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Abstract: Telomeres, the natural ends of chromosomes, hide the linear telomeric DNA from
constitutive exposure to the DNA damage response with a lariat structure or t-loop. Progressive
telomere shortening associated with DNA replication in the absence of a compensatory mechanism
culminates in t-loop collapse and unmasked telomeres. Dysfunctional telomeres can suppress
cancer development by engaging replicative senescence or apoptosis, but they can also promote
tumour initiation when cell cycle checkpoints are disabled. In this setting, telomere dysfunction
promotes increasing chromosome instability (CIN) through breakage-fusion-bridge cycles. Excessive
instability may hamper cell proliferation but might allow for the appearance of some rare
advantageous mutations that could be selected and ultimately favour neoplastic progression.
With the aim of generating pre-malignant immortalised cells, we ectopically expressed telomerase in
telomere-compromised variant human mammary epithelial cells (vHMECsS), proficient and deficient
for p53, and analysed structural and numerical chromosomal aberrations as well as abnormal
nuclear morphologies. Importantly, this study provides evidence that while immortalisation of
vHMECs at early stages results in an almost stable karyotype, a transient telomere-dependent
CIN period—aggravated by p53 deficiency—and followed by hTERT overexpression serves as a
mechanism for the generation of immortal unstable cells which, due to their evolving karyotype,
could attain additional promoting properties permissive to malignancy.

Keywords: human mammary epithelial cells; telomere dysfunction; chromosome instability; p53;
hTERT, cancer

1. Introduction

Telomerase reactivation is a hallmark of carcinogenesis, and the vast majority of human tumours
have telomerase activity by upregulating expression of telomerase’s catalytic subunit (hTERT) [1].
In addjition to replicative immortality, cancer cell hallmarks include sustained proliferative signalling,
inhibition of growth suppressors and resistance to cell death [2]. Underlying these hallmarks is the
presence of chromosome instability (CIN), a process that fuels genetic heterogeneity among a cell
population. It is thought that the presence of an unstable genome expedites the acquisition of traits
enabling malignity [2—4], though it has also been proposed that it is a simple by-product of tumour
evolution [5].

Multiple mechanisms have been described to enable the development of CIN [6-9]. Among them,
telomere damage is believed to trigger CIN when critically short telomeres become dysfunctional
and prone to chromosomal fusions in cells lacking proper cell cycle checkpoints. In human tissues,
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progressive telomere shortening occurs due to the inability of polymerases to fully replicate the
chromosome ends [10,11]. Excessive reduction of the telomere length renders telomeres dysfunctional
and the onset of replicative senescence [12,13]. Indeed, human fibroblasts accumulate spontaneous
telomere-dysfunction induced foci (TIFs) during cellular lifespan [14]. Cells keep dividing until they
reach 4-5 TIFs, and above this threshold, persistent telomere damage enforces cells to become senescent
through p53-dependent signalling [14-16]. Notably, cells with abrogated checkpoints may escape
the growth arrest and be more tolerant of rampant CIN when fully deprotected telomeres become
fusogenic. If left unchecked, this instability will eventually reach lethal levels in the transforming cells,
thereby presenting crisis, a second block to the development of cancer [17,18]. It is currently believed
that full malignant progression arise from cells in which telomerase or Alternative Lengthening of
Telomeres (ALT)-pathway activation and restoration of telomere function appears after a period
of telomere instability [18]. At least in murine models, telomerase reactivation in the setting of a
pre-existing telomere-induced genome instability is an active driver of carcinogenesis [19].

Previous telomere and cytogenetic studies have documented CIN, reduced telomere length
and telomere end fusions in early-stage human breast cancers [20-23], thus supporting telomere
dysfunction as a driver of CIN and an inducer of intratumour diversity in this emerging
malignancy [24]. These findings, along with the detection of telomerase activity in some breast
carcinomas in situ [25-28], suggest that immortalisation of telomere unstable cells through the
activation of telomerase could be an early event in the progression of breast carcinogenesis.

Here, with the aim of exploring the impact of hTERT overexpression in breast epithelial cells
displaying short dysfunctional telomeres, we have taken advantage of human mammary epithelial
cells (HMEC), which have been determined to mimic breast carcinogenesis in vitro [20]. Remarkably,
HMECs acquire an extended lifespan in vitro due to the absence of p16™<4a
proliferating variant HMECs (VHMEC), progressive telomere shortening results in the transit of
telomeres from a closed state to an uncapped state and, ultimately, to the gradual appearance
of fully unprotected telomeres that are continuously repaired by fusing with each other [30,31].
This reduces the initial damage and allows massive remodelling and scrambling of the genome through
endless breakage-fusion-bridge (BFB) cycles on proliferating cells (reviewed in [32]). Nevertheless,
these massively reorganised cells ultimately succumb to p53-dependent agonescence, or crisis if p53
function is abrogated [33]. Our studies establish that h TERT overexpression in vHMEC cells before
CIN is unleashed enables the immortalisation of cells with a relatively stable karyotype. By contrast,
immortalisation of cells after a brief episode of chromosomal instability offered by dysfunctional
telomeres avoids the persistent mutator phenotype that hampers cell proliferation. Beyond restoring
genome stability and eliminating the DNA-damage signals of unprotected telomeres, the provided
data demonstrates the presence of a still-evolving karyotype due to persistent low levels of CIN. At the
same time, we show that genomic alterations acquired in immortalised genome-unstable vHHMECs
are a mixture of random and fixed chromosomal rearrangements that could be potential sources of
oncogenic changes and malignant evolution.

expression [29]. In these

2. Results

2.1. Establishment of Immortalised and Non-Immortalised vHMECs with Different Cell Cycle Settings

To study how telomerase and p53 modulate the development and maintenance of CIN in human
epithelial cells, p16™NK42-deficient HMECs (VHHMECs) were genetically modified through lentivirus
infection. Genetic modifications consisted of the generation of an immortalised vVHMEC cell line
by ectopical expression of the catalytic subunit of telomerase (Figure 1). hTERT immortalisation
was performed at an early population doubling (PD) before vHHMECs developed CIN associated
with extensive telomere shortening. On the other hand, young vHMECs were also subjected to
constitutive abrogation of p53 through short-hairpin p53 RNA lentiviral particles (Figure 1). After five
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PD, immortalisation of p53-deficient vHMECs was conducted through infection with the hTERT
lentivirus (Figure 1).
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Figure 1. Scheme of the generation and analysis of different vHMEC cell lines. Young vHMECs were
immortalised by transduction with hTERT containing lentivirus at PD20 to generate immortalised
vHMECs. In addition, young vHMECs at PD19 were also infected with lentiviral particles containing
the short hairpin RNA of p53 under the hU6 constitutive promoter to generate p53 compromised
finite vVHMECs. After a period of selection with puromycin, the cells were expanded and subsequently
immortalised with the hTERT lentivirus at PD24. Cytogenetic analysis was performed at PD22 and
PD32 for young and aged vHHMECsS, respectively. Immortalised vHHMECs (VHMEC-hTERT) were
karyotyped at PD76 and at PD130 (not shown). Finite but p53-deficient vHHMECs (vHMEC-shp53)
were analysed at PD29 and the immortalised cell line derivative (VHMEC-shp53-hTERT) at PD47.
Phase contrast images of the different cell lines at different PD are shown. Scale bar corresponds
to 100 pm.

Validation of the genetic modifications was performed by different approaches. Telomerase levels
in the different cell lines were tested through hTERT expression by western blotting (Figure 2A),
rather than using highly sensitive molecular methodologies such as RT-PCR of hTERT mRNA or
RQ-TRAP. Only the cell lines transduced with hTERT showed a clear band for the catalytic subunit
of telomerase, thus validating that cell immortalisation took place. In addition, inactivation of the
p53 pathway through shRNA was confirmed by the reduced levels of p53 protein and by the fact
that increased levels of p53°!> were unnoticed after cell exposure of VHIMEC-shp53 cells to the DSBs
inducer Bleocin™ (Figure 2A).

In addition, the functional status of p53 was determined by assaying the ability of cells to
arrest growth after exposure to the microtubule destabilising agent colcemid. Microtubule inhibitors,
such as colcemid or nocodazole, physically interfere with microtubule formation and activate the
spindle assembly checkpoint (SAC) [34]. This checkpoint monitors kinetochore attachment [35] and
delays chromatid separation and exit from mitosis until all kinetochores are saturated with and
stably attached to spindle microtubules [36]. As for other checkpoints, an active SAC is not normally
capable of blocking exit from mitosis indefinitely. Indeed, cells can evade the mitotic arrest and
proceed to the next interphase without chromosome segregation by means of a process termed mitotic
slippage or checkpoint adaptation. Under normal conditions, these cells with a tetraploid DNA content
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often suffer a long-lasting arrest at G1, most likely due to the induction of cellular senescence [37].
In contrast, polyploid cells that lack functional p53 have an increased ability to re-enter the cell cycle
and initiate another round of DNA replication [38—41]. In order to determine if this was the case
for our p53-deficient cells, FACS analysis of DNA content was performed after sustained exposure
to 50 ng/mL of colcemid during 24 h or 48 h. Following 24 h exposure, there was an increase in
cells in the G2/M fraction and a lower number of cells in G1, in both proficient and p53-deficient
vHMEC-hTERT cells (Figure 2B), probably reflecting the accumulation of mitotically arrested cells.
In contrast, FACS analysis of cells after sustained 48 h colcemid treatment demonstrated the presence
of cells with an 8N DNA content compatible with cycling polyploids only in vHHMEC-shp53-hTERT
cells (Figure 2B).
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Figure 2. Validation of hTERT immortalisation and p53 downregulation in the different vHMECs.
(A) Immunoblots of untreated cell lines as well as Bleocin™-treated p53-proficient and deficient
immortalised vVHMECs. Expression of the catalytic subunit of telomerase (hTERT) was observed at
approximately 120 kDa only in the immortalised cell lines. Please note that at 160 kDa there is an
unspecific band. A higher expression of hTERT, i.e., stronger band, was observed in the p53-deficient
derivatives. o-Tubulin was used as loading control. The same protein extracts were immunoblotted
for p53. Diminished levels of p53 were observed in the shp53-vHMEC variants after «-Tubulin
normalisation. In addition, the functionality of p53 was validated by checking for the presence of
p53°1° after DSBs induction by Bleocin™. Only p53-proficient immortalised vVHHMECs showed enhanced
p53°1% levels after DNA damage. o-Tubulin was used as loading control. The presence of DNA damage
was determined in the different cell lines by blotting y-H2AX, a marker of DSBs. After o-Tubulin
normalisation, the y-H2AX levels were observed to increase in finite VHMECSs concomitant to increasing
telomere shortening and specifically when p53 function was abrogated. hTERT immortalisation reduced
v-H2AX levels in both p53-proficient and deficient vHHMECsS, but in vHMEC-shp53-hTERT DSBs still
remained, as the level of y-H2AX was comparable to that of telomere-compromised vVHHMECs. Similarly,
Chk2T68 another marker of DSBs, was noticed in the finite and the Bleocin™-treated immortalised
cells; (B) Representative cell cycle profiles of vVHMEC-hTERT and vHMEC-shp53-hTERT cell lines 24 h
and 48 h after colcemid treatment, as well as their respective controls. Cell cycle profiles remained
stable throughout the time of the experiment for untreated cells. Colcemid treatment produced an
accumulation of cells in the G2/M phase in VHMEC-hTERT. In the p53 compromised cells there
was, in addition to the G2/M increase, an accumulation of cycling polyploids, i.e., more than 4N
DNA content, specifically at 48 h after treatment. Cell cycle phases are marked and values indicated.
A minimum of 10,000 cells were analysed per experiment.
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In summary, we have efficiently generated p53-proficient and deficient mortal and immortal
vHMEC lines from one individual to investigate the contribution of p53 and telomere status in the
karyotypic evolution of epithelial human cells.

2.2. The Negative Impact of Telomere-Erosion on the Karyotype of vHMECs Is Enhanced by Targeted
p53 Inactivation

Previous studies on vHHMECs have shown that hypermethylation of the CDKN2A promoter
allows the proliferation of breast cells carrying extremely short telomeres as well as uncapped
chromosomes [29,30]. A direct link between exaggerated telomere shortening and chromosomal
aberration formation has been obtained in several different human epithelial cell models [42—-45].
To determine whether loss of p53 contributes to the intensification of the telomere-dependent CIN,
we first evaluated the karyotype aberrations in unmodified vHHMECs at an early culture stage (PD22)
just after a period of selection when clones with p16/NK4a inactivation acquire proliferation capacity.
In addition, a late culture stage (PD32) was analysed to detect abnormalities occurring over time before
vHMECSs cease proliferation by entering agonescence at approximately PD35 (Figure 1).

Cytogenetic analysis of vVHMEC cells was performed using both inverted 4’,6-Diamidino-
2-phenylindole dihydrochloride (DAPI) staining and pantelomeric-pancentromeric hybridisation with
PNA probes. A total of 26 early passage VHMECs were karyotyped (Table S1). Eleven metaphase cells
(42.31%) had an abnormal karyotype (Table 1 and Figure 3A,C). Structural chromosomal aberrations
observed were chromosome fusions (fus) or dicentric chromosome (dic) (6 cells), non-reciprocal
translocations (nrt) (2 cells), chromatid breaks (ctb) (3 cells) and acentric fragments (ace) (1 cell).
The karyotype analysis of in vitro aged VHMECs metaphases after ten PDs (PD32) demonstrated
the significant accumulation of aberrant cells with proliferation in the absence of telomerase (Table 1
and Figure 3A,C) (Fisher’s exact test, p < 0.0001). All aged cells were karyotypically abnormal
(100%) (Table S2). The aberration most often observed was the presence of fus or dic (17 cells).
Other aberrations were nrt (4 cells), isochromosome (i) (1 cell) and centric fragments (4 cells). Altogether,
the accrual of telomere dysfunction in vHHMECS results in highly structural rearranged karyotypes
with increasing frequency of structural aberrations per cell (Table 2 and Figure 3B) (Kruskal-Wallis
test, p < 0.0001). Of relevance, end-to-end chromosome fusions, a marker of dysfunctional telomeres,
increased with PDs from 0.23 per cell in young vHHMECs to 1.1 per cell in the aged vHHMECs. None of
the fusions observed in our cell lines presented interstitial telomeres at the junction point (Figure S1),
and most of the fusion events were located at the chromosome terminus. These results point to
telomere attrition, and not to the breakdown of the t-loop due to shelterin problems at the origin of
end-to-end fusions.

Besides structural chromosomal aberrations, numerical aberrations were evaluated through
oligoFISH labelling of centromere-specific probes in interphase nuclei. This avoids artefactual
chromosome loss due to the chromosome spreading technique. The FISH signals distribution of
chromosome 6 (CEP6), 12 (CEP12) and 17 (CEP17) was scored in a minimum of 390 cells per
condition (Table 3). At early PD, aneuploidy levels among diploid vHMECs were around 6%
(Figure 4A) and, in agreement with published reports [46], increased significantly with PDs (Fisher’s
exact test, p = 0.0057). Furthermore, given the already defined tetraploidisation effect of telomere
dysfunction in vHMECSs and other cell types [47,48], we also evaluated the extent of tetraploid
cells in telomere-compromised VHMECs. The oligoFISH scoring of vHMECs demonstrated a
significant accumulation of 4N cells with PDs (7.65% vs. 14.73% in vHMECs at PD22 and PD30,
respectively; p =0.0015, Fisher’s exact test) (Table 3 and Figure 4A). This increase in cell ploidy
was also demonstrated by cytometric analysis where a minimum of 10,000 cells were evaluated per
condition (10.1% vs. 13.9% in vHHMECs at PD25 and PD33, respectively) (Figure 4B). Specifically,
telomere dysfunction has been envisaged as a factor capable of interfering with the completion of
cytokinesis through chromatin bridges emerging from end-to-end chromosome fusions [48]. For this
purpose, mono- and multinucleated cells were also scored in vVHHMECs. After applying Texas Red-X
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Phalloidin to detect the cell cortex and DAPI staining to counterstain DNA, the analyses confirmed
a significant increase in the frequency of binucleated cells with the accrual of telomere dysfunction
(Fisher’s exact test, p < 0.0001) (Figure 5A).

Table 1. Cytogenetic analysis in the different vHMEC cell lines.

Cell Line PD Analysed  Abnormal Cells with Cells with  Cells with Structural Cells with Clonal
Cells n Cells % (n) fus/dic % (n) nrt % (n) AA % (n) Numerical AA % (n)
vHMEC 22 26 42.31 (11) 23.08 (6) 7.69 (2) 42.31 (11) 0.00 (0)
vHMEC 32 20 100.00 (20) 85.00 (17) 20.00 (4) 100.00 (20) 0.00 (0)
vHMEC-shp53 29 23 100.00 (23) 82.61 (19) 21.74 (5) 100.00 (23) 0.00 (0)
vHMEC-hTERT 76 46 91.30 (42) 0.00 (0) 6.52 (3) 17.39 (8) 84.78 (39)
VHMEC-shp53-hTERT 47 54 62.96 (34) 16.67 (9) 50.00 (27) 62.96 (34) 0.00 (0)

PD: population doubling; n: number; AA: aberrations.

Table 2. Distribution of the types of structural chromosome aberrations.

Analvsed Total UNSTABLE AA STABLE AA OTHER AA
. nalyse
Cell Line PD Cells n AA/Cell fus/dicn  Acen AA/Cell nrt/i/mar AA/Cell esblctb n AA/Cell
Freq. (n) Freq. /del n Freq. Freq.
vHMEC 22 26 0.46 (12) 6 1 0.27 2 0.08 3 0.12
vHMEC 32 20 1.65 (33) 22 0 1.10 6 0.30 5 0.25
vHMEC-shp53 29 23 3.65 (84) 54 9 2.74 15 0.65 6 0.26
vHMEC-hTERT 76 46 0.17 (8) 0 0 0.00 8 0.17 0 0.00
VHMEC-shp53-hTERT 47 54 1.20 (65) 15 3 0.33 46 0.85 1 0.02

PD: population doubling; n: number; AA: aberrations.

Loss of p53 function may contribute to malignant progression by allowing the proliferation
of cells with increased genomic instability. To determine if this was the case in our vHMEC line,
a total of 23 VHMEC-shp53 cells were karyotyped at PD29, after shRNA infection (PD19), selection and
subsequent cell expansion (Table S3). Similar to late passage p53-proficient vVHMECs, no vHMEC-shp53
cell had a normal diploid karyotype (Table 1 and Figure 3A). However, the karyotype complexity
was more pronounced in cells lacking p53 function, as the number of structural aberrations per cell
increased extensively when p53 function was abrogated (3.65 vs. 1.65 aberrations/cell in vHHMEC-shp53
PD29 and vHMEC PD32, respectively; Kruskal-Wallis test, p < 0.0001) (Table 2 and Figure 3B,C).
Specifically, in p53-deficient vVHMECS, there was an increase in marker chromosomes, as the highly
reorganised karyotype made more difficult chromosome bands identification. The predominant
types of structural changes were fused chromosomes in the form of dic or tricentric, followed by
nrt and fragments, either centric or acentric. The analysis of the junction point of fusion events in
multicentric chromosomes also demonstrated the absence of telomeric DNA by PNA hybridisation
(Figure S1). Of relevance, the dicentric chromosomes in p53-deficient vHMECs were sometimes
accompanied by acentric fragments, the consequence of creating chromosome breaks, thus denoting
that telomere-shortening was not the only source for dicentric formation in this cell line. In addition,
given the major role of p53 in the prevention of tetraploidy by activating apoptosis [49,50], its absence
facilitated the generation and survival of tetraploid vHHMECs. Although the rise in the polyploid
population was not clearly envisaged through FACS analysis, probably by an accumulation of
tetraploid cells in G1 (Figure 4B), the oligoFISH analysis demonstrated a significant increase in
polyploid cells with the absence of p53 function when comparing both with young or aged vHHMECs
(Fisher’s exact test, p < 0.0001 and p = 0.0047, respectively) (Table 3 and Figure 4A). This data was also
supported by the fourfold increase in multinucleated interphase cells in compromised p53 cells as
compared to p53-proficient late passage VHHMEC (Fisher’s exact test, p < 0.0001) (Figure 5A).
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Figure 3. Cytogenetic analysis of the different cell lines. (A) Graph displaying the contribution of the
telomere status and p53 functionality in the presence of abnormal karyotypes in vHMEC-derived cell
lines. Statistical significance after Fisher’s exact test comparisons is shown. *** indicates p-values lower
than 0.001; (B) Distribution of the different types of chromosomal structural aberrations: unstable, i.e.,
fusions or dicentric chromosomes and acentric fragments; stable, i.e., non-reciprocal and reciprocal
translocations, isochromosomes, marker chromosomes and deletions; and other, i.e., chromosome and
chromatid breaks. Statistical significance after Kruskal-Wallis test and Dunn’s multiple comparison
post-test is shown. * indicates p-values lower than 0.05; *** indicates p-values lower than 0.001;
(C) Example of finite vVHMEC karyotypes. At PD22, young vHMECs show 45, XX, fus (2g;17q);
at PD32, aged vHMECs show 45, XX, fus (9q;12q), nrt (22q;14q). By contrast, the karyotype of p53
compromised VHMECs demonstrates the complexity of their karyotype. At PD29, vHMEC-shp53 show
40, X, dic (2p;?;12p), nrt (3p;?), dic (4q;7p), dic (10p;?), nrt (16q;?), tetrac (17q;22;X;20p), +ace, +csb.

It should be noted that the Phalloidin-DAPI analysis allowed the identification of an elevated
number of incorrectly aligned chromosomes at metaphase and lagging chromatin between segregating
complements during anaphase, as well as micronuclei and buds in interphase cells lacking p53
function (Figure 5B,C). These improper chromosome distributions might result in unequal chromatid
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segregation among daughter cells, thus constituting a prominent source of aneuploidy. Indeed,
centromeric-specific FISH scoring demonstrated an overall significant increase in chromosome number
aberrations in shp53-deficient vVHHMECs (Chi? test, p < 0.0001) (Figure 4A). In addition, these aneuploid
configurations were extremely high among the 4N fraction of vVHHMEC-shp53 cells (Fisher’s exact
test, p < 0.0001 and p = 0.0003, compared to young and aged vHMECS respectively) (Table 3 and
Figure 4A). These observations, together with the minor fraction of multipolar divisions observed,
suggest that extra centrosomes in p53-deficient tetraploid vHMECs induce transient multipolar
spindles that could significantly increase the incidence of merotelic attachments and chromosome
mis-segregation rates [51,52].

Table 3. OligoFISH analysis of centromeric specific probes for chromosome 6, 12 and 17.

Cells N N
Cell Line PD i ; 4N Fraction %
Analysed n Cells n Aneuploidy Cells n Aneuploidy
Freq. (n) Freq. (n)

vHMEC 22 392 362 0.06 (23) 30 0.37 (11) 7.65
vHMEC 30 414 353 0.13 (47) 61 0.52 (32) 14.73
vHMEC-shp53 29 430 334 0.14 (47) 96 0.71 (68) 2233
vHMEC-hTERT 132 846 841 0.05 (44) 5 0.00 (0) 0.59
VHMEC-shp53-hTERT 47 391 352 0.09 (32) 39 0.62 (24) 9.97

PD: population doubling; n: number.

As a whole, progressive telomere dysfunction in VHMECs concomitantly increased the
level of chromosomal aberrations, which further expanded in the absence of p53. Of relevance,
whereas chromosome aberrations in telomere-compromised vHHMECs predominantly affected specific
chromosomes (Tables S1 and S2), nearly all the chromosomes participated in structural genome changes
when p53 function was abolished (Table S3). Notably, all VHMECs either proficient or deficient for
p53 ceased proliferation around PD30 without the emergence of spontaneous immortalised cells,
thus indicating that abrogation of p53 function is insufficient to immortalise VHMECS, as has been
previously described [33].

2.3. Absence of CIN When hTERT Is Ectopically Expressed in p53-Proficient Young vHMECs

With the aim of generating pre-malignant immortalised cells, we ectopically expressed telomerase
in telomere-compromised vVHMECs. We assumed that if telomere-dependent BFB-cycles had begun,
immortalised cells would maintain some ongoing instability. However, the immortalisation of aged
vHMECs was not successful in this cell line as aged vHHMECs did not overcome the agonescence limit
(PD35) upon hTERT DNA virus delivery. Similarly, it was also not accomplished in late passages of
vHMECs derived from other donors (unpublished results). In contrast, ectopic expression of hTERT
was successful when infection took place at early passage vVHMECs (PD20). Even in the absence
of an antibiotic selection procedure, the cells resumed proliferation beyond the agonescence limit.
This observation, together with the corroborated hTERT expression by western blotting (Figure 2A),
confirmed that immortalisation had taken place.

Examination of the vHMEC hTERT-immortalised cells by cytogenetic analyses at PD76 showed
an elevated frequency of aberrant metaphases with an approximately diploid complement of
chromosomes (Table 1 and Figures 3A and 6) (Fisher’s exact test, p-value < 0.0001). In contrast to
telomerase-deficient cells, VHMEC-hTERT cells showed predominantly clonal numerical chromosomal
aberrations in the form of trisomy 20 alone (73.9%) or in combination with structural chromosomal
aberrations (10.9%) (Table S4). Consistent with vHMEC immortalisation before telomeres became
compromised, unstable aberrations such as fus or dic chromosomes were not observed (Figures 3B
and 6; Figure S2). The minor structural aberrations detected were nrt and deletions of unspecific
chromosomes. In agreement with our observations, chromosome 20 trisomy has been reported to
occur after ectopically hTERT expression in pre-stasis [53] and post-stasis HMECs [54,55], as well as
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in HMECs where p16INK4a was abrogated through shRNA, BMI-1 [56] or CDK4R%C mutation [57].
Moreover, these studies revealed the association of trisomy 20 with other chromosomal aberrations
such as partial or complete trisomy of chromosomes 1q, 5, 7, 8q, 13, 16 and 18 [53-57]. Indeed,
further karyotypic analysis of the VHHMEC-hTERT at PD130, revealed in addition to trisomy 20,
the gain of an extra marker chromosome 20 and an undefined marker chromosome (Figure 6) and/or
two nrt, one involving 1q and the other involving 3q.
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Figure 4. Analysis of chromosome number abnormalities. (A) Graph showing the frequency of
euploid and aneuploid 2N and 4N among VHMECs after hybridisation with centromeric specific
probes for chromosome 6 (CEP6), 12 (CEP12) and 17 (CEP17). Chi? test demonstrated a significant
increase in cells containing numerical aberrations (blue asterisks). Moreover, tetraploidisation events
significantly increased in finite vVHMECs with increasing telomere dysfunction and were aggravated
when p53 was compromised (Fisher’s exact test, red asterisks). Statistical significance after Fisher’s
exact test comparisons regarding 2N aneuploid and 4N aneuploid cells with asterisks in the same
colour code as the legend is shown, and only p-values lower than 0.0125 were considered significant.
** indicates p-values lower than 0.01; *** indicates p-values lower than 0.001. Representative images of
diploid and tetraploid cells with euploid and aneuploid configurations of tested centromeric probes
are depicted. Scale bar corresponds to 10 um; (B) Representative cell cycle profiles of vHHMEC cell
lines. FACs analysis also demonstrated the increase of polyploid cells concomitant with PDs in finite
vHMECs. Immortalisation of young vVHHMECs did not engender tetraploids, whereas immortalisation
of p53-compromised VHMECsS resulted in an average 10% proportion of cycling polyploids. Cell cycle
phases are marked and values indicated.
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OligoFISH analysis did not reveal abnormal chromosome distribution as a major characteristic
of early immortalised vHMECsS (Table 3 and Figure 4A), or the presence of polyploid cells (Table 3
and Figure 4). These observances thus corroborate the defined role of telomere dysfunction in the
generation of numerical chromosomal aberrations, as the stabilisation of the telomere length abolished
the presence of chromatin bridges (Figure 5B,C), the intermediate structures that act for the generation
of telomere-dependent CIN, as well as multinucleation events (Figure 5A).

As a whole, ectopic hTERT expression in young vHHMECs efficiently immortalised the cells before
telomere dysfunction triggered BFB-cycles. Telomerase immortalisation resulted in a relatively stable
karyotype, mainly displaying aberrations involving chromosome 20. Moreover, during the 140 PDs
the cells were continuously cultured in vitro, they evolved karyotypically, accumulating further
chromosome aberrations that could be needed to improve the survival of the immortalised cells.
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Figure 5. Analysis of abnormal morphologies in VHMEC derivatives. (A) Graph showing the
percentage of binucleated, trinucleated cells and cells with more than three nuclei in interphase
vHMECs. Finite vVHMECSs showed a significant increase in binucleation with increasing telomere
attrition, and this effect was exacerbated when p53 was compromised. Representative images of
a binucleated cell are shown. Scale bar corresponds to 10 pm; (B) Analysis of abnormal nuclear
morphologies, i.e., chromatin bridges (CB), nuclear buds (B) and micronuclei (MN) among the
different cell lines. Micronuclei and buds were the most frequent aberrations in vHMECsSs suffering
telomere-dysfunction, followed by chromatin bridges. These aberrations were extremely abundant
when p53 was compromised in finite VHHMECs. Representative images of interphase cells displaying
abnormal nuclear morphologies are shown. Scale bar corresponds to 10 um; (C) Abnormal segregating
figures were also observed in mitotic cells. In particular, chromatin bridges (CB) were abundant in
those cells showing telomere-dysfunction. Likewise, those cells deficient for p53 were more prone to
display lagging chromatin (LC). Representative images of abnormal anatelophases are shown. Scale bar
corresponds to 10 um. In the three graphs, statistical significance after Fisher’s exact test comparisons
is shown with asterisks in the same colour code as the legend. Only p-values lower than 0.0125
after Bonferroni p-value correction, were considered significant. ** indicates p-values lower than 0.01;
*** indicates p-values lower than 0.001
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2.4. Reduced But Persistent CIN in p53-Deficient vHMECs Immortalised with h'TERT

Given that hTERT immortalisation of vVHMECs only resulted when lentivirus infection took
place in young cells (PD20), we were concerned about the possibility of immortalising p53-deficient
vHMECs. If the p53 loss and immortalisation events occur prior to attaining critically short
telomeres, it is probable that p53 loss may not necessarily confer genomic instability. Indeed,
abrogation of p53 in young VHMEC-hTERT from a different donor did not result in increased
cytogenetic aberrations (unpublished results). Likewise, normal vHMECs stably transduced first
with hTERT and afterwards with a shRNA against p53, proliferated indefinitely and did not show
gross chromosomal alterations [58]. In addition, this also occurred in HCT116 colon tumour-derived
immortal human cells [59].

Infection of vVHMEC-shp53 with hTERT lentiviral particles at PD24, successfully resulted in
immortalised p53-deficient vHHMECs. Validation of hTERT expression was assessed by western
blotting (Figure 2A) but the confirmation became clear through the active proliferation of
vHMEC-shp53-hTERT beyond the crisis barrier and by the absence of a dying morphological
appearance (Figure 1). Whereas finite p53-deficient vVHMECsS stopped proliferation at approximately
PD32, the vVHMEC-shp53-hTERTs maintained continuous proliferation with no morphological signs
of growth defects until at least PD74 (Figure 1). On the whole, although p53 deficiency was
not required for immortalisation, inactivation of p53 promoted immortalisation of more aged
telomere-compromised vVHMECs (PD20 vs. PD24).

The cytogenetic analysis of the VHMEC-shp53-hTERT at PD47 demonstrated that immortalisation
significantly reduced the percentage of cells displaying chromosome aberrations when compared
to p53-deficient vVHMECs (Fisher’s exact test, p = 0.0004) (Table 1 and Figure 3A), but almost
two thirds of cells still displayed an abnormal karyotype. When compared to vHHMEC-hTERT,
the p53-deficient immortalised cells presented a significantly-increased number of aberrations per cell
(Kruskal-Wallis test, p < 0.0001) (Figure 3B). In addition, stabilisation of telomere ends in a p53-deficient
settling statistically increased the frequency of stable chromosome aberrations when compared to
non-immortalised cell lines (Fisher’s exact test, p = 0.0007; p < 0.0001 and p < 0.0001, when compared
to young, aged and shp53-deficent vVHMECSs respectively) (Table 2). These aberrations were mainly
non-reciprocal translocations, some of which were fixed on the karyotype and were shared by different
cells (Table S5). In addition, although unstable aberrations significantly decreased with immortalisation
(Fisher’s exact test, p = 0.0008) (Figure 3B), fused chromosomes (16.67% of metaphases) and centric
or acentric chromosome fragments, signs of ongoing BFB-cycles, were still detected in immortalised
p53-deficient vVHHMECs (Figure 6 and Figure S3). Accordingly, western blot analysis of phosphorylated
H2AX at 5139 (y-H2AX), a hallmark of DSBs [60], confirmed a remaining fraction of DSBs in
vHMEC-shp53-hTERT after a-Tubulin normalisation (Figure 2A). Whereas y-H2AX levels increased in
finite vVHHMECSs concomitant to PDs and to p53-deficiencies, a reduction of DSBs was observed when
p53-proficient vVHMECs were immortalised with hTERT (Figure 2A). Of relevance, the level of y-H2AX
signalling in vVHHMEC-shp53-hTERT was comparable to that of telomere-compromised vHHMECsS,
thus validating the cytogenetic results. The presence of DSBs was further evaluated by the presence
of the activated form of the serine/threonine kinase Chk2, a key component of the DNA damage
response. Chk2T% was detected in all cell lines except the immortalised ones, thus demonstrating a
reduction in DNA damage with cell immortalisation (Figure 2A).

Persistent chromosomal aberrations were not only of a structural type, as numerical aberrations
were also scored in the VHHMEC-shp53-hTERT cells. Immortalisation of p53 deficient vHHMECs
significantly reduced the overall frequency of numerical aberrations, as well as the frequency of
polyploids (Chi? and Fisher’s exact test, p < 0.0001) (Figure 4). Even so, the survival of unstable
tetraploids was promoted as there was a significant fraction of polyploid cells with aneuploid
configurations in comparison with vHHMEC-hTERT (Table 3 and Figure 4A).

In sum, hTERT expression in p53-compromised vHMECs after BFB cycles are initiated results in
the generation of an immortalised cell line that exhibits low CIN levels. This remaining CIN results in
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the heterogeneous presence of structural, numerical and ploidy aberrations and is visualised by the
exhibition of anaphase bridges as well as lagging chromatin during cell division.
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Figure 6. Karyotypes of immortalised p53-proficient and deficient vHHMECs. Immortalisation of young
vHMECS resulted in few chromosomal aberrations; the karyotype shown at PD76 is 47, XX, del (10p),
+20. When the immortalised vVHMECs were again karyotyped after 54 PDs (PD130), in addition
to trisomy 20, two clonal marker chromosomes were observed. By contrast, immortalisation of
p53-compromised VHMECsS resulted in the accumulation of stable and unstable structural chromosome
aberrations. Two karyotypes are shown: (i) 46, XX, nrt (9p;?), nrt (12p;?), dic (21p;?) and (ii) 45, XX,
idic (7p;7p), +7, dic (20p;?), tric (22q;?;?), —21.

3. Discussion

In vivo studies in the mouse have revealed the constraining or promoting role of telomeres in
cancer development. This dual capacity depends on the genetic context where dysfunctional telomeres
occur, as highlighted by their enhanced tumorigenic potential when p53 is co-deleted [17,18,61].
Besides that, telomerase reactivation in the setting of a pre-existing telomere-induced genome instability
period is required to actively drive carcinogenesis [19]. In humans, the finding of highly recurrent
activating mutations in the hTERT gene promoter [1], together with widespread p53 mutations in
cancer [62], provide support for the idea that circumvention of a telomere-p53 checkpoint is also
essential for carcinogenesis in humans.

In the breast, short telomeres and widespread genomic instability can first be observed in
premalignant lesions such as ductal carcinoma in situ (DCIS) [20,22], a stage where the p53 and Rb
pathways are usually inactivated [63-65], suggesting that these lesions develop from cells expressing
insufficient telomerase for telomere length maintenance. Cultured human mammary epithelial cells
(HMECsS) derived from cosmetic reductions are used to provide a better understanding of the molecular
mechanisms and interactions involved in breast cancer development. Seminal studies by Stampfer
laboratory defined a model for senescence barriers in cultured HMECs that evidenced the unique
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features of breast human cells. HMECs obtained from tissue explants proliferate for a few PDs before
entering a growth plateau. Nevertheless, and in contrast to most epithelial cells, HMECs possess
the ability to overcome this barrier owing to p16"™X4 promoter inactivation [29]. Subsequently,
vHMECsSs resume proliferation for additional PDs until progressive telomere dysfunction concomitantly
generates an increasing level of chromosomal aberrations that ultimately becomes lethal to the cell [30].
Specifically, studies in vVHHMECs derived from different donors have illustrated how the formation
of dicentric chromosomes set in motion BFB-cycles, a mechanism capable of producing rapid and
widespread changes in gene dosage as well as complex structural rearrangements [31,46,48,66,67].
In this study, and coincident with these observations, an enhanced complexity of the karyotype
occurred in the finite and p53-competent vHMECs as PDs increased, presumably because of
concomitant telomere attrition. Although the telomere length was not monitored and could be a
limitation of the study, PNA telomeric FISH analysis in the finite VHHMECs demonstrated a gradual
increase of chromosomes with shorter telomeres, most likely compromised, throughout the cell culture.
Moreover, the abrogation of p53 function in these cells resulted, as already reported [68], in a higher
accumulation of aberrations per cell and, in a growth defect at earlier times than p53-proficient
vHMECs. Moreover, the abrogation of p53 function in these cells resulted, as already reported,
in a higher accumulation of aberrations per cell [68] and in a growth defect at earlier times than
p53-proficient vVHMECsS. Collectively, the autocatalytic nature of BFB-cycles during rampant telomere
attrition massively scrambles the genome yielding a wide range of lesions. Notably, the abrogation of
p53 likely exacerbated short-telomere driven instability by increasing the fraction of structural and
numerical chromosomal aberrations per cell, but specifically promoting the incidence of tetraploids.
Strikingly, unstable tetraploid cells are believed to contribute to oncogenesis [69,70]. The enhanced
tumorigenic capacity of tetraploid cells [69-75] could be expedited by their increased tolerance to
chromosome mis-segregation events [76]. In this scenario, it is envisaged that telomere dysfunction
may trigger genomic instability by fuelling rearranged karyotypes where structural, numerical and
ploidy aberrations coexist. Eventually, the cumulative effect of centrosome-clustering on the preceding
unstable polyploids could lead to further cellular genome remodelling that might contribute to
epithelial carcinogenesis. Rare immortalisation events, probably arising due to the generation of
additional errors during the genetic instability period, have occasionally been documented [77-79].
Nevertheless, the extensive reorganization and ongoing CIN, in the telomere-compromised vHMEC
lines studied ultimately threatened cell viability as both p53-proficient and deficient vHMEC finally
enter a growth plateau without the emergence of immortal outgrowths. This is in accordance with
the described evidence that the extent of mutations cannot increase endlessly without adversely
affecting cell fitness [80-82], and implies the existence of a threshold of genomic instability that the cell
could tolerate [83].

It is speculated that a brief, or at least transient, episode of genomic instability offered by
dysfunctional telomeres would avoid the persistent mutator phenotype that hampers cell proliferation,
but might allow for the appearance of some rare advantageous mutations that would be selected
and eventually favour neoplastic progression. Among them, telomerase reactivation in those highly
reorganised cells would somehow reduce genome instability to a level compatible with the rescue of
the cellular fitness, thus providing a route for transformation. With the aim of generating pre-malignant
immortalised vVHMECsSs, we ectopically expressed telomerase catalytic subunit in p53-proficient and
deficient cells. Human telomerase is minimally composed of two components, the telomerase reverse
transcriptase (hTERT) protein and the telomerase RNA template component (hTR). In addition,
given that hTR is ubiquitously expressed, hTERT is considered the rate-limiting component that
determines telomerase activity. The attempt to immortalise telomere-compromised aged vHMECs was
unsuccessful, but hTERT expression in young vHMECs before BFB-cycles were set in motion resulted in
immortalised cells with a stable karyotype that mainly displayed aberrations involving chromosome 20.
These aberrations have been observed in a variety of immortalised epithelial cells such as oesophageal,
nasopharyngeal, bronchial, ovarian surface, uroepithelial or Meibomian gland among others [84-88].
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Since immortalisation, in those studies, was induced not only through hTERT expression but through
HPVEG6E? or SV40 virus [84-88], the non-random occurrence of chromosome 20q gains strongly
suggests that this genetic aberration contributes to the cellular immortalisation process. By contrast,
hTERT expression in telomere-compromised and already reorganised p53-deficient vVHHMECs was
sufficient to sustain cell viability beyond the agonescent/crisis limit, but at the cost of reducing
their intrinsic chromosome instability. Nevertheless, more than half of the hTERT immortalised
vHMEC-shp53 cells still showed an abnormal karyotype, displaying both structural, numerical and
ploidy aberrations. Notably, even though hTERT overexpression promoted a shift of chromosome
aberrations towards stable-type, stabilisation of telomere ends did not, in any case, completely
abolish the presence of unstable aberrations. Specifically, dicentric and tricentric chromosomes,
as well as acentric fragments and deleted chromosomes, were evidenced in the metaphase plates of
VHMEC-shp53-hTERT cells. Furthermore, the presence of lagging chromatin as well as chromatin
bridges during cell division denoted actively ongoing BFB cycles and the more likely evolution of
the karyotype.

As a whole, our results demonstrate that hTERT overexpression provides a route out of telomere
crisis, as stabilisation of telomere ends rescued cellular fitness. However, only the immortalisation of
cells that have progressed through a period of telomere-dependent CIN resulted in evolving karyotypes
containing both fixed and random chromosomal aberrations. This persistent but reduced CIN would
allow for further genome complexity and would thus facilitate the acquisition of the mutations needed
to ultimately transform cells to malignity. Consistent with this, the generation of potentially neoplastic
cells will occur when telomerase reactivation takes place after CIN has been triggered and before it
reaches an intolerable level that leads to cell extinction. If this happens, telomere-dependent induced
CIN can play a significant role in the generation of the karyotypic aberrations and the genomic
instability observed in human breast carcinomas.

4. Materials and Methods

4.1. Cell Lines

Post-stasis variant human mammary epithelial cells (VHMECs) were obtained from Cell
Applications Inc. (San Diego, CA, USA). vHHMECs were cultured with serum-free MEpiCM
medium supplemented with MEpiCGS and penicillin/streptomycin (all from ScienCell Research
Laboratories, Carlsbad, CA, USA), or with M87AX [89]. Growth conditions were 5% CO, and
37 °C. Culture population doublings (PDs) were calculated using the formula: PD = PDjyjy;41 + logp
(Nfina1/ Ninitial), where Nipitia1 is the number of viable cells plated, and Ny, is the number of viable
cells harvested.

4.2. Lentiviral Vectors, Lentivirus Production and Transduction

The lentiviral construct for p53 short hairpin RNA (shp53 pLKO.1 puro) was from Dr Bob
Weinberg (Addgene plasmid #19119) and the hTERT lentivirus was supplied by the Viral Vector
Facility, CNIC, Madrid, Spain. To generate lentiviral particles, the psPAX2 and pMD2.G plasmids
together with the plasmid containing the gene of interest, were introduced in HEK 293T packaging
cells using Calphos Mammalian Transfection kit (Clontech, Mountain View, CA, USA). Supernatants
were collected at 48 and 72 h post-transfection and concentrated using Amicon 100,000 centrifugal
filter units (Merck-Millipore, Burlington, MA, USA).

4.3. Western Blotting

Proteins were extracted with 2% SDS, 67 mM Tris HCI (pH 6.8) containing protease and
phosphatase inhibitors. Protein extracts were sonicated twice at 25% amplitude for 15 s, boiled at
95 °C for 15 min and centrifuged at 20,000 g for 10 min. Proteins were quantified using the
BCA method and absorbance was read at 540 nm with a Victor3 spectrophotometer (PerkinElmer,
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Waltham, MA, USA). The proteins (30 ug) were separated using 10% acrylamide or 10% Bis-Tris
gels (Life Technologies, Carlsbad, CA, USA, ThermoFisher Scientific, Waltham, MA, USA) at
35 mAmp and transferred onto nitrocellulose membranes at 30 V. Membranes were blocked with
5% non-fat milk or BSA. Primary antibodies used were: rabbit anti-hTERT (Rockland, 600-401-252S),
rabbit anti—p53515 (ThermoFisher Scientific, 14H61L24), mouse anti-p53 (ThermoFisher Scientific,
DO-1), rabbit anti-Chk2T68 (Cell Signalling, 2661, Danvers, MA, USA), mouse anti-Chk2 (Millipore,
05-649) and mouse anti-yH2AX (Upstate; 07-164). The specificity of the hTERT antibody was validated
in primary human mammary epithelial cells derived from reduction mammoplasty tissue at passage
2 (data not shown). Furthermore, mouse anti-a-Tubulin (Sigma, B-5-1-2, St. Louis, MO, USA) was
used as loading control. Primary antibodies were incubated overnight at 4 °C. Secondary anti-mouse
or anti-rabbit horseradish peroxidase (HRP) conjugated antibodies were used and incubated for 1 h
at room temperature. Chemiluminescent detection was performed using HRP solution and luminol
(Millipore), and images were acquired using Chemidoc, processed with Quantity One software and
analysed with ImageLab™ 6.0.0 (BioRad, Hercules, CA, USA).

4.4. Drug Treatments

DSBs were generated in vHHMECSs and derivatives through exposure to the radiomimetic drug
Bleocin™ (Calbiochem, Merck-Chemicals, Darmstadt, Germany), a bleomycin compound, at a final
concentration of 2.5 pg/mL. The drug was washed out after 1 h exposure and the cells were left to
recover for 60 min before protein extraction.

Colcemid (GIBCO) at a final concentration of 50 ng/mL was added to asynchronously
proliferating p53-proficient and deficient vVHHMEC-hTERT cells. After 24 h of colcemid exposure,
the cells were collected and fixed in 70% ethanol and kept frozen until FACS processing. Additional
experiments consisted of 48 h colcemid treatment before fixation.

4.5. Obtaining Metaphase Cells and End-to-End Fusion Scoring Criteria

Exponentially-growing vVHHMEC cell lines were exposed to colcemid (0.5 pug/mL) for 2 h.
Cells were trypsinised, swollen in 0.075 M KCl and fixed in methanol:acetic acid (3:1). Cell suspensions
were dropped onto clean slides and stored at —20 °C until use. For end-fusion scoring purposes,
slides were first stained with DAPI. Then the metaphase plates were captured, and the karyotype was
performed by reverse DAPI staining, which results in a reproducible G band-like pattern that allows
for accurate individual chromosome identification before the chromosomes become swollen by the
denaturation step. Afterwards, the slides were hybridised with the PNA probes and the metaphases
were relocated to analyse the telomere and centromere status of each chromosome. A fusion event
was considered when the connection between chromatids (1 or 2) was verified on the initial DAPI
stained image. This procedure reduces the possibility of end-fusion events being confused with mere
alignment of chromosomes.

4.6. In Situ Fluorescence Hybridisation

Telomere and centromere PNA-FISH: Metaphase spreads were hybridised with pantelomeric
(Rho-(CCCTAA)3, PE Biosystems, Foster City, CA, USA) and pancentromeric (FITC-AAACACTC
TTTTTGTAGA, Panagene, Daejeon, South Korea) PNA probes. Denaturation took place at 80 °C
for 3 min and hybridisation was performed at 37 °C for 2 h in a humid chamber. Afterwards,
slides were washed twice with 70% formamide for 15 min, followed by three TNT (Trizma Base
50 mM, NaCl 150 mM and Tween-20 0.25%) washes for 5 min. Dehydrated slides were counterstained
with DAPL

OligoFISH: Interphase nuclei spreads were treated with pepsin-HCl at 37 °C for 10 min, post-fixed
with formaldehyde-MgCl, and denatured with 70% formamide at 74 °C. Specific centromeric probes
for chromosomes 6 (Gold DY539), 12 (Red DY590) and 17 (Green DY490) (Cellay, Inc., Cambridge, MA,
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USA) were hybridised for 2 h in a humid chamber followed by one 5 min wash with 0.2 x SSC — 0.1%
SDS at 50 °C and a 2 x SSC wash. Cells were dehydrated and counterstained with DAPL

4.7. DAPI and Texas Red-X Phalloidin Staining

For the analysis of abnormal nuclear morphologies in interphase or mitosis, cells were cultured
on coverslips and fixed with 4% paraformaldehyde for 10 min at 37 °C and rinsed twice in phosphate
buffer solution (PBS). Then, cells were permeabilised with 1% Triton X-100 at room temperature during
10 min, rinsed briefly and stained for 5 min in 1 uL solution of Texas Red-X-Phalloidin [200 IU/mL]
(Molecular probes) in 1 mL 1 x PBS — 0.1% Tween20-0.5% foetal calf serum. After two or more washes
with PBS, coverslips were allowed to dry and counterstained with DAPI.

4.8. Fluorescent Microscopy and Fluorescent Images

Fluorescent staining was visualised under an Olympus BX60 microscope equipped with
epifluorescent optics and a camera (Applied Imaging, Inc., Grand Rapids, MI, USA). The fluorochromes
were visualised through simple filters and images were captured and analysed using Cytovision
software (Applied Imaging, Inc.).

4.9. Flow Cytometry

For cell cycle analysis, the cells were harvested and fixed in 70% ethanol and kept at —20 °C
until processing.

The fixed cells were permeabilised with 1 x PBS — 1%Triton X-100 solution and stained
with propidium iodide solution (PBS — 1% Triton X-100, propidium iodide 45 pg/mL, and RNase
0.2 mg/mL) before cytometric processing. Analysis was performed under a FACSCalibur (Beckton
Dickinson, Franklin Lakes, NJ, USA). Sample excitation was done with a 488 nm laser and a minimum
of 10,000 events were collected per sample. Single cells were gated first by forward scatter (FSC) and
side scatter (SSC), and DNA content of single cells was measured on FL3 (670 nm long pass filter) and
plotted vs. number of cells. The data were analysed with BD FACSDiva software v7.0.

4.10. Statistical Analysis

Data analysis was carried out with GraphPad Prism version 5 software (GraphPad Software Inc.,
LaJolla, CA, USA). Normality distribution was tested by Saphiro-Wilk normality test. Data sets were
compared using Chi? test, Fisher’s exact test, and Kruskal-Wallis test followed by Dunn’s multiple
comparison post-test. p-values less than 0.05 were considered significant. When multiple comparisons
were made, the Bonferroni p-value correction was applied and only p-values lower than 0.0125 were
considered significant.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com /1422-0067/19/7/
2078/s1.
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