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Abstract: MicroRNAs (miRNAs) are a class of noncoding small RNAs, which play a crucial role
in post-transcriptional gene regulation. Recently, various reports revealed that miRNAs could be
transmitted between species to mediate cross-kingdom regulation by integrating into a specific
target gene-mediated regulatory pathway to exert relevant biological functions. Some scholars
and researchers have observed this as an attractive hypothesis that may provide a foundation for
novel approaches in the diagnosis, prognosis, and treatment of disease. Meanwhile, others deem
the mentioned results were obtained from a “false positive effect” of performed experiments.
Here, we focus on several current studies concerning plant miRNA-mediated cross-kingdom
regulation (from both fronts) and discuss the existing issues that need further consideration. We also
discuss possible miRNA horizontal transfer mechanisms from one species to another and analyze
the relationship between miRNA-mediated cross-kingdom regulation and coevolution during a
long-term specific host–pathogen interaction.
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1. Introduction

MicroRNAs (miRNAs), a class of single-stranded noncoding small RNAs (sRNAs) ranging in size
from 20 to 24 nucleotides in mature sequence length, have been shown to be master modulators of
gene expression by binding to the open reading frame (ORF) or untranslated region (UTR) of specific
mRNAs, targeting them for cleavage or by directing translational inhibition at the mRNA level [1].
In the past few years, miRNAs have been shown to play crucial roles in various critical biological
processes associated with cell growth and differentiation, cell proliferation, apoptosis and immune
response, and the regulation of some important agronomic traits [2–6].

Growing evidence reveals that miRNAs target not only endogenous genes, but also exogenous
genes. In 2009, researchers at Monsanto Company found that numerous endogenous plant miRNAs
exhibited perfect complementarity to human genes as well as to those of other mammals [7];
this was followed, in 2011, by the research of Nanjing University Professor Chen-Yu Zhang’s team,
which confirmed that plant-derived miR168a could be absorbed through the gastrointestinal tract
into mammalian liver cells, where it inhibited the expression of the human/mouse low-density
lipoprotein receptor adapter protein 1 (LDLRAP1), and consequently decreased LDL removal from
mouse plasma [8]. These spectacular findings raised the possibility that exogenous miRNAs may
cross species barriers and serve as signaling factors, regulating gene expression and physiological
function, affecting or indicating the organism’s health, and further broadening the understanding
of cross-kingdom communication at the same time. Moreover, these studies launched a wave of
publications competing arguments and started fierce debate among scientists that continues to this
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day. This hypothesis, in which the cross-kingdom regulation is mediated by exogenous plant miRNAs,
is still controversial and remains to be demonstrated consistently and unequivocally.

Here, we highlight several recent discoveries concerning cross-kingdom gene regulation mediated
by plant miRNAs and analyze the existing issues that need further consideration. We also discuss
possible miRNA transport mechanisms from one species to another and analyze the relationship
between miRNA-mediated cross-kingdom regulation and coevolution during a long-term specific
host–pathogen interaction.

2. Plant miRNAs Regulate Gene Expression in Animals

The ability of miRNAs to regulate gene expression across kingdom has already been shown for
viruses and parasites [9,10], whereas research from the Monsanto Company [7], followed by the work
of Zhang et al. [8], was the first to present evidence to demonstrate these intriguing properties for
plant miRNAs. In the study carried out by Monsanto Company researchers, an estimate of sRNA
abundance was provided through semiquantification of endogenous sRNAs in grains (soybean, corn,
and rice), and the sequences of numerous endogenous plant miRNAs were found to be complementary
to parts of the genomes and transcriptomes of humans and other animals [7]. This group considered
that the fact that these endogenous plant miRNAs derived from staple food crops with a long history
of safe consumption by humans and domesticated animals provided evidence that consumption of
these mediators of RNA interference was safe, and supported the safety of this technology for use in
biotechnology-derived crops [7]. Furthermore, the ground-breaking research of Zhang et al. in 2011 [8]
has not been reproduced to date [11].

Although the proposal that plant miRNAs may function in a cross-kingdom manner was
controversial, the report of Zhang et al. [8] motivated many scientists to investigate this issue in
more depth. A recent finding by Andrew et al. showed that plant miR159 could be taken up from
certain types of dietary sources into human sera in Western subjects at levels that were inversely
correlated with breast cancer (BC) incidence and progression in patients [12]. This research group
further identified a synthetic mimic of plant miR159, which was capable of inhibiting cell proliferation
in an in vitro model by targeting TCF7, which encodes a Wingless-related integration site (Wnt)
signaling-associated transcription factor, leading to a decrease in MYC transcription factor protein
levels in BC cells. Moreover, oral administration of the miR159 mimic significantly suppressed the
growth of xenograft breast tumors in mice using in vivo models [12]. The study confirmed that
orally delivered plant miRNAs could be detected in human sera and revealed for the first time that a
plant miRNA was able to influence cancer growth in mammals in vitro. Another recent publication,
from Yu-Chen Liu and colleagues, supports the hypothesis of cross-kingdom regulation mediated
by plant miRNAs because plant miRNA sequences were identified in human sera through analysis
of publicly available plasma sRNA sequencing datasets [13]. Shortly afterwards, however, the most
abundant plant miRNA identified, peu-miR2910, present at only 5369 copies, was removed from the
miRBase database (http://www.mirbase.org/) due to being a fragment of a large-subunit ribosomal
RNA [14]. In addition, a number of recent reports suggest that evidence of exogenous plant miRNAs
in human samples obtained by sequencing methods is subject to artefactual bias [14–16].

Recently, Ke-Gan Zhu et al. reported a previously uncharacterized regulatory mechanism in honey
bee caste development, which can be partially attributed to plant miRNAs, a heretofore overlooked
component of larval food [17]. It is generally known that there are normally three social classes in
a honey bee colony: drones, workers, and a single queen. The drones are haploid, short-lived male
bees that develop from unfertilized eggs. The queen and workers both develop from fertilized eggs
and are thus genetically identical, but differ in terms of morphology, physiology, and social function.
The former is reproductive, has a larger body size, develops faster, and lives longer, while the latter are
mostly sterile helpers which collect food and nourish the larvae, and they are characterized by traits
different from those of the queens [18,19]. This queen–worker dimorphism is not a consequence of
genetic differences, but is mediated socially by larval feeding: royal jelly stimulates the differentiation

http://www.mirbase.org/


Int. J. Mol. Sci. 2018, 19, 2007 3 of 12

of larvae into queens, whereas beebread determines the workers’ fate. Royal jelly, a glandular secretion
of nurse bees, is animal-derived, while beebread, a mixture of pollen and honey, is plant-derived.

Studies have revealed that some insects can ingest sRNAs, which can subsequently
regulate the expression of insect genes, thus reshaping the phenotype of the insect [20,21].
Therefore, researchers have hypothesized that the different miRNA contents of larval food of
different origins may have distinct impacts on honey bee development. Firstly, utilizing Illumina
deep-sequencing technology, qRT-PCR assays, and northern blot analyses, Ke-Gan Zhu et al. analyzed
the sRNA components in royal jelly, honey, beebread, and pollen, and observed that 16 plant miRNAs
were at higher concentrations in beebread and pollen than in royal jelly, and also found that three
plant miRNAs (miR156a, miR162a, and miR168a) were detectable in beebread and pollen, but not in
royal jelly or honey [17]. To investigate the effects of these plant miRNAs on honey bee phenotype,
researchers reared larvae on a laboratory diet with or without the addition of the 16 plant miRNAs
present at higher concentrations in beebread and pollen, and observed that larvae which were fed
a diet containing these plant miRNAs developed worker-bee-like characteristics [17]. Subsequently,
bioinformatic analysis was performed to dissect the potential functions of the plant miRNAs in honey
bee food, and 96 genes that may be involved in the regulation of the caste development process
of honey bees were predicted to be targeted by the 16 plant miRNAs. The Apis mellifera L. target
of rapamycin (TOR) (amTOR) gene, known to play a stimulatory role in caste development, was
specifically selected to analyze the targeting relationship with the 16 plant miRNAs, using luciferase
reporter assays and qRT-PCR analysis. Comparing the corresponding phenotypes of honey bee larvae
which were reared on a diet to which either synthetic miR162a or scrambled RNA (which had no effect
on any of the tested morphological characteristics) was added, the results showed that plant miR162a
specifically recognized amTOR and downregulated its expression at the post-transcriptional level [17].
Thus, the study revealed that the development of larvae into workers rather than the queen was due,
at least in part, to amTOR knockdown by plant miR162a present in beebread.

During honey bee caste development, one- and two-day-old worker larvae are fed secretions from
nurse bees’ hypopharyngeal and mandibular glands. They are fed small amounts of pollen (obtained
from beebread) after the third larval instar. Furthermore, larvae that turn into queens must be fed royal
jelly only during the first three larval instars [22,23]. In addressing the problem of miRNA feeding
method in the study of Ke-Gan Zhu et al. [17], in our view, pollen feeding, which takes place after the
third larval instar, should not matter in terms of queen–worker destiny.

Generally, this discovery of so-called cross-kingdom regulation of gene expression indicates
a potentially therapeutic role for plant miRNAs, which may be of value in medicine; in the near
future, many human diseases may be treatable by the consumption of specific plant miRNAs
through food. Such findings have been confirmed or partially confirmed by other laboratories
or in other experimental settings [24–27], but have been strongly questioned by other authors in
light of a lack of repeatability [16,28–30]. Many of these very recent reports, from each side of the
controversy, have been reviewed and discussed in the papers by Perge et al. [31] and Lukasik et al. [32].
Clearly, controversy exists as to whether the copy numbers of exogenous sRNAs determined in
sequencing studies, especially miRNAs, are high enough to affect the function of a living organism;
whether other sRNA species in plant-derived diets might have similar functions; and whether these
effects are scalable to the treatment of humans. Scientific as well as technical issues may be the
underlying causes of inconsistencies in the results. Contamination of dietary miRNAs with endogenous
animal miRNAs may also lead to false positive results. Clearly, the cross-kingdom transfer of plant
miRNAs and their therapeutic potential needs to be further investigated and any effects unambiguously
confirmed, and any potential risk should also be seriously considered.

3. Pathogen miRNAs Regulate Gene Expression in Hosts

A pathogen is any organism, in particular microorganisms, such as bacteria, viruses, protozoa,
or fungi, capable of causing disease. Many pathogens of plants and animals often work through
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protein effectors that are delivered into host cells to disrupt critical cellular functions and then suppress
host acquired (adaptive) or innate immunity [33,34]. A number of papers have been published recently
demonstrating that sRNAs derived from pathogens can also work as effectors, and subsequently,
there has been a research focus on cross-kingdom regulation mediated by exogenous miRNAs in
host–pathogen interactions, particularly the role of pathogen-derived miRNAs in regulating defense
gene expression in the host [35–38].

In the challenged plant host, pathogen-derived sRNAs can suppress plant immunity by hijacking
the host RNA interference (RNAi) pathway. Botrytis cinerea Pers., a fungal pathogen causing gray mold
disease, infects more than 200 plant species and annually causes huge economic losses worldwide.
Weiberg et al. found that some B. cinerea sRNAs (Bc-sRNAs) could work as “virulent” effectors
in host plant cells [35]. After inoculation of Arabidopsis leaves, the plant cells contained a suite of
fungal-derived sRNAs. Three sRNAs (Bc-siR3.1, Bc-siR3.2, and Bc-siR5) were found to bind to the
Arabidopsis Argonaute 1 (AGO1) protein, thereby silencing the plant’s antifungal defense genes [35].
A more recent finding by the same group found that such Bc-sRNA effectors were mostly produced by
the B. cinerea Dicer-like protein 1 (Bc-DCL1) and Bc-DCL2 [36].

Wheat stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici Westend. (Pst), is among
the most destructive wheat diseases in the world, being able to greatly reduce or even completely
eliminate the yield of a crop [37]. Recently, a study by Wang et al. [38] on a novel miRNA-like
RNA (milRNA) in Pst found that it acted as a pathogen effector to suppress wheat innate immunity.
Using high-throughput sequencing, an sRNA library from Pst germ tubes was constructed to
comprehensively examine sRNAs in Pst. Within the library, Wang et al. identified a unique Pst milRNA
that was highly expressed (Pst-milR1). Using bioinformatic analysis, the target gene for Pst-milR1
was identified, not in Pst, but in wheat [38]. The wheat gene SM638, encoding β-1,3-glucanase,
which belongs to the pathogenesis-related 2 (PR2) defense gene class in wheat, was predicted to be
targeted by Pst-milR1 at its 3′ UTR. Subsequently, these authors carried out cotransformation studies
and 5′ rapid amplification of the cDNA ends (5′ RACE) by PCR in tobacco leaves and confirmed that
SM638 was effectively targeted by Pst-milR1 [38].

To explore the roles of SM638 and Pst-milR1 in pathogenicity, Wang et al. revealed, by utilizing
the virus-induced gene silencing (VIGS) approach, that SM638 could improve Pst resistance in an
incompatible interaction, and demonstrated, using qRT-PCR and the host-induced gene silencing
(HIGS) system, that SM638 was negatively regulated by Pst-milR1 in a wheat–Pst-compatible
interaction [38]. In addition, the study also showed that Pst-milR1 might be a Dicer-dependent
sRNA, and that the Pst RNase III Dicer-like protein (PsDCL) gene might contribute to Pst virulence by
producing Pst-milRNAs [38]. Taking the findings together, the study postulated that Pst-milR1,
a Dicer-dependent sRNA, was an important pathogenicity factor of Pst, which impaired wheat
resistance to Pst by negatively regulating the wheat PR2 gene SM638.

In animal hosts, expression of pathogen-derived miRNAs during latency may allow for
manipulation of host signaling pathways by nonimmunogenic molecules, which can help the latently
infected cell to remain primed for reactivation. Human cytomegalovirus (HCMV) is a factor strongly
associated with morbidity and mortality in transplant recipients, resulting in hearing loss and mental
retardation when acquired congenitally. Previous studies revealed that HCMV caused the induction of
antiviral proinflammatory cytokines by inducing host nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) signaling early in infection, with a subsequent reduction in the level of these
cytokines late in infection [39]. Hancock et al. reported that several viruses have developed mechanisms
to block the antiviral effects of these cytokines [40]. These authors showed that two HCMV miRNAs,
miR-US5-1 and miR-UL112-3p, targeted the inhibitor of κB (IκB) kinase (IKK) complex components
IKKα and IKKβ to limit production of proinflammatory cytokines in response to interleukin 1β (IL-1β)
and tumor necrosis factor alpha (TNF-α) [40]. Transfection of miR-UL112-3p and miR-US5-1 mimics
reduced the levels of endogenous IKKα and IKKβ protein and achieved site-directed mutagenesis of
the 3′ UTRs identified. Combining bioinformatics analysis with dual luciferase reporters, each miRNA
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was identified to the target 3′ UTRs of IKKα and IKKβ [40]. Subsequently, infection with mutant
HCMV lacking the two miRNAs induced increased IKKα and IKKβ protein levels, demonstrating an
impaired ability to control NF-κB signaling at late stages of lytic infection, and increased production
of proinflammatory cytokines compared to the wild-type virus in cell types relevant to HCMV
infection in vivo. These results demonstrated that HCMV-miR-US5-1 and HCMV-miR-UL112-3p
specifically downregulated IKKα and IKKβ signaling factors necessary to transmit NF-κB signaling
and subsequent production of IL-6, Chemokine (C-C motif) ligand 5 (CCL5), and tumor necrosis factor
alpha (TNF-α) [40]. The study indicated that the mechanism by which HCMV miRNAs are expressed
late in the infection cycle downregulates proinflammatory cytokine production to create a cellular
proviral environment which is critical to viral survival in the host.

Apart from pathogen-derived miRNAs, the parasitic plants dodders (Cuscuta campestris Yunck.)
can transfer their miRNAs to infected Arabidopsis thaliana (L.) Heynh. hosts, which may increase the
virulence of the parasite [41]. Taking advantage of sRNA sequencing technology, Axtell and colleagues
performed sRNA sequencing of three tissues: the host stem, the interface (that is, the C. campestris
haustorium and the A. thaliana stem), and the parasite stem and compared the small noncoding
RNA profiles from the different tissues. The authors found that expression of 76 dodder sRNAs
was upregulated at the interface, 42 of which were miRNAs [41]. Furthermore, bioinformatic
analysis, 5′-RLM-RACE, qRT-PCR, and mutant experiments indicated that six Arabidopsis genes
expressed at the interface were plausible targets for these dodder miRNAs [41]. Previous reports
revealed that these Arabidopsis genes are associated with pathogen-induced signaling (AFB2, AFB3,
BIK1, and TIR1) and sugar content in detached leaves (SEOR1) [42–46]. The authors repeated the
sRNA sequencing screen with parasite-infected tobacco (Nicotiana benthamiana Domin) and obtained
similar results [41]. This work elegantly revealed the induction of parasite-derived miRNAs as
a mechanism of cross-kingdom regulation of mRNA expression in multiple hosts. Because some
miRNAs are involved in plant immunity against pathogens and insects [3,47], it must be determined
whether parasite-derived miRNAs travel to the interfaces between parasitic plants and host plants,
altering host immunity against pathogens and pests; and whether root-parasitic plants, such as Striga
and Orobanche, use similar miRNA-based weapons in the establishment and maintenance of plant-plant
parasitism [48,49].

4. Host miRNAs Regulate Gene Expression in Pathogens

Another model of miRNA-mediated cross-kingdom regulation in pathogen–host interactions is
one where specific host-derived miRNAs downregulate expression of the genes essential for virulence
in a pathogen, resulting in disease resistance.

Cotton wilt disease, caused by the fungus Verticillium dahliae Kleb., is one of the most important
diseases of cotton, causing serious reductions in yield and negatively impacting on fiber quality,
and it is a difficult disease to prevent or to control effectively [50]. A comprehensive study of the
role of RNA silencing in V. dahliae pathogenesis has been undertaken [51]. Using deep-sequencing
technology and northern blot analysis, Zhang et al. found that high concentrations of two specific
cotton plant miRNAs (miR159 and miR166) were exported into the fungal hyphae after infection [51].
Combining computational prediction with 5′ RACE, these authors detected specific cleavages at the
predicted binding sites of miR159 and miR166 to isotrichodermin C-15 hydroxylase (HiC-15) and
Ca2+-dependent cysteine protease (Clp-1) mRNAs, respectively. The specific targeting of the fungal
mRNAs by plant miRNAs was identified subsequently by transiently expressed miRNA-resistant
HiC-15 and Clp-1 (HiC-15m and Clp-1m) in tobacco plants and V. dahliae [51]. Next, V. dahliae HiC-15
and Clp-1 mutant experiments confirmed that both fungal genes were essential for fungal virulence,
and that they were specifically targeted by the miRNAs exported from the infected cotton plants to
achieve silencing and hence to confer resistance to the fungal pathogen [51]. Subsequently, the role
of host miRNAs in specific gene silencing and the consequent reduction in virulence of the fungal
pathogen was further verified by comparing V. dahliae infection in wild-type Arabidopsis plants and
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in the short-tandem target mimic (STTM) Arabidopsis line STTM166, in which miR166 had been
degraded [51]. Taken together, this paper presented a description of a novel plant defense strategy
against a pathogen by specific silencing of pathogen virulence genes by miRNAs exported from the
challenged host plants to the fungal pathogen.

Human papillomavirus (HPV type 16) is regarded as a “high-risk” factor because chronic infection
with this virus has been associated with cancers of the cervix, the oropharynx, and head and neck cancer
(HNC) [52]. Numerous studies have shown that some host miRNAs are induced during virus infection
and participate in the regulation of the innate immunity antiviral response [53–56]. To investigate the
role of host miRNAs in HPV-mediated oncogenesis, Sannigrahi et al. identified a Homo sapiens miRNA
(Hsa-miR-139-3p) with putative binding sequences on HPV-16 mRNA, using in silico tools and the
luciferase reporter assay [57]. These authors found that expression of Hsa-miR-139-3p was strikingly
downregulated as a result of increased DNA methylation of the Hsa-miR-139-3p-harboring gene
PDE2A at its promoter/CpG islands in HPV-16-positive tissues and cell lines [57]. Overexpression
and inhibition studies were carried out to establish the role of miRNAs in regulating oncogenic
pathways. The results showed that Hsa-miR-139-3p could target high-risk HPV-16 oncogenic proteins
and major tumor-suppressor proteins, resulting in inhibition of the growth of HNC and cervical cancer
cells. Furthermore, a greater sensitivity to chemotherapeutic drugs (cisplatin and 5-fluorouracil)
was observed in Hsa-miR-139-3p-overexpressed HPV-16-positive cells [57]. This paper showed
that HPV-16-mediated downregulation of Hsa-miR-139-3p may promote oncogenesis in HNC and
cervical cancer.

5. Conclusions and Future Prospects

The cross-kingdom regulation mediated by exogenous miRNAs means that the miRNAs
endogenous to one species may impact the biological processes of another, distantly-related species.
Ever since scientists found that miRNAs were not unstable, but played a novel role in interspecies
communication, the studies of miRNA-mediated cross-kingdom regulation has focused on two
areas: firstly, the regulation by plant miRNAs of gene expression in animals, and secondly,
the miRNA-mediated cross-kingdom regulation in pathogen–host interactions (Figure 1B). The former
research area usually indicates that plant miRNAs can regulate the expression of target genes in animals
and contribute to phenotypic differentiation or to the function of tissues/organs. The latter research
area generally includes two research branches, one branch whereby pathogen-derived miRNAs
regulate host gene expression to suppress host disease resistance, while the other branch involves
host-derived miRNAs in the regulation of pathogen gene expression to confer disease resistance
(Figure 1B).

These findings provide new evidence for the existence of cross-kingdom regulation mediated by
exogenous miRNAs. Nevertheless, some questions remain unanswered. The three prime issues are
as follows: Firstly, a clear molecular mechanism by which miRNAs endogenous to one species can
be incorporated into another, distantly related species needs to be confirmed. Hitherto, two different
mechanisms of dsRNA uptake have been described. One involves the use of the systemic RNA
interference deficient (SID) transmembrane channel-mediated proteins, which were reported in a
nematode (Caenorhabditis elegans Maupas), a planarian (Schmidtea mediterranea Benazzi et al.), and the
Colorado potato beetle (Leptinotarsa decemlineata Say) [58]. Some SID proteins (SID-1/SID-2) are
necessary in the systemic RNAi response. For SID-1, homologous genes have been found in many,
but not all, insects, whereas for SID-2, no insect homologs have been reported to date [59]. The other
dsRNA uptake mechanism is via microvesicle (MV) compartments, the intracellular carriers of
endogenously originating miRNAs, including shedding vesicles (SVs), exosomes, and apoptotic
bodies, which are derived from the cell surface, the endosomal membrane, and the plasma
membrane, respectively [60,61]. These vesicles have reported to protect miRNAs from degradation
by RNases [62,63]. In addition to animal body fluids, exosome-like nanoparticles containing
proteins, lipids, and RNAs have also been found in many plant sources, such as ginger, carrot,
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watermelon, grapes, olives, melon seeds, and coconut [25,64–67]. Published studies have suggested
that exosome-like nanoparticles derived from plants may mediate interspecies communication and
induce the expression of certain human genes [64]. Whether one or both of these pathways of dsRNA
uptake are present and play equivalent roles in sRNA transport needs further research.
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Figure 1. (A) The model of miRNA-mediated cross-kingdom regulation. The blue arrow indicates
that plant miRNAs (e.g., miR162a and miR168a) regulate gene expression in animals. The blue dotted
arrow indicates that no relevant experiment has been reported up to this time. The red and green
arrows stand for the model of miRNA-mediated cross-kingdom regulation in pathogen/parasite–host
interactions, which indicate that pathogen/parasite miRNAs (e.g., Bc-siR3.1/3.2/5, Pst-milR1,
Cc-miRNAs and HCMV-miR-US5-1/miR-UL112-3p) regulate gene expression in hosts, and host
miRNAs (e.g., miR159/166 and miR-139-3p) regulate gene expression in pathogens, respectively;
(B) New insights into the diagnosis and control of pathogenic diseases. Lines of the same color stand
for location on the same pathway. Dotted lines stand for reductions in the positive or negative effects.

Secondly, the strategy needs to be identified by which the appropriate dosage of miRNAs from
one species is delivered to the other species in order to modulate the relevant biological processes.
Ke-Gan Zhu et al. used the same dose of plant miRNAs as exists in natural beebread to feed honey
bee larvae, producing results similar to those seen in nature [17]. Even less is known as to whether
the organisms taking up exogenous miRNA possess an amplification pathway, such as that of the
transitive RNAi found in C. elegans. Transitive RNAi is a model in which mRNA targeted by RNAi
functions as a template for de novo synthesis of new sRNA. In this model, hosts used the available
dosage of exogenous miRNAs to produce considerable amounts of secondary sRNAs to ensure a
robust RNAi response [68].

The third open question is how miRNAs endogenous to one species are loaded onto Argonaute
proteins of the other, distantly-related species to produce a functional miRNA form. It is generally
known that miRNAs derived from different species regulate the expression of their targeting gene in
different ways. Specifically, plant miRNAs usually have near-perfect pairing with the coding region
of their targets, causing target mRNA to break down, while animal miRNAs possess a sequence
incompletely complementary to the 3′ UTR of their targets by binding to as little as 6–8 nucleotides
(the seed region) at the 5′ end of the miRNA, blocking translation [69]. In the example where a
plant miRNA in larval food regulated honey bee caste development, the way in which miR162a
reduced amTOR expression in vivo resembled that of a plant miRNA, whereas miR162a showed
incomplete complementarity with the amTOR sequence and showed a G:U wobble in the seed region,
resembling the regulatory action of an animal miRNA [17]. How exogenous miRNAs are incorporated
into different species, forming miRNA–Argonaute complexes, has still to be satisfactorily explained.
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Coevolution influences the structure and function of ecological communities as well as the
dynamics of infectious diseases [70]. Recently, it has been found that miRNA-mediated cross-kingdom
regulation could be involved in pathogen–host interactions, and this new model of horizontal miRNA
transfer might blaze a new trail to dissect the molecular mechanisms underlying cross-kingdom
interaction and coevolution. Zhang et al. reported that cotton miRNAs miR159 and miR166 negatively
regulated the expression of HiC-15 and Clp-1, respectively, these target genes being essential for
virulence, so that the miRNAs conferred disease resistance to the cotton plant [51]. The novel plant
defense strategy against a pathogen, mediated by cross-kingdom regulation of miRNA, was also
found in tomato plants [51]. Meanwhile, Zhang et al. remarked that the pathogen sequences targeted
respectively by miR159 and miR166 were highly conserved among different strains of V. dahliae,
especially with respect to the miRNA-binding regions [51]. These findings indicated that pathogens
might have preserved or evolved this miRNA-dependent regulation to prevent host hypersensitive
responses and to keep the host tissues alive during the biotrophic phase of the infection. It is also
possible that host miRNAs do not target modulation of the pathogen virulence genes, in view of
coevolution during a long-term specific host–pathogen interaction.

These studies, which focused on the cross-kingdom regulation mediated by exogenous miRNAs
in host–pathogen interactions, described a novel host defense strategy against pathogenic infection
and a novel virulence strategy to overcome host defenses (Figure 1B). These findings reflected,
in fact, the central role of miRNAs in the regulation of gene expression and its implications for
miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac, metabolic, neurologic,
and immune-related diseases, as well as in many plant diseases [71], providing new insights into
the diagnosis, prognosis, and treatment of human and crop diseases. Taking the plant–pathogen
example, pathogens deliver sRNAs into plant cells to silence host innate immunity genes. Such sRNA
effectors of pathogens are mostly produced by Dicer-like proteins (DCLs) of pathogens. Wang et al.
reported that expressing internal and external sRNAs that target DCLs of pathogens in Arabidopsis
and tomato silences the DCL genes of pathogens and attenuates pathogenicity of and colonization
by pathogens, exemplifying bidirectional cross-kingdom RNAi and sRNA transfer between plants
and pathogens [36]. This strategy could potentially be adapted to simultaneously control multiple
diseases caused by a range of pathogen sRNAs (Figure 1B). Another preventative disease-resistance
strategy occurs when the infected hosts export specific miRNAs to induce specific cross-kingdom
silencing of pathogen virulence genes and hence induce resistance. The molecular mechanisms of
miRNA-mediated cross-kingdom regulation in host plant–pathogen interactions represent potentially
a new generation of environmentally-friendly crop protection chemicals and could be effective in crop
improvement and the treatment of crop diseases in the future.

Herbal medicine, in which plant extracts are by far the most common elements used, accounts for
the majority of treatments in traditional Chinese medicine (TCM) [72]. Exogenous plant miRNAs can
be transferred to animals, and hence contribute to some important examples of phenotypic regulation
in animals, indicating that plant miRNAs contained in herbal medicines might also act as a type
of active ingredient. Radix glycyrrhizae, the root of Chinese liquorice (Glycyrrhiza uralensis Fisch.),
is one of the 50 fundamental herbs used in TCM, and has multiple pharmacological properties such
as anti-inflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer
activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective,
and cardioprotective effects [73]. Studies showed that there were abundant miRNAs in the
decoction of dried liquorice [74]. Researchers treated peripheral blood mononuclear cells (PBMC)
isolated from healthy volunteers with miRNAs extracted from a G. uralensis decoction as well as
synthesized miRNA mimics, and found that glycyrrhiza miRNA could significantly regulate PBMC by
inhibiting the expression of genes involved in T-cell differentiation, inflammation, and apoptosis [75].
The mechanisms of miRNA-mediated cross-kingdom regulation could bring about new strategies in
TCM, allowing a comprehensive study of the pharmacology of TCM, improving the development of
TCMs and generating new drugs.
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Whether it is transferred between species and mediates cross-kingdom regulation by integrating
into a specific target-gene-mediated regulatory pathway or a complex regulatory network, miRNA has
huge potential to work as a major factor to influence biological functions in the host. There is no doubt
that in the future, the identification, confirmation, and analysis of more miRNA molecules, as well as a
greater understanding of miRNA-mediated cross-kingdom regulation, will result in the application
of miRNAs for the diagnosis, prognosis, and treatment of human diseases; crop improvement by
increasing disease resistance; and the pharmacological study of traditional Chinese medicines.
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