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Abstract: Numerous proteins are molecular targets for drug action and hence are important in drug
discovery. Structure-based computational drug discovery relies on detailed information regarding
protein conformations for subsequent drug screening in silico. There are two key issues in analyzing
protein conformations in virtual screening. The first considers the protein’s conformational change
in response to physical and chemical conditions. The second is the protein’s atomic resolution
reconstruction from X-ray crystallography or nuclear magnetic resonance (NMR) data. In this latter
problem, information is needed regarding the sample’s position relative to the source of X-rays. Here,
we introduce a new measure for classifying protein conformational states using spectral representation
and Wigner’s D-functions. Predictions based on the new measure are in good agreement with
conformational states of proteins. These results could also be applied to improve conformational
alignment of the snapshots given by protein crystallography.
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1. Introduction

Proteins are flexible biomolecules whose conformations change in response to physical and
chemical conditions. However, protein functions depend on their specific conformation. A protein’s 3D
conformation is determined by the primary sequence of amino acids [1]. Knowing the relation between
protein fluctuational motion and its sequence can be used to design de novo dynamics of proteins and
provide putative conformations for drug targets by accessing information about transition states [1].
Predicting protein motion is a computational challenge. Some conformational search algorithms use
a coarse graining representation of the protein molecule [2–4] and employ search methods such as
elastic network modeling [5–10], morphing [11,12], or Normal Mode Analysis [13,14]. Other methods
apply motion planning algorithms used in robotics to find a pathway to protein conformations [15–17].
Other methods combine coarse graining and motion planning [18]. Finding a quantitative measure
that can be reliably used to classify conformational states of a protein is important for both virtual
screening in general and structure-based drug design (SBDD) in particular [19]. The most frequently
used experimental method to determine protein conformation is X-ray crystallography [20], which is
only applicable when the given protein can be crystallized. The pattern of diffraction of an X-ray is
used to determine the protein’s atomistic structure. One of the important factors in protein-protein
and protein-ligand binding is geometry matching.

In this paper, we introduce a simple mathematical measure to classify protein conformations,
which is defined in reciprocal space and uses the corresponding structure factors of the given protein.
Reciprocal space has advantages over real space since we can compare two proteins with different
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numbers of atoms using the same dimensions in reciprocal space, i.e., reciprocal space is independent
of protein sizes [21]. This can allow for the classification of different conformations from the data
obtained, e.g., by X-ray free electron laser (XFEL), of a protein with unknown structure before
reconstructing it. One of the issues with XFEL is known as the diffract-and-destroy problem [22–24] in
which X-rays irradiate during a few femtoseconds a sample before it is destroyed, so that different
samples are needed to have a sufficient number of snapshots to reconstruct a protein as a single
nanoparticle. On the other hand, each protein sample could have different orientations, conformations,
or configurations in other samples. Thus, information about the conformation of snapshots is necessary
for a proper reconstruction of the protein data from its images [25].

2. Results and Discussion

To prove the reliability of our method based on MED we examine below three different synthetic
datasets. The first dataset is a simple shape-simulated dataset of non-structured 12-mer peptides,
the second is a simulated protein dataset and the third dataset is a simulated X-ray diffraction dataset
of ADK.

Simple shape dataset. To show the robustness and reliability of MED we first use a simulated
conformational dataset for shapes ranging from an open to a closed conformation, and two examples
out of 61 cases analyzed are shown in Figure 1. Formula (1) gives the set of {Clmn} for each of these
conformations. We can compute MED by selecting the largest eigenvalue of the “d” matrix from
Formula (3) for each shape. The MED values are shown in Figure 2, where the abscissa gives the
number of shapes. Shape #1 is totally closed and shape #61 is the most opened shape. MED values
decrease when the conformations of shapes vary from close to open.

Protein dataset. The MED values obtained confirm the prediction regarding the corresponding
conformations. We now perform the second test by examining conformations between quasi-real data
to the protein structures, and use the data generated by MOE software of Chemical Computing Group
Inc. (available online: http://www.chemcomp.com/). We have created a library of 4-mer peptides for
surfaces with different characterization, which is the starting point for finding longer (more closed)
peptides, which can recognize and bind to a given surface with high affinity and specificity. These data
have been obtained by molecular dynamics (MD) simulations for 4-mer peptide sequences. We have
first computed structure factors and then produced the distance matrix in order to find the MED for all
44 conformations of non-structured 12-mer peptides (called s1, s14, s16 and s31). For example, we see
that the MED for s14-3 is µi = 0.6827 and it is closed, while for s1-4 peptide MED is µj = 0.3155 and
it is open. In Table 1, we present the MED values for all 44 conformations of non-structured 12-mer
peptides (which are called s1, s14, s16, and s31).
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Table 1. The names of the different conformations of peptides generated by MOE software and
the corresponding values of their MED. Larger numbers correspond to a more closed (longer)
peptide conformation.

Peptide Name MED

s1-17 0.41669
s1-18 0.44192
s1-21 0.3754
s1-1 0.46476

s1-10 0.46306
s1-11 0.46238
s1-12 0.5023
s1-13 0.39675
s1-14 0.47616
s1-15 0.48602
s1-16 0.43416
s1-19 0.45545
s1-2 0.40972

s1-20 0.48793
s1-3 0.50093
s1-4 0.31545
s1-5 0.47582
s1-6 0.46336
s1-7 0.38409
s1-8 0.36499
s1-9 0.47234

s14-1 0.65987
s14-10 0.63324
s14-11 0.62796
s14-2 0.49089
s14-3 0.68266
s14-4 0.67186
s14-5 0.63556
s14-6 0.67026
s14-7 0.5799
s14-8 0.65054
s14-9 0.65645
s16-1 0.46471
s16-2 0.56308
s16-3 0.46227
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Table 1. Cont.

Peptide Name MED

s16-4 0.53976
s16-5 0.44666
s16-6 0.38378
s16-7 0.56239
s31-1 0.47829
s31-2 0.50418
s31-3 0.4668
s31-4 0.44994
s31-5 0.42765

Figure 3 shows the 44-peptide backbone images with their MED values sorted from small to large
values. The larger MED corresponds to the more closed (longer) peptides. This figure is consistent
with closed and open conformation assignments.
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Diffraction snapshots dataset. One of the main issues in the reconstruction of the biological systems
from X-ray scattering snapshots is that some information, which is known in crystallography, is
unknown to the biological system, e.g., the structure’s orientation. Conversely, information exists in
the biological system’s reconstruction, e.g., conformation, which does not exist in crystallography,
since only one sample may be used in crystallographic measurements while a biological system such a
protein may involve many samples in a statistical ensemble. Hence, a large number of XFEL snapshots
are combined with different conformations and unknown orientations. Thus, before reconstruction, we
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should cluster these data and then use the reconstruction methods that use X-ray diffraction patterns
such as crystallography.

In the third test of our method, we use the dataset simulated by MD of the unfolding of ADK [26],
which contains 12,500 diffraction snapshots simulated from 100 conformations, with each conformation
assuming 125 orientations about one axis. The coordinates of ADK [27] from E. coli in the open state
(Protein Data Bank entry: 4AKE) were placed in a spherical droplet of water and simulated using
NAMD software [27]. Figure 4 shows a typical diffraction snapshot of this dataset. We should first
complexify this dataset by taking successively the inverse Fourier and then its Fourier transform for
each snapshot. Having the complex form of a snapshot, we then obtain a distance matrix and its
largest eigenvalue, MED. Figure 5 illustrates the MED for these 12,500 snapshots. These values are
separated among a hundred islands (conformations) so that each island with 125 snapshots represents
a conformation.
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To perform the required computations, one needs several hundred megabytes of memory and
a computation time of about 950 s for all of 12,500 snapshots of this dataset by using a CPU-i3 with
4GB RAM. The three tests show that MED is a reliable and low-computational cost measure for the
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prediction of conformational states of proteins. It is especially useful to cluster these patterns before
having the protein’s structure obtained from X-ray diffraction in the dataset.

In the time-resolved X-ray crystallography methods, for structure reconstruction we need to have
the crystal’s orientation in crystallographic measurements. In the corresponding biological assays,
due to significant effects of radiation damage one needs to use replicate samples [28]. Hence, we need
more information on the protein system, such as its conformational states. Hence, we must classify
snapshots in conformational states, orientations, etc., in order to solve the problem. There exist some
methods to modify diffraction experiments such as probe-pump-probe, etc. [29–32]. MED can classify
conformational states using snapshots obtained from X-ray diffraction from biological samples and it
does not require the numbers of atoms to be the same in all cases.

Working in reciprocal space with structure factors has substantial advantages such as dependence
on the topology and geometry of proteins and independence of the protein’s size [21]. Using the
spectral representation for classifying protein shapes has led to the introduction of a new measure,
MED. Here, MED has been used on three different sets. MED-based prediction has been shown in
good agreement with simulated data. MED can be used to study protein dynamics as a spectral
representation of time evaluation, and protein conformational state classification in the drug discovery,
reconstruction of protein structure from X-ray data, and also biological applications.

3. Method

The weighted similarity value (WSV) is an alternative to root-mean-squared deviation (RMSD)
that allows a similarity comparison between two proteins [21,33]. WSV has been defined as an
illustration of the Wigner-D function [34] by expanding the protein’s shape functions. Any compact
supported function can be expanded in terms of Wigner-D functions, Dlmn(α, β, γ), such as the protein’s
shape function, f (α, β, γ), with α, β, and γ as the Euler angles. Here, f (α, β, γ) is defined as the molar
mass of an atom located on the (α, β, γ) coordinate set and if there is no atom there, it is assumed
to be zero [33]. The expansion coefficients, Clmns, are unique for a given function, f (α, β, γ), and are
obtained by:

Clmn =
(2l + 1)

8π2

∫ ∫ ∫
f (α, β, γ) Dlmn

∗(α, β, γ) sin β dβ dα dγ (1)

It has been shown [35,36] that Clmn correspond to elements of the 3D Fourier transform of (α, β, γ).
In crystallography, the coefficient of the Fourier transform of a crystal shape function is called a
structure factor [37], hence Clmn represent the protein structure factors. Note that two shapes of
different sizes in real space have the same dimensions in reciprocal space in spite of having different
numbers of atoms [21].

In this paper, we use another advantage of working in reciprocal space, i.e., replacing a time series
by spectral representation in reciprocal space as a set of eigenvectors. This is a result of the Fourier
transform of the time derivative of a function, which is equal to the spectral of the Fourier transform of
the function:

ˆ(
∂g
∂t

)
= i ω ĝ (2)

where the hat
∧

-symbol over a function indicates a Fourier transform. The set: {ω} = {ω1, ω2, · · ·}
represents a spectral representation corresponding to the time series set {t} = {t1, t2, · · ·}. In fact,
one set of temporally connected conformations would give a single set of eigenvectors, i.e., one spectral
representation. Therefore, to observe change in conformation, such as during an unfolding of a protein,
one can divide the total event into shorter time-spans, each representing a time-average conformation.

Clmns belong to the complex space and can be embedded in the (NR × 2)-dimensional Euclidean
space as the following: {Real(Clmn), Imaginary(Clmn)} = {Ci1, Ci2}, and (i = 1, 2, · · ·NR), where NR
is the number of Clmns defined by choosing Lmax, i.e., maximum l in Dlmn(α, β, γ). Note that each
conformation has one corresponding structure factor. Then, we define distance matrices, {d}, as the
distance matrix between elements of structure factor related to a conformational state. By obtaining



Int. J. Mol. Sci. 2018, 19, 2089 7 of 9

the set eigenvalues of d matrix, i.e., {a}, we introduce a new measure to compare the different
conformations of a given protein by computing the largest eigenvalue:

µi = max{a} (3)

Here µi is the maximum eigenvalues of the distance matrix related to the ith protein’s
conformational state. If µi is larger than µj, it signifies a more closed conformation of the protein,
since length a in real space is proportional to 1/a in reciprocal space, where µ as a vector (column
matrix) with an N-element for N-conformational states and we call it the “maximum eigenvalue of
distance matrix” (MED). The MED value depends on the protein’s structure and it is unbounded. Thus,
if two protein structures are not temporally connected, the differences between the corresponding
MED-values are not significant. To compute MED for X-ray scattering from a single nanoparticle we
find the distance matrix by complexifying snapshots, which implies taking its inverse Fourier and then
Fourier transforming it.

The maximum eigenvalue plays an important role in data analysis [38–41], because the eigenvectors
define a basis for a vector and the corresponding eigenvalues are vector projection magnitudes in this
basis set. Thus, it implies the most effective base (eigenvector). In the dimensional reduction process
the largest eigenvalue indicates the most effective change occurring in its corresponding eigenvector.
This change could represent conformation, rotation, translation, dilation, etc. [26,42–45]. For protein
shapes, conformation is the most effective parameter in the snapshots, which is obtained by X-ray
diffraction, because a diffraction pattern depends on the distance between two atoms, thus, the largest
eigenvalue should best describe this change. Here, we use the reciprocal distance matrix between two
different conformations and find the largest eigenvalues, which describe the important conformational
change between the two shapes.
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