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Abstract: Polymer-based piezoelectric biomaterials have already proven their relevance
for tissue engineering applications. Furthermore, the morphology of the scaffolds plays
also an important role in cell proliferation and differentiation. The present work reports
on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a biocompatible, biodegradable, and
piezoelectric biopolymer that has been processed in different morphologies, including films, fibers,
microspheres, and 3D scaffolds. The corresponding magnetically active PHBV-based composites
were also produced. The effect of the morphology on physico-chemical, thermal, magnetic, and
mechanical properties of pristine and composite samples was evaluated, as well as their cytotoxicity.
It was observed that the morphology does not strongly affect the properties of the pristine samples
but the introduction of cobalt ferrites induces changes in the degree of crystallinity that could affect
the applicability of prepared biomaterials. Young’s modulus is dependent of the morphology and
also increases with the addition of cobalt ferrites. Both pristine and PHBV/cobalt ferrite composite
samples are not cytotoxic, indicating their suitability for tissue engineering applications.

Keywords: biomaterials; cobalt ferrites; poly(hydroxybutyrate-co-hydroxyvalerate); tissue engineering

1. Introduction

Tissue engineering aims to restore lost or damaged tissues or organs [1]. With this purpose, the
most common approach is the use of scaffolds capable of providing structural support for cells to
attach and differentiate into specific tissues [1,2]. Following a biomimetic approach, these scaffolds
must also provide biophysical stimuli emulating the native properties of the extracellular matrix (ECM)
and hence enhancing cell differentiation [1,3].
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The design of the scaffold is a complex process since it must accomplish several requirements,
namely to be biocompatible to avoid inflammatory responses and biodegradable so it will gradually
give place to new tissues [4,5]. The scaffold morphology is an important parameter since it should
mimic the structure of the native ECM, promoting differentiation into specific cell lines [1,2].
Thus, it must be tailored according to the application [3]. Tailored mechanical properties are also
important for the scaffold does not break during handling [4] and to mimic cell natural environment.
Therefore, the choice of the used material is the key factor to success. Some smart materials like
poly-L-lactic acid (PLLA) [6], polyvinylidene fluoride (PVDF) [7], polyhydroxybutyrate (PHB) [8],
and polyhydroxybutyrate-co-hydroxyvalerate (PHBV) [9] have been successfully used to produce
scaffolds. PVDF, PLLA, PHB, and PHBV are piezoelectric, producing local electric potentials upon
mechanical stimulation [10–12]. Many tissues in the human body show this property, such as skin,
bone, muscle, and tendon, thus, smart materials can also provide this stimulus capable of enhancing
tissue differentiation [13,14]. The application of smart materials enables the production of such stimuli
without the need for wires and power supplies via the mechano-electrical stimuli produced during
motion [15].

Among the different electroactive polymers, PHBV is of increasing interest. It is a co-polymer of
PHB from the polyhydroxyalkanoates (PHA) family, and shows large potential for tissue engineering,
due to its biocompatibility, bioactivity, and piezoelectric properties. It shows better mechanical
properties than PHB and is biodegradable [4,16], which represents an advantage with respect
to PVDF, the most used piezoelectric polymer for tissue engineering applications in different
morphologies [15,17].

In some applications, specific smart materials alone do not have all the needed/desired
properties for tissue regeneration, and polymer composites must be developed. In this way, the
combination of magnetostrictive nanoparticles and piezoelectric polymers offers the possibility
of developing magnetoelectric materials [18], that together with magnetic bioreactors allows the
generation of local potentials on the scaffolds, which can be advantageous for mimicking specific
environments and stimulate specific tissues regeneration [17,18]. These materials can convert
magnetic stimuli into electrical stimuli [19], producing local electric potentials upon magnetic
stimulation [20]. Magnetoelectric materials have shown its relevance in neural [21], bone [18,22],
and muscle [22] engineering.

In this work, magnetoelectric biodegradable and biocompatible composites are produced.
The magnetoelectric composite was developed combining cobalt ferrite particles (CFO) on a PHBV
matrix. These particulate composites show important advantages for applications when compared
to other magetoelectric composites, such as laminates [18,23] and allow the preparation of porous
scaffolds, fibers, films, and spheres. This work demonstrates that both PHBV and the magnetoactive
composite PHBV + CFO can be processed in the most common structures for tissue engineering
applications without changing the main physico-chemical characteristics of the polymer and maintain
its biocompatibility.

2. Results and Discussion

2.1. Morphological Characterization

PHBV and PHBV/CFO composites were processed into different morphologies by different
methods in order to obtain a wide range of morphologies suitable for tissue engineering applications.
The morphology of the samples, obtained by SEM images, is presented in Figure 1.

Figure 1 shows that both PHBV and PHBV/CFO composites can be successfully processed
into different morphologies such as films, random and aligned fibers, microspheres, and scaffolds.
The insets show the diameter distribution of fibers, microspheres, and the pore size of the porous scaffolds.

The presence of CFO nanoparticles is observed in the composite films (Figure 1b). The introduction
of CFO nanoparticles does not promote changes in the average thickness of the films (≈32 ± 0.9 µm).
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Random and aligned fibers with the absence of beads and with an average diameter of 4.4 ± 0.6 µm
and 1.7 ± 0.2 µm, respectively, were obtained by electrospinning (Figure 1c,d, respectively). Similar to
the films, no significant differences were observed in the morphology of the fibers before and after
CFO nanoparticle incorporation (Figure 1c–f).
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scaffolds. The histograms with the corresponding fiber, sphere, and pore diameters are presented as
figure inset.
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The histograms of Figure 1 show that the highest average fiber diameter is observed for randomly
oriented fibers with and without CFO nanoparticles. For the oriented fibers, lower average fiber
diameter is observed because the rotating collector promotes the stretching of the as-deposited fibers
on the collector, originating thinner fibers. It worth noting that the inclusion of CFO nanoparticles does
not promote changes in the surface morphology of the fibers or in their average fiber diameter,
with the average diameter of the randomly oriented and oriented fibers being 4.4 ± 0.7 and
1.4 ± 0.5 µm, respectively.

Neat and magnetic microspheres with a smooth surface and an average diameter ranging between
0.8 ± 0.2 µm (Figure 1g,h) were obtained by an oil-in-water emulsion procedure. Again, no significant
differences in microsphere diameter were observed when 10% wt of CFO nanoparticles were introduced
in the spheres.

Figure 1i,j show that PHBV and PHBV/CFO porous scaffolds can be obtained by the salt leaching
method with NaCl crystals as a sacrificial material. A highly porous microstructure is observed with
the presence of pores in the same range of the sacrificial material (262–370 µm) [24].

2.2. Physico-Chemical Properties

To evaluate possible physicochemical modifications in the properties of PHBV after the different
processing conditions and the inclusion of the CFO nanoparticles, FTIR-ATR, DSC, and TGA
measurements were performed.

Figure 2a shows the FTIR spectra of neat PHBV processed into the different morphologies.
The main characteristic absorption bands of PHBV are observed, namely the absorption bands in
the region of 826–979 cm−1 and the region of 1227–1478 cm−1, which are related to C–H stretching.
The absorption bands at 1057, 1133, and 1183 cm−1 are assigned to the C–O stretching [25,26] and the
absorption band at approximately 1720 cm−1 is associated with the C=O vibrational mode [25,26]. No
variations are observed, independently of the different processing conditions and morphologies.
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Figure 2. FTIR-ATR spectra of the (a) neat PHBV processing into different morphologies and (b)
PHBV/CFO film composites.

The FTIR-ATR measurements were also performed for the different morphologies with CFO
nanoparticles to evaluate the influence of the inclusion of the nanoparticles in the chemical structure of
PHBV. As a representative example, Figure 2b shows the FTIR spectra obtained for neat and PHBV
composite films. It is worth mentoning that no differences were observed in the absorption bands
of PHBV after the inclusion of the CFO nanoparticles, indicating that the CFO nanoparticles do not
present strong interaction with polymer chemical structure. Similar results were obtained for the fibers,
microspheres, and scaffolds.
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2.3. Thermal Analysis

The thermal characterization of neat PHBV and PHBV/CFO composites was performed by DSC
and TGA analysis.

Figure 3a shows the DSC thermograms of the different PHBV morphologies and PHBV/CFO
composite films. The melting temperature and the enthalpy associated to each endothermic peak is
presented in Table 1. All samples exhibit an intense endothermic peak between 160 ◦C and 180 ◦C
corresponding to the melting peak of PHBV [27]. The inclusion of CFO nanoparticles does not
induce relevant modification to this behavior (Figure 3b), the composite films showing a broad peak
corresponding to the melting temperature between 160–180 ◦C. Similar results were obtained for other
PHBV composites.

Int. J. Mol. Sci. 2018, 19,  5 of 15 

 

Figure 3a shows the DSC thermograms of the different PHBV morphologies and PHBV/CFO 

composite films. The melting temperature and the enthalpy associated to each endothermic peak is 

presented in Table 1. All samples exhibit an intense endothermic peak between 160 °C and 180 °C 

corresponding to the melting peak of PHBV [27]. The inclusion of CFO nanoparticles does not induce 

relevant modification to this behavior (Figure 3b), the composite films showing a broad peak 

corresponding to the melting temperature between 160–180 °C. Similar results were obtained for 

other PHBV composites. 

  

Figure 3. DSC thermograms for (a) different neat PHBV morphologies and (b) PHBV films and films 

composites. 

Table 1. Tm, ΔHm, and crystallinity degree of all PHB and PHBV composite samples. The associated 

error is ±2%. 

Sample Tm (°C) ΔHm (J·g−1) Xc (%) 

Film 174 82 56 

Film/CFO 177 70 48 

R fibers 175 98 67 

R/CFO fibers 177 67 46 

O fibers 177 65 45 

O/CFO fibers 179 79 54 

Microsphere 175 57 39 

Microsphere/CFO 174 57 39 

Scaffold 177 63 43 

Scaffold/CFO 182 61 42 

From the enthalpy of the melting peak, the degree of crystallinity (XC) of neat PHBV 

morphologies and PHBV composites was obtained by applying Equation (1). 

𝑋𝑐 =
𝛥𝐻𝑚

𝛥𝐻𝑚100 

 (1) 

where ΔHm is the area of the melting peak and ΔHm100 the enthalpy of 100% PHBV crystalline (146.6 

J·mol−1) [28].  

The degree of crystallinity of the different samples is presented in Table 1. All samples show 

degrees of crystallinity between 40% and 67%, being the largest degree of crystallinity is those of the 

films and the randomly oriented fibers (above 50%) and lower for the rest of the samples (40% and 

50%). These variations in the degree of crystallinity are related with the different crystallizations 

conditions corresponding to the different processing conditions and morphologies, and have been 

specifically explored in the literature for related systems [17] for fiber [13,29], sphere [30], scaffold 

[24,31], and film [32,33] morphologies. The inclusion of CFO nanoparticles induces a decrease of the 

degree of crystallinity for films and for random fibers, which indicates the CFO nanoparticles act as 

140 160 180 200

1 W.g
-1

1 W.g
-1

e
n

d
o

H
e

a
t 

fl
o

w
 (

W
.g

-1
) Fibre R

Fibre O

Film

Scaffold

Microsphere

a)

Temperature (ºC)

140 160 180 200

Film H
e
a
t 

fl
o

w
 (

W
.g

-1
)

Temperature (ºC)

Film CFO

e
n

d
o

0.5 W.g
-1

b)

Figure 3. DSC thermograms for (a) different neat PHBV morphologies and (b) PHBV films and
films composites.

Table 1. Tm, ∆Hm, and crystallinity degree of all PHB and PHBV composite samples. The associated
error is ±2%.

Sample Tm (◦C) ∆Hm (J·g−1) Xc (%)

Film 174 82 56
Film/CFO 177 70 48

R fibers 175 98 67
R/CFO fibers 177 67 46

O fibers 177 65 45
O/CFO fibers 179 79 54
Microsphere 175 57 39

Microsphere/CFO 174 57 39
Scaffold 177 63 43

Scaffold/CFO 182 61 42

From the enthalpy of the melting peak, the degree of crystallinity (XC) of neat PHBV morphologies
and PHBV composites was obtained by applying Equation (1).

Xc =
∆Hm

∆Hm100
(1)

where ∆Hm is the area of the melting peak and ∆Hm100 the enthalpy of 100% PHBV crystalline
(146.6 J·mol−1) [28].

The degree of crystallinity of the different samples is presented in Table 1. All samples show
degrees of crystallinity between 40% and 67%, being the largest degree of crystallinity is those of the
films and the randomly oriented fibers (above 50%) and lower for the rest of the samples (40% and 50%).
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These variations in the degree of crystallinity are related with the different crystallizations conditions
corresponding to the different processing conditions and morphologies, and have been specifically
explored in the literature for related systems [17] for fiber [13,29], sphere [30], scaffold [24,31], and
film [32,33] morphologies. The inclusion of CFO nanoparticles induces a decrease of the degree of
crystallinity for films and for random fibers, which indicates the CFO nanoparticles act as defects
during the crystallization process [34], also hindering spherulite growth [35]. Interestingly, the same
behavior is not observed for aligned fibers, where a slight increase is observed (~9%), contrary to
the observed in the literature with different polymers [34,36], which can be ascribed to the polymer
stretching and acceleration during the jet formation. The increase in the crystallinity degree observed
for oriented fibers composites can be attributed to variations in the stretching of the jet during the
electrospinning process, due to the modifications of the viscosity and electrical characteristics of
the solution.

TGA was performed to determine the thermal stability of the different PHBV morphologies and
the corresponding composites with 10% wt of CFO. Figure 4 shows the TGA curves of the different
PHBV samples as well as the corresponding first derivatives. The different PHBV morphologies
without CFO degraded with negligible residue, whereas the composite samples leave a residue of
approximately 10% that is related to the CFO content.

Thermal degradation of the different samples occurs in one weight loss step, the onset and
peak degradation temperature depend on the processed morphology. Comparing the degradation
temperature of the different PHBV morphologies (Figure 4a), it is observed that the scaffold
(degradation peak = 290◦) is thermally less stable than the rest of the samples, with a degradation peak
around 300◦. This difference should be attributed to the interaction of the polymer chains with the salt
during the preparation process and polymer crystallization, leading to a less stable polymer.

With respect to the polymer composites, the onset and peak degradation temperature of the
PHBV films with CFO is shifted towards lower temperatures. The same is observed for the other
composites. Thus, the higher thermal conductivity of the nanoparticles with respect to the polymer
matrix, lead to an earlier degradation process. Regarding this, contradictory results can be found in the
literature. Thus, it has been reported that the introduction of CFO in a PVDF polymer matrix leads to
an increase of the thermal stability [37], as well as the introduction of silver nanoparticles in PHBV [38].
Conversely, the introduction of organophilic attapulgite (MAT) in PHBV [39] and magnetite in chitosan
derivatives [40] lead to a decrease in the thermal stability of the nanocomposites.
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Figure 4. TGA thermograms and corresponding first derivatives for (a) different neat PHBV
morphologies and (b) PHBV films and films composites.

2.4. Magnetic Properties of the Composites

The quantification of the magnetic nanoparticle content of the composites was assessed by
VSM. Figure 5 shows the magnetization curves of the different PHBV composites determined at
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room temperature. The inset in Figure 5 represents the magnetization curve of CFO in the form of
nanopowder. The CFO nanoparticles reveal a hysteresis loop with coercivity at 24 emu·g−1 and a
maximum magnetization of 43 emu·g−1, at approximately 5000 Oe applied magnetic field [34].

As for CFO nanopowders, the magnetization of the composites increases with increasing magnetic
field until saturation, reaching a maximum saturation at approximately 20,000 Oe. By comparing the
maximum magnetization saturation of the CFO/PHBV composites, it is observed that it is higher
for the PHBV/CFO films (6.2 emu·g−1), followed by the scaffolds (Figure 5), which was attributed
to different nanofiller content, i.e., some fillers were not integrated in the samples, depending on the
processing conditions and sample morphology.
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Figure 5. Room temperature hysteresis curves for the CFO/PHBV composites.

2.5. Contact Angle Measurements

Wettability was also assessed for the different samples through sessile drop technique. The results
are present in the Table 2.

Table 2. Water contact angle measurement for the different samples (mean ± SD).

Film Film CFO Fibers O Fibers O CFO Fibers R Fibers R CFO Scaffold Scaffold CFO

90 ± 12◦ 96 ± 4◦ 103 ± 11◦ 119 ± 5◦ 125 ± 2◦ 128 ± 2◦ 97 ± 13◦ 106 ± 9◦

All samples show contact angles above 90◦, presenting an hydrophobic behavior [41]. Fibers show
higher contact angles reaching 128 ± 2◦ while films show the lowest, 90 ± 12◦. Differences in wettability
between samples are attributed to their morphological differences, which lead to different submicron
roughness. For example, the electrospinning technique generates roughness in the sub-micron range
since both fibrils and fiber separation are in this order of magnitude [42].

Moreover, the introduction of cobalt ferrite particles leads to an increase in the contact angle of all
the morphologies. This increase is associated with the increase of the surface roughness that is related
to the introduction of the particles in the polymer [43].

2.6. Mechanical Properties

The influence of the morphology on the mechanical response was evaluated by stress-strain
mechanical measurements for the films and fibers and compression for the scaffolds (Figure 6).
The corresponding Young’s modulus is presented in Table 3.

Comparing the Young’s modulus of the different morphologies, it is verified that the fibers present
higher values and the scaffolds the lower. Comparing random and oriented fibers, the lower values
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of Young’s modulus are explained by the fact that when the fibers are stretched, they are reoriented
along the stretching axis with low effective Young’s Modulus, contrary to the oriented fibers that are
already aligned along the stretching axis during processing. Therefore, the response of the material
and not the reorientation of the matt is measured. Regarding the incorporation of CFO in the polymer
matrix, a previous study has shown that the incorporation of CFO in fiber mats increases their Young’s
modulus [36] due to the electrostatic interaction between fillers and polymer chains and the proper
wetting of the fillers by the polymer. This is in agreement with the presented results, where the
introduction of particles leads to an increase of this value in all the morphologies.Int. J. Mol. Sci. 2018, 19,  8 of 15 

 

 

Figure 6. Mechanical stress-strain behavior of the different PHBV samples with and without CFO. 

Table 3. Young’s modulus of the different PHBV samples. Values shown as mean ± SD. 

Morphologies E (MPa) 

Film 17 ± 5 

Film CFO 27 ± 5 

Fibers R 1.1 ± 0.6 

Fibers R CFO 1.7 ± 0.5 

Fibers O 66 ± 41 

Fibers O CFO 83 ± 9 

Scaffold 8.9 × 10−3 ± 1.7 × 10−3 

Scaffold CFO 1.3 × 10−2 ± 6.4 × 10−4 

In relation to the PHBV scaffolds, compression cycles were performed in order to mimic the 

constant compressions to which the scaffold is subjected during in vivo or in vitro applications. The 

characteristics stress–strain curve of the PHBV scaffolds with CFO for compression assays at 10% 

along the different number of cycles is presented in the Figure 7b. The Young’s modulus of the PHBV 

scaffolds with and without CFO along the compression cycles is presented in Figure 7. It is observed 

that the Young’s modulus decreases from the first to the second cycle, being more pronounced in the 

scaffolds with CFO. After that, this value stabilizes and keeps relatively constant up to the 20th cycle. 

The incorporation of CFO in the PHBV scaffold leads first to an increase of the Young’s modulus 

value, however, with the increase of the number of compression cycles, this value becomes lower 

than that of the PHBV scaffold. The addition of CFO leads to some mechanical instability observed 

by the more pronounced drop in Young’s modulus in the first cycles. Compared with PVDF scaffolds 

prepared by the same technique, the PHBV scaffolds achieved a slightly smaller Young’s modulus 

values and both polymers exhibited a drop as cycles progressed [24]. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

50

100

150

200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

S
tr

e
s
s
 (

M
P

a
)

Strain (%)

 Fibers Random

 Fibers Random CFO

 Film

 Film CFO

 Fibers Oriented

 Fibers Oriented CFO

 

 

S
tr

e
s

s
 (

M
P

a
)

Strain (%)

Figure 6. Mechanical stress-strain behavior of the different PHBV samples with and without CFO.

Table 3. Young’s modulus of the different PHBV samples. Values shown as mean ± SD.

Morphologies E (MPa)

Film 17 ± 5
Film CFO 27 ± 5
Fibers R 1.1 ± 0.6

Fibers R CFO 1.7 ± 0.5
Fibers O 66 ± 41

Fibers O CFO 83 ± 9
Scaffold 8.9 × 10−3 ± 1.7 × 10−3

Scaffold CFO 1.3 × 10−2 ± 6.4 × 10−4

In relation to the PHBV scaffolds, compression cycles were performed in order to mimic the
constant compressions to which the scaffold is subjected during in vivo or in vitro applications.
The characteristics stress–strain curve of the PHBV scaffolds with CFO for compression assays at 10%
along the different number of cycles is presented in the Figure 7b. The Young’s modulus of the PHBV
scaffolds with and without CFO along the compression cycles is presented in Figure 7. It is observed
that the Young’s modulus decreases from the first to the second cycle, being more pronounced in the
scaffolds with CFO. After that, this value stabilizes and keeps relatively constant up to the 20th cycle.
The incorporation of CFO in the PHBV scaffold leads first to an increase of the Young’s modulus value,
however, with the increase of the number of compression cycles, this value becomes lower than that of
the PHBV scaffold. The addition of CFO leads to some mechanical instability observed by the more
pronounced drop in Young’s modulus in the first cycles. Compared with PVDF scaffolds prepared by
the same technique, the PHBV scaffolds achieved a slightly smaller Young’s modulus values and both
polymers exhibited a drop as cycles progressed [24].
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Figure 7. (a) Young’s modulus of the PHBV scaffolds with and without CFO along the compression
cycles and (b) characteristic stress–strain curves of the PHBV scaffolds with CFO for compression
assays at 10%.

2.7. Cytotoxicity Evaluation

The results of the effect of the extract of the different samples on cell viability are presented in
Figure 8. It is verified that all the samples do not show any cytotoxic effect (cell viability values higher
than 70%). Regarding the samples with CFO in the polymer matrix, it is thus deduced that the particles
are efficiently encapsulated, once these particles are cytotoxic [20,21]. In this way, these samples can be
used for biomedical applications, and more particularly for tissue engineering applications.
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Figure 8. Cytotoxicity assay of MC3T3-E1 pre-osteoblast cells in contact with the as-prepared extraction
media exposed to the different PHBV samples for 72 h (relative cell viability was presented as the
percentage of the negative control (n = 4 ± SD).

3. Materials and Methods

3.1. Materials

Poly(hydroxybutyrate-co-hydroxyvalerate), PHBV, (Mw = 460.64 g·mol−1; HV = 3%, mole fraction),
99% purity, was supplied from Natureplast and polyvinyl alcohol (PVA) (Mw = 13–23 g·mol−1), 98%
purity, from Sigma-Aldrich (Sintra, Portugal). Cobalt ferrite, CFO, nanoparticles with 35–55 nm particle
size were purchased from Nanoamor (Katy, TX, USA). Chloroform, 99% purity, and sodium chloride
(NaCl), 99% purity, were purchased from Fischer (Porto Salvo, Portugal). All materials were used as
received from the provider.
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It should be noted that the CFO filler content has been selected as 10% wt in order to provide
proper magnetic and magnetoelectric response as in analogous systems [30,44] without hindering the
mechanical properties and stability of the structure [36].

3.2. Preparation of the Polymer Solution

PHBV was dissolved in chloroform to achieve a polymer concentration of 10% (w/v). The solution
was prepared under constant magnetic stirring at 40 ◦C until complete dissolution of the polymer.
Magnetic composites were also prepared by the method above described: after the dispersion of
10% (w/w) of the CFO nanoparticles in the chloroform solution into an ultrasound bath during
1.5 h, to ensure good dispersion of the CFO nanoparticles and avoid nanoparticles agglomeration,
the PHBV optimized concentration of 10% (w/v) was added and magnetically stirred to complete
polymer dissolution.

These polymer solutions were used to process the PHBV into different morphologies: films, fibers,
and scaffolds.

3.3. Processing of PHBV into Different Morphologies

3.3.1. Films

PHBV and PHBV/CFO composite films were obtained by the solvent casting method. After
complete polymer dissolution, the samples were produced by spreading the solution on a clean glass
substrate followed by solvent evaporation at room temperature (Figure 9).
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Figure 9. Schematic representation of the processing of the PHBV films by solvent casting.

3.3.2. Electrospun Fibers

Neat and composite PHBV fibers were obtained by electrospinning (Figure 10). The polymer
solution was placed in a plastic syringe (10 mL) fitted with a steel needle with an inner diameter of
0.5 mm. The electrospinning process was conducted by applying a voltage of 20 kV with a PS/FC30P04
power source from Glassman with a solution feed rate of 1 mL·h−1. Random and aligned fibers were
collected using a grounded collecting plate or a rotating collector, respectively, placed at 15 cm from
the needle tip.
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3.3.3. Microspheres

Neat and magnetic PHBV microspheres were produced, according with the method previously
reported, after minor modifications [30] by an oil-in-water emulsion method (Figure 11). After complete
polymer dissolution 3% (w/v) in chloroform at 40 ◦C, the mixture was added to 0.5% (w/v) of PVA
solution in a ratio of 1:10. The emulsified suspension was mechanically stirred at 1000 rpm for 24 h at
room temperature, simultaneously with the evaporation of the chloroform. The resulting microspheres
were washed with ultra-pure water and air dried at room temperature.
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Figure 11. Schematic representation of the oil-in-water emulsion method for the preparation
of microspheres.

3.3.4. Scaffolds

PHBV and PHBV composite scaffolds were produced using the solvent casting via particulate
leaching method [2]. The polymer solution was added in a petri dish containing 10 g of NaCl and
mixed to obtain a homogeneous dispersion. The solvent was left to evaporate at room temperature.
After solvent evaporation, the scaffolds were washed thoroughly with distillate water for three days
until complete salt removal. The scaffold was then extracted from the petri dish and dried at room
temperature (Figure 12).
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Table 4 summarizes the different procedures for the processing of PHBV and PHBV/CFO
composites into different morphologies, as well as the corresponding nomenclature.

3.4. Characterization

The morphology of the PHBV and PHBV composites processed by the different methods
was analyzed by scanning electron microscopy (SEM) with a FEG-SEM Hitachi with a 3 kV beam
acceleration. The analyzed samples were previously coated with a thin gold layer using a sputtering
coating (Polaron, model SC502). The size of the prepared microspheres, fibers, and the pore size of the
scaffolds were examined by ImageJ software 1.50i.

Table 4. Procedures for the processing of PHBV and PHBV/CFO composites into different morphologies.

Nomenclature Composition Morphology Processing Technique

Film PHBV
Film Solvent-casting

Film CFO PHBV, CoFe2O4

Fibers R PHBV Randomly oriented fibers
ElectrospinningFibers R CFO PHBV, CoFe2O4

Fibers O PHBV
Oriented fibersFibers O CFO PHBV, CoFe2O4

Microspheres PHBV Microspheres Oil/water emulsionMicrospheres CFO PHBV, CoFe2O4

Scaffold PHBV
3D Scaffold Solvent-casting/particulate leaching

Scaffold CFO PHBV, CoFe2O4

Infrared measurements (FTIR) were performed in a Jasco FT/IR 4100 (Jasco, Easton, Maryland,
USA) apparatus in ATR mode from 4000 to 600 cm−1. FTIR spectra were collected after 64 scans with a
resolution of 4 cm−1.

Differential scanning calorimetry (DSC) measurements were performed in a Mettler Toledo
DSC822e apparatus (Mettler Toledo, Columbus, OH, USA) using a heating rate of 10 ◦C·min−1 under
a nitrogen purge (50 mL·min−1). The samples were cut into small pieces from the middle region of the
films and placed into 40 µL aluminum pans.

Thermogravimetry analyses were performed with a thermal analyzer TGA/SDTA 851e from
Mettler Toledo (Mettler Toledo, Columbus, OH, USA). The samples were heated between 25 and
900 ◦C, at a heating rate of 10 ◦C·min−1 under a nitrogen flow rate of 50 mL·min−1.

Mechanical measurements were performed on the different samples in a Shimadzu AG-IS
(Shimadzu, Kyoto, Japan) universal testing machine at a test velocity of 1 mm·min−1 and room
temperature. For the PHBV films and fibers, rectangular samples (25 × 10 mm) with a thickness
between 2–30 µm, measured with a digital micrometer Dualscope 603–478 (Fischer, Windsor, CT, USA),
were cut and the mechanical measurements were performed in the tensile mode with a loading cell of
50 N. For the PHBV scaffold, cylindrical samples approximately 6 mm diameter and 3.5 mm height
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were cut and the mechanical measurements were performed in the compression mode with a loading
cell of 500 N. The scaffolds were submitted to a compressive-strain cycle load up to 20 cycles at a
strain of 10%. The mechanical parameters were calculated from the average of triplicate measurements.
The modulus of elasticity (E) was determined in the linear zone of elasticity, between 0% and 1% strain,
using Hooke’s law, obtaining the effective Young’s modulus of the PHBV samples.

Contact angle measurements were performed at room temperature in a Data Physics OCA20
(Data Physics, Filderstadt, Germany) device using ultra-pure water as drop test liquid. The water
drops (3 µL) were deposited on the sample surface and analyzed with SCA20 software provided by
the same manufacturer. At least six measurements in each sample were carried out at different sample
locations and the average contact angle was taken as the result for each sample.

The magnetic behavior of the composite samples was evaluated at room temperature using a
MicroSense EZ7-VSM (MicroSense, Lowell, MA, USA) vibrating sample magnetometer (VSM) from
−18,000 Oe to 18,000 Oe.

3.5. Cytotoxicity Assay

Indirect cytotoxicity assays were carried out to test if the samples present cytotoxic
effect. This assay was adapted from ISO 10993-5 [5] and the cell viability estimated through
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

Polymer and composite samples were cut into 13 mm diameter discs. These samples were
sterilized by exposure to ultraviolet (UV) light for 1 h each side and washed five times in a phosphate
buffer saline (PBS) solution for 5 min. After that, the different samples were put into 24-well plates,
covered with 500 µL of Dulbecco’s modified Eagle’s medium (DMEM Biochrom, Berlin, Germany)
containing 1 g·L−1 glucose supplemented with 10% fetal bovine serum (FBS, Biochrom, Berlin,
Germany) and 1% penicillin/streptomycin (P/S, Biochrom).

Pre-osteoblastic cells, MC3T3-E1, were seeded at 2 × 104 cells·mL−1 (cultured with the same
DMEM) on 96-well plates and placed on a 5% CO2 controlled atmosphere with 95% humidity at
37 ◦C for 24 h. Then, the medium was removed from the 96-well plate and replaced by 100 µL of
medium previously in contact with the polymer/composite samples. After medium replacement, the
96-well plate was placed for an additional 72 h in standardized culture conditions as mentioned above.
A solution of 20% dimethyl sulfoxide (DMSO) was used for positive control. After this incubation
time, the cultured medium was again replaced by a 10% MTT solution on DMEM. After incubation for
2 h, MTT crystal was dissolved in DMSO and read at 570 nm on a spectrofluorimeter. Cell viability
was calculated according to Equation (2) [5].

Cell viability (%) =
Sample absorbance

Positive control absorbance
× 100 (2)

4. Conclusions

Different PHBV morphologies—film, fibers, microspheres, and scaffolds—with and without CFO
were successfully obtained. The physico-chemical, thermal, magnetic, and mechanical properties
of the PHBV pristine and composites samples were evaluated. All the samples produced present a
hydrophobic behavior. It is verified that the introduction of cobalt ferrites induces changes in the
degree of crystallinity: a decrease in the film (≈8%) and randomly oriented fibers (≈21%) and an
increase in the aligned fibers (≈9%). Relatively to the thermal degradation, it was observed that the
scaffold is thermally less stable than the others morphologies and that the CFO introduction leads to
an increase of the thermal stability. The mechanical properties depend on the morphology (the fibers
present higher values and the scaffolds the lower) and the addition of cobalt ferrites improves this
value, being more pronounced in the aligned fibers. Their cytotoxic behavior was also evaluated and it
was verified that all the produced samples were not cytotoxic, indicating their suitability for tissue
engineering applications.
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