type between eight major Gentiana species, and the most abundant repeat type was
found to be stretches of mononucleotides (A/T). Similar to the distribution status of dispersed and
tandem repeats, most cpSSRs were observed in noncoding regions, and only small proportion were
found in coding regions. CpSSRs located in noncoding regions of the cp genome are generally short
mononucleotide tandem repeats and commonly showed intraspecific variation in repeat number [15].
Therefore, cpSSRs derived from eight Gentiana species in this study are expected to be useful for the
genetic diversity studies in Gentiana. As the wild resources of some Gentiana species were dramatically
declined due to overexploitation, we thought these species need to transplant or cultivate in order to
preserve their germplasm resources. We believe the obtained SSRs among these chloroplast genomes
will also be useful for the domestication and breeding of Gentiana species.

Sequence divergence of the coding genes was observed between different species. Our analyses
indicated that all of cp genes showed a low sequence divergence (dS < 0.1) and most cp genes were
under purifying selection (dN/dS < 1); similar results were reported for other cp genomes [32,41,42].
Only four genes (accD, clpP, matK, and ycfl) were under positive selection. Previous research reported
that accD and clpP genes had a high evolution rate in Fagopyrum species [43,44], we thus presumed
that these genes may have a high evolution rate in Gentiana species. One other gene (matK) was highly
divergent in Caryophyllaceae, and comparative cp genomes analyses of Myrtaceae also indicated matK
was under positive pressure [45,46]. The ycfl gene with unknown functions showed a biased higher
value for dN/dS ratio compared to dS value indicating that this gene evolved at a faster rate. It has
also been shown to be subject to positive selection in many angiosperms [20,22,32,44,45].

DNA barcodes are defined as the short DNA sequences with a sufficiently high mutation rate
to discriminate a species within a given taxonomic group and are confirmed as reliable tools for the
identification of plant species [16,47]. Previously, rbcL, trnH-psbA, and matK were considered as “core”
plant barcodes for species identification, but they often have limited resolutions at species level [18].
Previous research showed that three commonly used barcodes in some cases may not be suitable to
authenticate the medicinal plant in section Cruciata [24,25]. Therefore, seeking for more effective DNA
barcodes with high evolutionary rates is very important for the molecular identification of species
in Gentiana sect. Cruciata. The complete cp genome has a conserved sequence from 110k to 160k bp,
which far exceeds the length of commonly used molecular markers and provides more variation
to distinguish closely related species [12,16]. Therefore, some mutation hotspot regions, including
trnK-rps16, rps16-trnQ, trnS-trnG, trnE-trnT, trnT-psbD, trnS-psbZ, ndhC-trnV, rbcL-accD, accD-psbl,
truR-trnA, trnV-rps7, and ycfl, detected from the cp genomes can provide more specific DNA barcodes
for the authentication of medicinal materials of sect. Cruciata and also provide sufficient genetic
markers for resolving the phylogeny of Gentianaceae.

We developed the specific markers for species authentication of sect. Cruciata based on the hotspot
regions derived from cp genomes. Most of these markers were derived from the intergenic regions
of cp genomes and showed high interspecific polymorphism. Previous molecular identification of
Panax, Zanthoxylum, and Eclipta species also indicated that chloroplast-derived genetic markers had
high discriminatory powers [12,14,48]. Therefore, specific markers developed from the comparative cp
genomes were superior than the commonly used markers for identifying the closely related species.
Especially for medicinal plants, these specific genetic markers are more effective in the authentication
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of their source plants. We found two InDels (42 and 24 bp) in the ycfl gene, which can be used to
distinguish species in sect. Cruciata. Ycfl, which encodes a protein of approximately 1800 amino
acids with unknown function, is the second largest gene in the cp genome. Because the sequence
of ycfl is too long and too variable for designing universal primers, it has received little attention
for DNA barcodes at low taxonomy [18,49]. But two markers derived from ycf1 gene showed high
PCR efficiency and polymorphism in species of sect. Cruciata, and could be used as specific barcodes
for the authentication of Gentiana species. Although our study provided 16 genetic markers which
had enough interspecies polymorphism for species identification, some of the markers were usually
specific to two species. We thus suggest a combination of several markers should be considered for
credible authentication between different species in genus Gentiana.

We inferred the phylogenetic relationships of sect. Cruciata using complete cp genomes. Three different
methods (MP/ML/BI) were used to rebuilt the phylogenetic trees based on different datasets (cp genomes,
70 shared PCGs, and TMCRs), and the derived phylogenetic trees shared identical topology. All the species
of sect. Cruciata formed a monophyletic clade with high bootstrap and BI support values. This result is
comparable with the previous phylogenetic research based on four cpDNA fragments [1]. Four species,
including G. dahurica, G. macrophylla, G. siphonantha, and G. officinalis, were clustered in the same clade
with high support values. Although the flower color of G. officinalis was different from other three species,
it shared similar morphological and chemical characters with G. macrophylla [50]. We found that G. straminea
was closely related to G. robusta. G. robusta may have originated from introgression between G. straminea
and another relative species, and these two species are usually closer to each other [26,51]. Two species,
G. tibetica and G. crassicaulis were clustered in the same clade and located in the basal position in the clade
of sect. Cruciata. However, a previous phylogenetic result indicated that G. tibetica was closely related
to G. straminea and G. robusta [1]. As G. tibetica and G. crassicaulis distributed sympatrically in Tibet and
intermediate types were produced by introgression between these two species [52], we thus inferred these
two species should be closely related. In addition, based on the phylogenetic results, we found that the
family Gentianaceae was closer to family Apocynaceae than to family Rubiaceae in order Gentianales.
Previous phylogenetic studies of order Gentianales resulted in similar findings, but with relatively low
support values [53,54]. Although our result confirmed the monophyly of section Cruciata and primarily
elucidated the phylogeny of Gentianales based on available cp genomes, more complete cp genome
sequences are needed to resolve the comprehensive phylogenies of this section, especially since limited
taxon sampling may produce discrepancies in tree topologies [15,55].

4. Materials and Methods

4.1. Plant Materials and DNA Isolation

Samples of G. dahurica, G. siphonantha and G. officinalis were collected from Tianzhu (102.54° E,
37.01° N), Sunan (98.05° E, 39.55° N) and Yuzhong (104.05° E, 35.78° N) Counties in Gansu Province,
China. Young leaves of three species were collected and immediately dried with silica gel for further
DNA isolation. Total genomic DNA was isolated from each sample using the modified Cetyl Trimethyl
Ammonium Bromide (CTAB) method [56]. The quantity and quality of extracted genomic DNA
was determined by gel electrophoresis and NanoDrop 2000 Spectrophotometer (Thermo Scientific,
Carlsbad, CA, USA).

4.2. Chloroplast Genome Sequencing, Assembly and Annotation

The DNA Library with insert size of 200 bp was prepared according to the description by
Zhou et al. [32], and sequenced using Illumina HiseqTM 2500 platform (Illumina Inc., San Diego, CA,
USA) with the average read length of 125 bp. The obtained raw reads were filtered with the NGS QC
Toolkit_v2.3.3 (National Institute of Plant Genome Research, New Delhi, India) [57]. Adapter sequences and
low-quality reads with Q-value < 20 were removed. Filtered paired-end reads were firstly mapped to the
chloroplast genome of Gentiana straminea (K]657732) by using the Bowtie 2-2.2.6 (University of Maryland,
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College Park, MD, USA.) with default parameter [58]. And then the matched paired-end reads were de novo
assembled using SPAdes-3.6.0 (St. Petersburg Academic University, St. Petersburg, Russia) [59]. After de
novo assembly, the resultant scaffolds were further assembled using a baiting and iteration method based
on Perl script MITObim_1.9.pl (University of Oslo, Oslo, Norway) [60]. Finally, all obtained reads were
mapped to the spliced cp genome sequence using Geneious 10.1 (Biomatters Ltd., Auckland, New Zealand)
in order to avoid assembly errors. The four junction regions between the IRs and SSC/LSC were confirmed
by PCR amplification and Sanger sequencing (Primers and sequencing results are listed in Table S7). The cp
genome genes were annotated with the online program Organellar Genome Annotator (DOGMA) [61],
and the primary annotated results were manually verified according to the annotation information from
other closely related species. The circular plastid genome maps were drawn using the online program
OrganellarGenome DRAW (Max planck Institute of Molecular Plant Physiology, Potsdam, Germany) [62]
and three newly sequenced cp genome were deposited in GenBank (MH261259-MH261261).

4.3. Repeat Structure, Genome Comparison and Sequence Divergence

Dispersed and palindromic repeats within the cp genomes were identified using REPuter
(University of Bielefeld, Bielefeld, Germany) with a minimum repeat size of 30 bp and a sequence
identity > 90% [63]. Tandem repeat sequences were searched using the Tandem Repeats Finder program
(Mount Sinai School of Medicine, New York, NY, USA) with the following parameters: 2 for alignment
parameters match, 7 for mismatch and InDel, respectively [64]. Simple sequence repeats (SSRs) were
predicted using MISA perl script (Institute of Plant Genetics and Crop Plant Research, Gatersleben,
Germany) with the parameters of ten for mono, five for di-, four for tri-, and three for tetra-, penta, and
hexa-nucleotide motifs [65]. The nonsynonymous (dN), synonymous (dS), and dN/dS values of each
protein coding gene were calculated using PAML packages 4.0 (University College London, London,
UK) with Yang and Nielsen (YN) algorithm to detect whether selective pressure exists for plastid
genes [66]. The cp genome gene distribution of eight Gentiana species was compared and visualized
using mVISTA software with the annotation of G. crassicaulis as a reference [67]. To examine mutation
hotspot regions of the cp genomes of eight Gentiana species, the percentages of variable characters for
each coding and noncoding regions were analyzed using the method described by Zhang et al. [68].

4.4. Development and Validation of the InDel Molecular Marker

In order to validate interspecies polymorphisms within the chloroplast genomes and develop DNA
genetic markers for identifying species belong to sect. Cruciata, specific primers were designed using
Primer 3 based on the mutational hotspot regions found in these Gentiana chloroplast genomes [69].
PCR amplifications were performed in a reaction volume of 25 pL. with 12.5 uL 2x Taq PCR Master
Mix, 0.4 uM of each primer, 2 uL template DNA and 10.1 pL ddH,O. All amplifications were carried
out in SimpliAmp™ Thermal Cycler (Applied Biosystems, Carlsbad, CA, USA) as follow: denaturation
at 94 °C for 5 min, followed by 30 cycles of 94 °C for 50 s, at specific annealing temperature (Tm) for
40,72 °C for 90 s and 72 °C for 7 min as final extension. PCR products were visualized on 2% agarose
gels after staining with ethidium bromide and then the DNA fragments were sequenced by Sangon
Biotech (Shanghai, China) (Sequencing results are listed in Table S8).

4.5. Phylogenetic Analysis

The complete chloroplast genomes of 26 Gentianales species were recovered to clarify the
phylogenetic relationships of sect. Cruciata and the cp genome of Arabidopsis thaliana was set as outgroup.
In order to obtain a reliable result, phylogenetic analyses were implemented based on different cp
genome datasets. On the one hand, whole cp genome sequences and 70 common cp protein-coding
genes (PCGs) were separately used to infer the phylogenetic relationships of these species. On the
other hand, multi-gene alignment matrix, which contained the most conserved regions (TMCRs) of cp
genome was generated using HomBlocks (Ocean University of China, Qingdao, China) [70], was used
to understand the phylogenetic relationships at cp genome level. Alignments were constructed using



Int. ]. Mol. Sci. 2018, 19, 1962 12 0f 15

MAFFT v7.308 (Osaka University, Suita, Japan) with default parameters and the best-fit nucleotide
substitution model (General Time Reversible + Invariant + Gamma, GTR + I + G) was determined with
Modeltest 3.7 (Brigham Young University, Provo, UT, USA) [71,72]. Maximum parsimony (MP) analyses
of the resulting alignments from different datasets were performed using PAUP 4.0b10 (Smithsonian
Institution, Washington, DC, USA) [73]. Maximum likelihood (ML) analyses were performed using
RAXML 8.1.24 (Heidelberg Institute for Theoretical Studies, Heidelberg, Germany) with GTR + I+ G
nucleotide substitution model [74]. The reliability of each tree node was tested by bootstrap analysis
with 1000 replicates. Bayesian analyses were also conducted with MrBayes v3.2.6 (Swedish Museum of
Natural History, Stockholm, Sweden) [75] under the same substitution model (GTR + I + G). The Markov
chain Monte Carlo (MCMC) algorithm was run for one million generations, with one tree sampled every
100 generations. The first 25% of trees were discarded as burn-in to construct majority-rule consensus tree
and estimate posterior probabilities (PP) for each node.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/19/7/
1962/s1.
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