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Abstract: Amyloid is an insoluble fibrous protein and its mis-aggregation can lead to some diseases,
such as Alzheimer’s disease and Creutzfeldt–Jakob’s disease. Therefore, the identification of amyloid
is essential for the discovery and understanding of disease. We established a novel predictor called
RFAmy based on random forest to identify amyloid, and it employed SVMProt 188-D feature
extraction method based on protein composition and physicochemical properties and pse-in-one
feature extraction method based on amino acid composition, autocorrelation pseudo acid composition,
profile-based features and predicted structures features. In the ten-fold cross-validation test, RFAmy’s
overall accuracy was 89.19% and F-measure was 0.891. Results were obtained by comparison
experiments with other feature, classifiers, and existing methods. This shows the effectiveness of
RFAmy in predicting amyloid protein. The RFAmy proposed in this paper can be accessed through
the URL http://server.malab.cn/RFAmyloid/.
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1. Introduction

The name of the amyloid protein comes from the technique of the early immature iodine
staining [1]. In many neurological diseases such as Alzheimer disease and Parkinson’s disease,
large amounts of amyloid accumulation in the nervous system can be observed [2]. Many scholars
believe that it may lead to degeneration or dysfunction of the brain or other organs [3,4]. At the
time, the scientific community debated whether it was a matter of fat deposition or carbohydrate
precipitation until finally it was discovered that it was a protein substance [5]. The exact mechanism of
amyloid formation is not fully understood, but the precondition for the deposition of amyloid fibrils is
the excessive production of its precursor protein [6]. The prevention of this disease should be based on
active treatment of the primary disease that can induce the disease [7]. Researchers have demonstrated
that the immune system has similar efficacy in humans. Therefore, to understand amyloid proteins
and related diseases deeply, the most research on amyloid proteins focuses on amyloidosis [8–10],
amyloid region [11,12], aggregation [3,13,14], and antibody amyloid [15].

Many calculation methods on the problem of amyloid accumulation have been developed, such as
AmylPred [16], Pafig [17], FoldAmyloid [12], and Waltz [18]. AmylPred method mainly uses five
different and independently published methods to form a consensus prediction of amyloidogenic
region. Pafig employs the support vector machine to predict the amyloid protein region through the
recognition of the hexapeptides associated with the aggregation of amyloid protein. FoldAmyloid
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realizes the prediction of the amyloid region by combining the method of predicting hydrogen bond
formation with the expected bulk density of the residues. Waltz [19] employs the position-specific
scoring matrix to predict the amyloid region. As reviewed [20], there are currently two major methods
to study the aggregation of amyloid proteins and to identify the amyloidogenic regions that are most
likely to form fibrils: (1) using a phenomenological model based on the physicochemical properties of
amino acids to identify the amyloidogenic regions; and (2) modeling the microcrystalline structure of
the peptides by simulating the short fibers of the amyloid fragment [21,22].

For the amyloid protein region, many studies and prediction methods exist. Garbuzynskiy et al.
proposed and developed an online web server named FoldAmyloid [12]. It mainly uses the
statistical data features of the amyloid protein and introduces two features, namely expected
probability of hydrogen bonds formation and expected packing density of residues, to predicted
amyloidgenic regions [12]. Wieczorek et al. proposed amyloid protein region prediction based
on fuzzy grammar [23]. In their paper, the amyloid sequence is described by fuzzy context-free
grammar and the amyloidogenic region is identified by fuzzy grammar. To accurately predict the
amyloidogenic region, Emily et al. combined weighted merging of existing popular methods to
create a meta-predictor called MetAmyloid [24]. There are also many methods for successfully
predicting the amyloid region in amino acid sequences with computational techniques, such as
biological mutagenesis and quantitative calculations. For the formation of antibody amyloid, Otoo et al.
proposed the automatic and cross-species prediction method AbAmyloid [25], which employs random
forest algorithm. The prediction has been tested on 12 datasets, and outperformed other methods.
David et al. combined Naive Bayes and decision trees to predict amyloidogenesis in antibodies [15].
Although the mis-aggregation of amyloid may lead to some clinical studies, many studies have
recently shown that amyloid still has positive significance in some aspects, for example bacterial and
antimicrobial activity [4,26], fungal biofilm formation [21,27–29], storage of peptide hormones [3,30],
the formation of zona pellucida to protect mammalian and fish oocytes [31], etc. These studies show
the importance of increasing the awareness of amyloid.

Although there is a lot of research on amyloid protein, they ignored the first step of identifying
amyloid protein. In this paper, we present RFAmy to identify amyloid with random forest (RF),
which it based on composition and physicochemical features from protein primary sequences.

As we conclude above, machine learning frame has been employed to identify special
proteins, including cytokines [32], DNA-binding proteins [33,34], RNA-binding proteins [35],
lncRNA-interacting proteins [36], drug targets [37], etc. Different sequence features have been proposed
to describe proteins, including Chou’s Pse features, SVMProt [38], secondary structure features [39],
evolutionary features [40], etc. Different machine learning classifiers have been employed, including
support vector machine [41,42], random forests [43], ANN [44], etc. There are also some special
classifiers for different conditions, such as ensemble classifier [42,45–54], multi-label classifier [55–58],
imbalance classifier [59,60], hierarchical classifier [61–63], etc. All these previous works guide us to
build a frame for amyloid protein identification.

2. Results and Discussion

2.1. Measurement

To evaluate the prediction effect of the prediction algorithm used, this article selects four
commonly used indicators: sensitivity (SE) (Equation (1)), specificity (SP) (Equation (2)), accuracy
(ACC) (Equation (3)) and Matthew coefficient (MCC) (Equation (4)).

SE =
TP

TP + FN
(1)

SP =
TN

TN + FP
(2)
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ACC =
TN + TP

TN + FP + TP + FN
(3)

MCC =
(TP × TN )− (FP × FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

where TP indicates the number of amyloid proteins predicted in the sequence of positive cases,
FP indicates the number of non-amyloid proteins predicted in the counterexample sequence,
TN indicates the number of non-amyloid proteins predicted in the sequence of positive cases, and FN
indicates the number of non-amyloid proteins predicted in the counterexample sequence. SE denotes
the ratio of being positive in the sequence and predicting positive. SP indicates the correct rate of
prediction of counterexamples.

ACC denotes the proportion of correct predictions in all the positive and negative examples,
and the reliability of the MCC represents the results of the algorithm. When the difference between the
positive and negative examples is large, the prediction ability can be more equitably reflected.

In this paper, the positive and negative dataset are unbalanced, so we have additionally adopted a
criterion F-measure (Equation (7)) which is calculated with precision (Equation (5)) and recall (Equation (6)).

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F − measure =
2 × Precision × Recall

Precision + Recall
(7)

2.2. Performance of Different Features on Cross-Validation

This section presents the selection of n-gram features, adaptive skip-gram features (400-D),
pse-in-one features and 188-D feature to verify the validity of the 188-D and pse-in-one combined
feature representation method used in this paper. The results are shown in Table 1. Here, the features
representation methods that we used to compare with our feature representation method are
briefly listed.

The n-gram features are common in natural language processing and we employed this feature in
protein prediction problems [64]. This is a method of checking “n” consecutive words or sounds from
a given text or speech sequence. The n-gram needs to link n words together as a feature. The n-gram
assumes that the nth word is only affected by the first n − 1 words. The probability of the entire
sentence is the product of the probability of occurrence of each word. This model helps to predict the
next item in the sequence.

The Adaptive Skip-Gram Features model (400-D) is a variant of the n-gram model. The corpora
counted by jumping a certain number or position of words were used to obtain n-gram information,
Adaptive Skip-Gram features more content than n-gram. The correlation between distance and
sequence amino acids to a certain extent solves the problem of feature space sparsity caused by the
traditional n-gram method.

The results are shown in Table 1. In Table 1, we can see that the feature representation method
used in this paper performs well on all indicators compared to other methods. The accuracy, MCC, SE,
SP and F-measure all reached maximum: 89.19%, 0.739, 0.781, 0.927 and 0.891, respectively. In short, the
random forest based RFAmy predictor feature extraction algorithm outperforms the others. Therefore,
the feature extraction method used in this paper is feasible and effective.
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Table 1. The result of using different feature representation methods on cross-validation.

Method ACC (%) MCC SE SP F-Measure

188-D+Pse-in-One 89.1941 0.739 0.781 0.927 0.891
188-D 84.8482 0.626 0.655 0.932 0.626

Pse-in-one 81.31 0.5626 0.6374 0.8989 0.792
400-D 84.1105 0.634 0.691 0.917 0.838

n-gram (n = 1) 81.3187 0.522 0.534 0.930 0.802

2.3. Performance of Different Features on External Validation

To test the robustness of the proposed method, external validation is required to evaluate the
developed predictive model. Therefore, we evaluated RFAmyloid on an independent dataset and again
compared its performance to the performance of different feature representation methods. We only
used 80% of the data to develop the predictive model, and the remaining 20% was used for external or
independent verification. The independent test results are shown in Table 2. In Table 2, we can see that
the feature representation method used in this paper performs well on all indicators compared to other
methods. The accuracy, MCC, SE, SP and F-measure all reached maximum: 89.71%, 0.757, 0.818, 0.932
and 0.897, respectively. Independent testing confirmed the previous test results and confirmed that our
proposed predictor effectively recognizes amyloid. Since the proposed method is robust in independent
testing, it should be effective in predicting new amyloids.

Table 2. The result of using different feature representation methods on external validation.

Method ACC (%) MCC SE SP F-Measure

188-D+Pse-in-One 89.7196 0.757 0.818 0.932 0.897
188-D 73.1841 0.524 0.512 0.960 0.678

Pse-in-one 78.7037 0.679 0.676 0.880 0.782
400-D 71.2963 0.543 0.503 0.893 0.684

n-gram (n = 1) 69.4444 0.522 0.534 0.893 0.657

2.4. Comparison with Other Classifiers

In this subsection, the performance of RFAmy is compared with the performances of other classifiers,
namely Naive Bayes, SGD, Nearest Neighbors, Decision Tree, LinearSVC, Logistic Regression, LibSVM,
ExtraTrees, Bagging, AdaBoost, GradientBoosting, and LibD3C [65]. The experimental results are shown in
Table 3. In Table 3, although the RFAmy method presented in this paper is lower than Nearest Neighbors in
SP index, RFAmy is obviously superior to the four other indices. The RFAmyloid has the highest accuracy
and F-measure: 89.19% and 0.891, respectively. Figure 1 shows the ROC curve (the further the curve is
projected to the left, the better the effect is) of RFAmy and the comparison classifiers’ experimental results.
It is well verified that the random forest classifier outperforms other classifiers in predicting the accuracy
of amyloid, demonstrating the validity of the proposed method.

Table 3. The result of using different classifiers based on 188-D feature.

Classifier ACC (%) MCC SE SP F-Measure

Random Forest 89.19 0.739 0.781 0.927 0.891
Naive Bayes 75.50 0.3791 0.4606 0.8822 0.8721

SGD 77.51 0.4451 0.5515 0.8717 0.6533
Nearest Neighbors 77.70 0.4293 0.2970 0.9843 0.8818

Decision Tree 67.28 0.2567 0.5333 0.7330 0.7461
LinearSVC 77.51 0.4654 0.6242 0.8403 0.8658

Logistic Regression 79.52 0.5123 0.6545 0.8560 0.8694
LibSVM 70.02 0.0651 0.0061 1.0000 0.8239

ExtraTrees 74.95 0.4128 0.6061 0.8115 0.8087
Bagging 74.95 0.4128 0.6061 0.8115 0.7727

AdaBoost 76.78 0.4700 0.6788 0.8063 0.8763
GradientBoosting 80.26 0.5298 0.6667 0.8613 0.8668

LibD3C 86.99 0.683 0.732 0.929 0.868
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Figure 1. Receiver Operating Characteristic (ROC) curve for RFAmy and other methods.

2.5. Comparison with Other Predictors

In this section, the proposed prediction method is compared with the existing prediction
method BioSeq-Analysis. The online address for this method is http://bioinformatics.hitsz.edu.
cn/BioSeq-Analysis/PROTEIN/Kmer/ [66]. The SVM and random forest algorithm are used in The
BioSeq-Analysis prediction method. This section compars them separately. The prediction results
are shown in Table 4. Figure 2 shows the roc curve of RFAmy and comparison algorithm method
experimental results. Table 4 shows that the RFAmy method proposed in this paper achieved the best
results on the all evaluation indicators. In addition, the ROC curve diagram (the further the curve is
projected to the left, the better the effect is) shows that the RFAmy method in this paper is obviously
better than the other two methods.

Table 4. The result of using different methods.

Method ACC (%) MCC SE SP

RFAmy 89.1941 0.739 0.781 0.927
BioSeq-SVM 76.86 0.4419 0.4953 0.9006
BioSeq-RF 81.31 0.5626 0.6374 0.8989

Figure 2. Receiver Operating Characteristic (ROC) curve for RFAmy and two other methods.

http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/PROTEIN/Kmer/
http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/PROTEIN/Kmer/
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2.6. Comparison with Balanced Dataset

The results in Tables 1–4 show that the specificity was much higher than the sensitivity, which is
the effect of the unbalanced dataset in the development of predictive models. Therefore, we used a
balanced dataset to develop a predictive model and compared its performance to the performance
based on an unbalanced dataset. The results are shown in Table 5. From the comparison results in
Table 5, we can see that, although the accuracy under the balanced dataset and the F-measure index are
slightly lower than the unbalanced dataset, the sensitivity under the balanced dataset is much higher
than the specificity. This also proves the importance of the selection of datasets for model prediction.

Table 5. The result of using different feature representation methods.

Method ACC (%) MCC SE SP F-Measure

unbalanced 89.1941 0.739 0.781 0.927 0.891
balanced 83.4962 0.757 0.847 0.823 0.865

3. Methods

Figure 3 shows the paper framework for an Amyloid classifier. We introduce the datasets, features
and classifiers in detail in this section.

Figure 3. Overview of the paper framework for an Amyloid classifier. First, the original protein
sequence was generated from the Uniprot and AmyPro datasets and then subjected to a de-redundant
operation to generate the final protein sequence data called Amy. The second step is feature extraction
of protein sequences. The third step is to use RF to classify protein sequences.

3.1. Dataset

This study used a self-built dataset named Amy. The dataset constructin followed the common
steps of protein prediction.

The first step was to search for proteins. The source databases are the Universal Protein
(UniProt, http://www.uniprot.org/) and Amyloid (AmyPro, http://www.amypro.net/) [67] database.
The second was to remove the sequences which are less than 50 amino acids. In the third step,
protein sequences eliminated redundancy. We used the program CD-HIT to cluster proteins that
meet a similarity threshold [68] and eliminate redundancy and homology biases that could lead to
overestimation of performance. In this study, through these three steps, a set of amyloid data, the Amy
dataset, was formed which consists of 165 amyloid proteins and 382 non-amyloid. The Amy dataset
can be downloaded from the server.

http://www.uniprot.org/
http://www.amypro.net/
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3.2. Feature Extraction

Feature extraction is the first and most important component in predictors [69]. We employed
a multi-feature representation method that includes two feature representation methods, namely,
188-D feature extraction method based on protein composition and physicochemical properties and
pse-in-one feature extraction method based on amino acid composition, autocorrelation pseudo acid
composition, profile-based features and predicted structures features.

Different kinds of amino acids have their own special physicochemical properties, which can
predict the type of protein as a feature of the amino acid sequence. In addition, the 20 compositional
features of amino acids can describe the characteristics of the protein. Both methods achieved good
predictive results. Dubchak first attempted to fuse the two features together and achieved better
results in predicting protein folding patterns [9]. Afterwards, many scholars proposed a variety of
feature fusion methods [70]. The 188-D combined feature extraction method extracts eight physical
and chemical characteristics, the frequency of occurrence of 20 amino acids in the protein sequence,
the frequency of bipartite subsequences, and the distribution of amino acids with different physical
properties in the sequence. The 188-D feature is mainly obtained by the following four steps.

The first step is to extract the proportional characteristics of the amino acid components in the
sequence, a total of 20 dimensions. In the second step, using hydrophilicity and hydrophobicity as an
example, the compositional content of amino acids with hydrophilicity, hydrophobicity, and neutrality
can be calculated to extract 3D features. In the third step, if there is a total of n hydrophilic, hydrophobic,
and neutral amino acids in the sequence, calculate the proportions of the first, 25% * n, 50% * n, 75% * n,
and the last such amino acids in the sequence of the protein in which they are located. Each category has
five dimensions, so there are 15 dimensional features in all three categories. Finally, in accordance with
the “hydrophilic”, “hydrophobic” and “neutral” properties, two or two combinations are constructed.
The 3-D characteristics of “hydrophilic, hydrophobic,” “hydrophilic, neutral,” and “hydrophobic,
neutral” are calculated, and the ratio is calculated in the sequence of the bisimplex, which is also 3D.
Table 6 describes the 188-D function.

Table 6. Structure of 188-D Feature.

Physical-Chemical Property Dimensions

Amino acid composition 20
Hydrophobicity 21

Normalized van der Waals volume 21
Polarity 21

Polarizability 21
Charge 21

Surface tension 21
Secondary structure 21
Solvent accessibility 21

Pse-in-one has five groups of 22 features extraction methods [71]. The first group uses kmers,
distance-based residue (DR), and distance pair to indicate the composition of amino acids.
The second group uses auto covariance (AC), cross covariance (CC), auto-cross covariance (ACC),
and physicochemical distance transformation (PDT) to represent autocorrelation features. The third group
uses four indicators such as PC-PseAAC to indicate the characteristics of false amino acids; the indicators
can be found in the literature [72]. The fourth group uses Top-n-gram, distance-based auto covariance,
profile-based Auto-cross covariance, sequence conservation score, and other three indictors to represent
Profile-based features. The fifth group uses secondary structure and solvent accessible surface area to
represent predicted structure features. Table 7 shows the 22 feature extraction methods.
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Table 7. Pse-in-one feature extraction method of protein sequences.

Category Method

Amino acid composition
K-mer

DR
Distance Pair

Autocorrelation

AC
CC

ACC
PDT

Pseudo amino acid composotion

PC-PseAAC
SC-PseAAC

PC-PseAAC-General
SC-PseAAC-General

Profile-based features

Top-n-gram
PDT-Profile

DT
AC-PSSM
CC-PSSM

ACC-PSSM
PSSM-DT
PSSM-RT

CS

Predicted structure features
SS

SASA

3.3. Classifier

For the identification of amyloid protein, random forest was selected as the classification algorithm
in this study. It is popular and has been successfully used in biometrics many times [55,72–76].
Random forests are a combination of tree predictors. Algorithms are implemented by building
multiple decision trees and using voting mechanisms to improve decision trees. Random forests are
generated in the following four steps.

The first step is to generate n samples from the sample set by resampling. The second step is to
assume that the number of sample features is q, and select k features from q for n samples, and then
obtain the best segmentation point by building a decision tree. The third step is to repeat m times,
and then generate m decision trees. The fourth step is to predict by a majority voting mechanism.
It should be noted that, where m represents the number of cycles, and n represents the number of
samples, then n samples constitute the sample set for training, and m such samples are generated in
m cycles.

In machine learning, the algorithm model needs to be trained to update each parameter in
the model. Therefore, it is necessary to provide the training set as a training sample. At the same
time, to describe the generalization ability of the model, a test set is needed to test and obtain the
generalization error. In practical applications, cross-checking is often used as a test method because
of the limited number of datasets. There are three types of cross-validation: n-fold cross-validation,
folding cross-validation and independent data testing [77–80]. In three tests, the folding knife test has
been widely used in bioinformatics because it produces unique results [81–85]. However, it takes time
and resources. Therefore, in this paper, we use K-fold cross-validation to examine the proposed model,
where K = 10 is the most common. In detail, the training set is divided into K parts, and then the ith is
taken as the test set, the other K − 1 is trained as the training set. The operation diagram of the ten-fold
cross-validation is shown in Figure 4.
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Figure 4. Ten-fold cross validation diagram. The dataset was divided into ten parts, and nine of them
were taken as training data in turn, and one was used as test data for testing. The average value E of the
ten-groups test results is calculated as an estimate of the model accuracy and is used as a performance
indicator for the current K-fold cross-validation model. Where Ei represents the cross-validation error
of the ith group.3.4. The RFAmyloid Online Prediction Server.

With the development of bioinformatics, it is important to make better use of machine
learning methods to solve related biological information. As mentioned in a series of documents,
the development of predictive methods and related servers is very practical and urgently needed for
researchers. Therefore, based on the prediction method of the paper and the data used, we also carried
out server development. The URL is: http://server.malab.cn/RFAmyloid/.

On the server, the user can paste the protein sequence or upload the file in fasta format.
After submitting the protein sequence, the page will give the probability information of whether it is
Amyloid protein, and query the prediction result. The dataset used in this paper can be downloaded
from the web.

4. Conclusions

In this paper, we propose a new learning algorithm RFAmy for amyloid prediction. We used
SVMProt 188-D feature representation, pse-in-one feature representation and random forest
classifier. To verify the effect of the proposed predictor, we compared its performance with
10 other cross-validation and independent test sets with other feature representations. In the
10-fold cross-validation, we obtained ACC 89.19% and F-measure 0.891. In the independent test
set, we obtained ACC 89.19% and F-measure 0.891. In addition, our models have better predictive
effects than other feature extraction algorithms, classifiers and existing methods. The RFAmy proposed
in this paper can be accessed through the URL http://server.malab.cn/RFAmyloid/. In future work,
we will optimize RFAmy’s prediction performance through the improvement of feature extraction
algorithms and classification algorithms. For the improvement of the classifier, the use of an integrated
classifier will be considered, combining multiple classifiers to complete the classification task and
improve the classification accuracy.
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