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Abstract: Interleukin-6 (IL-6) is implicated in multiple biological functions including immunity,
neural development, and haematopoiesis. Recently, mounting evidence indicates that IL-6 plays a
key role in metabolism, especially lipid metabolic homeostasis. A working heart requires a high and
constant energy input which is largely generated by fatty acid (FA) β-oxidation. Under pathological
conditions, the precise balance between cardiac FA uptake and metabolism is perturbed so that
excessive FA is accumulated, thereby predisposing to myocardial dysfunction (cardiac lipotoxicity).
In this review, we summarize the current evidence that suggests the involvement of IL-6 in lipid
metabolism. Cardiac metabolic features and consequences of myocardial lipotoxicity are also briefly
analyzed. Finally, the roles of IL-6 in cardiac FA uptake (i.e., serum lipid profile and myocardial FA
transporters) and FA metabolism (namely, β-oxidation, mitochondrial function, biogenesis, and FA
de novo synthesis) are discussed. Overall, understanding how IL-6 transmits signals to affect lipid
metabolism in the heart might allow for development of better clinical therapies for obesity-associated
cardiac lipotoxicity.
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1. Introduction

Due to the functional pleiotropy of cytokines, interleukin-6 (IL-6) is involved in a variety of
biological processes. IL-6 was originally considered to play a role in acute phase of inflammation
since its expression is induced in response to viral infection [1–3], lipopolysaccharide [4], and other
cytokines [5,6]. Later, it was reported that IL-6 is necessary for switching from neutrophils to
monocytes [7–10], antibody production by B-cells [11], as well as recruitment and differentiation
of T-cells [12,13]. Moreover, other biological functions unrelated to immune system including neural
development [14], liver regeneration [15,16], and bone homeostasis [17] have been demonstrated.

Recently, emerging evidence suggests a key role of IL-6 in metabolism. Wallenius et al. reported
that IL-6 deficiency in mice results in the development of mature-onset obesity which is partially
reserved by intracerebroventricular IL-6 injection [18]. Furthermore, mice overexpressing IL-6 showed
reduced body weight which correlates well with decreased fat mass [19]. Of note, infusion of IL-6
leads to enhanced lipolysis in skeletal muscle and increased systemic fatty acid (FA) oxidation in
humans [20]. Taken together, these data indicate a link between IL-6 and metabolism—in particular,
lipid metabolism.

Normally, cardiac energy demands are largely met by FA β-oxidation [21]. However,
intramyocardial accumulation of lipid due to an imbalance between lipid uptake and oxidation
leads to cardiac dysfunction, which is termed lipotoxicity [22]. Consequently, FA deposits and its toxic
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metabolites elicit ER (Endoplasmic Reticulum) stress, mitochondria dysfunction, and apoptosis, thereby
impairing cardiac contractile function and predisposing to various cardiomyopathies (e.g., heart failure
and arrhythmia) [23]. However, little is understood about the role of IL-6 in cardiac metabolism and
lipotoxicity. The article reviews the importance of IL-6 in cardiac metabolic homeostasis and possible
underlying mechanisms, hoping to provide new insights into therapeutic potential of IL-6 in targeting
cardiac diseases caused by metabolic disorder.

2. The Role of IL-6 in Lipid Metabolism

Several lines of evidence suggest a role of IL-6 in metabolic control in humans (Table 1).
Acute elevation of IL-6 plasma concentration enhances lipolysis in skeletal muscle and stimulates
systemic FA oxidation [20]. Lyngsø et al. reported that IL-6 infusion leads to an increase of net
glycerol release from subcutaneous adipose tissue and stimulates FA as well as glycerol uptake in
splanchnic tissue in healthy humans, indicating that IL-6 promotes lipolysis in adipose tissue and
affects metabolism in splanchnic tissue [24]. Moreover, Carey et al. [25] and Pederson et al. [26]
showed that acute IL-6 treatment leads to increased lipid metabolism in vivo. Another study by
Hall et al. demonstrated that both high-dose and low-dose infusion of recombinant human IL-6
(rhIL-6) stimulate lipolysis and result in elevation of global FA oxidation [27]. Of note, no alteration
of plasma epinephrine, insulin, or glucagon was observed in the low-dose rhIL-6 infusion group,
supporting the conclusion that the increased lipolysis and fat oxidation are primary effects of rhIL-6
administration. Furthermore, IL-6 neutralizing antibody Actemra (tocilizumab) induces body weight
gain, hypertriglyceridemia, and hypercholesterinemia in humans [28]. Interestingly, carriers of IL-6
gene polymorphism G174C exhibit a trend towards increased plasma IL-6 levels which are correlated
with elevated plasma triglycerides (TG), very-low-density lipoprotein (VLDL)-triglycerides, and free
fatty acid (FFA) [29]. The lack of significance of IL-6 levels in this study might result from technical
difficulties in detecting both free IL-6 and that bound to carrier proteins.

The direct effects of IL-6 on metabolism are better elucidated by in vitro studies.
Abdominal adipose tissue from overweight and obese humans cultured with IL-6 alone exhibits
enhanced lipolysis [30]. Moreover, IL-6 treatment stimulates lipolysis in differentiated 3T3-L1 cells
with adipocyte-like phenotype from mouse embryonic 3T3 fibroblasts [26]. In addition, acute IL-6
treatment stimulates FA oxidation in the cell line of rat L6 myotubes [26]. Another study using primary
human skeletal muscle cells demonstrated that IL-6 treatment induces FA uptake and oxidation [31].
Taken together, the effects on metabolic homeostasis observed in these studies are more likely to be
exerted by IL-6 per se.

Studies involving rodents also implicate a role of IL-6 in metabolic regulation. IL-6-deficient mice
exhibit mature-onset obesity, with disrupted carbohydrate and lipid metabolism, which are partially
reserved by intracerebroventricular (ICV) injection of rat IL-6 [18]. These authors went further and
showed that chronic ICV injection of rat recombinant IL-6 reduces relative weight of mesenteric and
retroperitoneal fat pads, thereby suggesting the anti-obesity role of IL-6 [32]. Mice over-expressing
human IL-6 have less visceral fat when fed a normal diet and are free from high-fat-diet (HFD)-induced
obesity [33]. Direct delivery of murine IL-6 via adenoviral vector into rat hypothalamus results in
suppressed weight gain and reduction of visceral adiposity [34]. Furthermore, overexpression of
mouse IL-6 by gene transfer in obese mice induces loss of body weight which correlates with reduction
of fat mass and size of fat pads [19]. Interestingly, double-transgenic mice expressing both human IL-6
and human soluble IL-6 receptors (sIL-6R) exhibit more pronounced reduction of body weight and
decrease of global fat in comparison with single-transgenic mice expressing IL-6 or IL-6 receptors [35].
Given the above results, IL-6 is suggested to play an anti-obesity role in rodent metabolic homeostasis
(Table 2).

However, evidence against the anti-obesity role of IL-6 during HFD feeding has been reported.
Our group showed a significantly more pronounced increase in body weight in wild-type (WT)
mice in contrast to IL-6−/− mice [36]. However, Sadagurski et al. created transgenic mice with
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sustained expression of human IL-6 and found that human IL-6 prevents body weight gain during
HFD feeding [33]. Furthermore, Gregorio et al. failed to detect late-onset obesity or disturbed lipid
metabolism in IL-6−/− mice reported by Wallenius et al. [37]. Although it remains unclear, it is
suggested that mice age, genetic background, strain specificity, potentially different environmental
or dietary factors are likely to contribute to the discrepancy [36]. In addition, loss of body weight
as well as decreased adiposity are usually late-stage symptoms caused by type 2 diabetes. In our
study, impaired glucose tolerance and increased serum insulin level observed in IL-6−/− mice were
more severe than those in WT after HFD. Therefore, the anti-obesity effect of IL-6 deficiency during
HFD could be a secondary symptom during HFD-induced obesity. Taken together, current evidence
suggests that IL-6 is involved in metabolic regulation, especially lipid metabolism.

Table 1. The role of interleukin-6 (IL-6) in metabolic regulation in humans.

Subject/Description Treatment Observed Effects Reference

Human/healthy males rhIL-6 infusion for 4 h Increase of lipolysis in skeletal muscle;
Increase of systemic FA oxidation [20]

Human/healthy males IL-6 infusion for 2.5 h
Net increase of glycerol from subcutaneous
adipose tissue; Increased uptake of FA and
glycerol in splanchnic regions

[24]

Human/healthy males IL-6 infusion for 4 h Increased FA oxidation [25]

Human/males with T2D
vs. control rhIL-6 infusion for 3 h Increase of palmitate Ra and Rd in both

groups [26]

Human/healthy males IL-6 infusion for 3 h
Increase of serum FA levels;
Increased Ra of endogenous FA;
Enhanced systemic FA oxidation

[27]

Human/patients with
multicentric Castleman
disease

Treatment of humanized
anti-human IL-6 receptor
monoclonal antibody

Gain of body weight; Hypertriglyceridemia;
Hypercholesterinemia [28]

Human/healthy females
with G or C alleles at
position 174 of IL-6 gene

n.d.
Trend of increased plasma IL-6 levels and
elevated serum TG, VLDL-C and FFA in
IL-6 G174C polymorphism

[29]

rhIL-6, Recombinant human IL-6; FA, Fatty acid; Ra, Rate of appearance; Rd, Rate of disappearance; n.d., No data;
TG, Triglyceride; VLDL-C, Very-low-density lipoprotein cholesterol; FFA, Free fatty acid.

Table 2. The role of IL-6 in metabolic control in rodents.

Species/Description Treatment Observed Effects Reference

Mice/IL-6 KO n.d. Mature-onset obesity: Increased weight of
subcutaneous fat pad [18]

Mice/IL-6 KO; HFD Intracerebroventricular
IL-6 injection for 2 weeks

Decreased relative weight of mesenteric and
retroperitoneal fat pads; Suppressed body
weight

[32]

Mice/HFD; IL-6 transgenic
mice (with sustained release of
human IL-6)

n.d.
Decreased food intake; Increased energy
expenditure; Reduced visceral fat on normal
chow and free from HFD-induced obesity

[33]

Rat/male

Direct delivery of
recombinant
adeno-associated viral
vector expressing murine
IL-6 into hypothalamus

Suppressed weight gain and visceral adiposity [34]

Mice/HFD-induced obese
mice

Delivery of pLIVE-IL-6
plasmid expressing
murine IL-6

Reduction in body weight; Increased
expression of enzymes involved in FA
oxidation

[19]

Mice/Double transgenic mice
co-expressing IL-6 and soluble
IL-6 receptors

n.d. Reduced body weight; Decreased body fat [35]

Mice/IL-6 KO; female; HFD n.d. Decreased body weight gain and fat mass [36]

KO, Knock out; HFD, High-fat diet; n.d., No data.
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3. Cardiac Lipid Metabolism and Consequences of Lipotoxicity

Under normal oxygenated conditions, a continuously contracting heart requires a high energy
input which is primarily supplied by FA β-oxidation. Indeed, as much as 50–70% ATP generated in a
heart is derived from FA β-oxidation [38,39]. Several key enzymes of glycolysis including hexokinases,
phosphofructokinase (PFK), pyruvate dehydrogenase, as well as glucose transport are inhibited in
well-perfused cardiac muscle, although the glycolytic pathway is stimulated in hypoxic and anoxic
hearts [21] (Figure 1A).
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Figure 1. Schematic diagram of metabolism in cardiac myocyte. (A) Metabolism in normal
cardiomyocytes. Under well-oxygenated conditions, cardiac energy requirement is largely met by fatty
acid oxidation (~60%). Only a minor proportion (around 40%) is generated by glucose metabolism;
and (B) Consequences of cardiac lipotoxicity. The precise balance between fatty acid uptake and
oxidation is upset by metabolic disorders (i.e., HFD). Under these circumstances, excessive fatty
acid is accumulated in cardiomyocytes and leads to cellular injury (e.g., mitochondria dysfunction,
ER stress) and lipotoxicity, thereby predisposing to cardiac diseases (e.g., heart failure and arrhythmia).
Dashed arrow: multistep processes; Solid arrow: direct effects. FA, fatty acid; TAG, triacylglyceride;
GLUT-4, Glucose transporter type 4; TCA cycle, tricarboxylic acid cycle; HFD, high-fat diet; CD-36,
cluster of differentiation 36 (also known as fatty acid translocase).

The balance between cardiac FA uptake and β-oxidation is precisely maintained to ensure that no
excess FA is accumulated in myocardium. However, metabolic disorders including obesity and diabetes
tilt the balance towards enhanced uptake and/or reduced FA utilization [40,41]. Although excess FA
can be kept in the heart as triglycerides (TG), the storage capacity is limited. Excessive FA accumulation
is associated with dysfunction or even death of cardiomyocytes, which is termed as lipotoxicity [42].
Mitochondria dysfunction develops in hearts of ob/ob and db/db mice models. In these models,
mitochondria are characterized by reduced ATP production despite enhanced FA β-oxidation, thereby
suggesting mitochondrial uncoupling [43,44]. The impaired mitochondria coupling might result
from stimulation of mitochondrial uncoupling protein by reactive oxygen species, the production
of which is a marker of mitochondrial dysfunction [44]. Impaired cardiac insulin signaling due to
toxic lipid metabolites (e.g., diacylglycerol (DAG) and ceramide) is another consequence of cardiac
lipotoxicity [23]. Of note, cardiac insulin resistance in turn exacerbates lipotoxicity by disturbing
cardiac glucose metabolism and augmenting FA uptake and accumulation [45]. Moreover, cardiac lipid
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deposition leads to apoptosis of cardiomyocytes and consequent systolic dysfunction in Zuker diabetic
fatty rats [46]. Cardiac fibrosis develops following myocardial lipid accumulation, which increases the
risk of cardiac arrhythmia and failure [47]. Furthermore, cardiac hypertrophy and increased mortality
are linked to cardiac deposition of lipid in a transgenic mouse model overexpressing lipoprotein lipase
(LPL) when fed a HFD [48]. Taken together, ectopic lipid accumulation in the heart interferes with
myocardial function and thus predisposes to cardiovascular disease (Figure 1B).

4. The Role of IL-6 in Cardiac Lipotoxicity

Due to the central role of lipid in cardiac metabolism and the implication of IL-6 in lipid metabolic
regulation, it is important to discuss the potential effects of IL-6 on cardiac lipotoxicity and underlying
mechanisms. In this section, impacts of IL-6 on cardiac lipid supply, uptake, utilization, and de novo
synthesis are elucidated.

4.1. IL-6, Dyslipidaemia, and FA Transporters

The potential link between IL-6 and dyslipidemia has been demonstrated by several studies.
Since serum FA concentration is one of the major determinants of cardiac FA uptake rate [49],
dyslipidemia secondary to IL-6 abnormality is likely to facilitate excessive FA import which may
result in myocardial lipid accumulation and lipotoxicity. Our group noticed that IL-6 deficiency
leads to increased levels of circulating TG and total cholesterol in female mice when fed an HFD [36].
Moreover, long-term administration of humanized anti-IL-6 antibody Actemra (tocilizumab) results
in hypertriglyceridemia in human subjects and the severity appears to increase in a time-dependent
manner [28]. Furthermore, IL-6 deficiency impairs hepatic insulin signaling pathway in chow-fed mice
and exacerbates hepatic insulin resistance in mice fed HFD [50]. Since hepatic VLDL production is
enhanced in an insulin-resistant state, it is suggested that IL-6 deficiency induces increased circulating
TG concentration [51]. Elevated serum levels of TG and VLDL cholesterol were observed in IL-6−/−

female mice in comparison with WT female mice. However, no differences in plasma lipid profile
were reported in IL-6−/− male mice [18]. As stated above, these data could not be reproduced by
other groups and the underlying reasons remain unclear [37]. Moreover, the correlation between
IL-6 deficiency and dyslipidemia is challenged by one group reporting that IL-6 treatment is the
causative factor of dyslipidemia. These authors showed that acute infusion of recombinant human IL-6
results in elevated plasma FA concentration in healthy human subjects without affecting circulating
TAG levels [27]. The apparent discrepancy might result from experiment design in that long-term
IL-6 deficiency achieved by IL-6 knockout and short-term IL-6 infusion may elicit different cellular
responses, and thus may affect plasma lipid profiles differently. Taken together, current evidence
indicates that IL-6 abnormality may lead to dyslipidemia which predisposes to cardiac lipotoxicity,
although it remains unknown regarding which form (i.e., IL-6 excess or deficiency) is responsible and
further research is required.

Moreover, IL-6 deficiency upregulates expression of cardiac FA transporters. In comparison to
passive diffusion, the majority of FA taken up by cardiomyocytes is mediated by protein carriers
including fatty acid translocase (FAT/CD36), plasma membrane isoform of fatty acid binding protein
(FABPpm), and fatty acid transport protein (FATP) 1/6, among which FAT/CD36 contributes to
the translocation of 50–60% FFA [52,53]. Enhanced cardiac expression of FAT/CD36 was observed
in IL-6−/− mice with associated accumulation of biologically active lipids including FFA, DAG,
and ceramide [54]. Our group also noticed that cardiac FAT/CD36 mRNA levels increase during
HFD-induced obesity in both WT and IL-6−/− mice [36]. However, the elevation is significantly
more pronounced in IL-6−/− mice, suggesting that IL-6 deficiency enhances FAT/CD36 expression.
Considering the key role of FA transporters in cardiac lipid uptake, the regulatory effects of
IL-6 on FAT/CD36 expression may have a more essential role in myocardial lipid homeostasis.
In this regard, upregulated sarcolemmal FAT/CD36 expression is associated with enhanced cardiac
FA uptake, lipid accumulation, and consequent cardiac dysfunction [55,56], and inhibition of
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FAT/CD36 suppresses FA uptake [57], suggesting that upregulation of cardiac FAT/CD36 is a
key factor that contributes to lipotoxicity. Therefore, current data suggest that IL-6 deficiency may
augment myocardial lipid uptake by upregulating FAT/CD36 expression, which thereby aggravates
cardiac lipotoxicity.

Cardiac lipid overload impairs myocardial function and predisposes to lipotoxicity by several
mechanisms. FA is the endogenous ligand of Peroxisome Proliferator-activated Receptor (PPAR)
and its activation results in upregulation of enzymes involved in FA β-oxidation, with reciprocal
downregulation of enzymes for glucose metabolism [58]. The consequent stimulation of FA metabolism
and repression of glucose utilization may lead to ventricular hypertrophy and systolic dysfunction [58].
Furthermore, myocardial lipid deposits are converted into toxic metabolites (e.g., DAG and ceramide)
due to limited storage capacity. DAG activates protein kinase C θ (PKC θ) and results in cardiac insulin
resistance [59], which in turn potentiates cardiac lipotoxicity by repression of glucose metabolism and
concomitant stimulation of FA oxidation. Furthermore, PKC activation indirectly stimulates the NF-κB
(Nuclear Factor-κB) pathway which upregulates expression of enzymes involved in ceramide synthesis
(e.g., STP (serine palmitoyltransferase) and CerS (Ceramide synthase)) [60–62]. The resultant elevation
of ceramide levels in turn leads to apoptosis of cardiomyocytes and myocardial insulin resistance [23].
Taken together, recent studies indicate that accumulation of both FA per se and its metabolites as a
result of IL-6 deficiency negatively impacts cardiac function and leads to lipotoxicity (Figure 2).
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Figure 2. The role of IL-6 deficiency in intramyocardial fatty acid accumulation. IL-6 deficiency
upregulates CD36 which is the key protein carrier of fatty acid across plasma membrane,
thereby enhancing myocardial fatty acid uptake and accumulation. Moreover, IL-6 deficiency inhibits
CPT1 which is involved in fatty acid translocation into mitochondria, thereby exacerbating fatty
acid excess. Due to the limited storage capacity, fatty acid deposits are converted into toxic lipid
metabolites (e.g., DAG and ceramide) which result in cardiac insulin resistance and cellular apoptosis.
Taken together, fatty acid per se and its metabolites lead to myocardial lipotoxicity. Black arrows: direct
stimulatory effects or consequences of upstream factors; Red dashed arrows: multistep inhibitory
effects; Red solid arrows: direct inhibition. FA, fatty acid; HFD, high-fat diet; DAG, diacylglycerol;
CPT-1, Carnitine palmitoyltransferase I; IR, insulin receptor; IRS-1, insulin receptor substrate 1.

4.2. IL-6, PPAR & PGC-1α and Mitochondria

PPARs are nuclear receptors which are activated by various ligands including FA. Once activated,
PPARs undergo heterodimerization with retinoid X receptor and bind to PPAR response elements
present within the promoter region of target genes, thereby regulating their expression. PPARα and
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PPARβ/δ are highly expressed in cardiac muscle whereas PPARγ is present in abundance in adipose
tissue [63,64]. PPARα regulates expression of protein transporters and enzymes involved in FA uptake
and oxidation. PPARγ coactivator 1α (PGC-1α) is the coactivator of PPAR and has implications in
mitochondria biogenesis by stimulating various transcription factors including nuclear respiratory
factors-1 (NRF-1) and nuclear respiratory factors-2 (NRF-2) which in turn upregulate MTFA (also
known as Tfam or TCF6, mitochondrial transcription factor A). MTFA promotes replication and
transcription of mitochondria DNA (mtDNA) by interacting with proteins encoded by target genes
of NRF-1 and NRF-2, thereby facilitating mitochondrial biogenesis [65]. Endonuclease G (EndoG) is
another protein implicated in mitochondrial biogenesis by facilitating maturation of RNA primers for
DNA polymerase γ, thereby initiating mtDNA replication [66].

Several lines of evidence suggest the regulatory role of IL-6 in cardiac PPAR and PGC-1α
expression. PPARα protein levels in cardiomyocytes of WT mice are significantly higher than
those of IL-6−/− mice and a trend of decreased PPARα mRNA level in IL-6−/− mice was observed,
thereby suggesting a positive link between IL-6 and PPARα [67]. Our group also demonstrated
that IL-6 deficiency results in decreased mRNA levels of PPARα in mice during HFD feeding [36].
Deficiency of PPARα leads to downregulation of enzymes involved in FA β-oxidation and reduced rate
of FA oxidation [68], which in turn exacerbates intracellular accumulation of FA and lipotoxicity [69].
Furthermore, Bonda et al. showed that lower cardiac content of lipid droplets in IL-6−/− mice is
possibly due to FA esterification and storage as a result of PPARα deficiency [67]. Since intracellular
FA is deleterious to cardiac function due to its pro-apoptotic and protonophoric actions, lipid droplets
may protect cardiomyocytes against such toxic effects by sequestrating cytosolic FA and functioning
as an inert pool [70]. Therefore, it is postulated that downregulation of PPARα induced by IL-6
deficiency results in a reduced lipid droplets amount, thereby providing another mechanism of cardiac
lipotoxicity induced by IL-6 deficiency [67]. That said, cardiac FA storage capacity is limited and FA
accumulation beyond this threshold is thus toxic.

Moreover, cardiac PGC-1α levels decrease in both WT and IL-6−/− mice fed HFD. However,
the magnitude of reduction is less pronounced in WT mice, thereby suggesting that IL-6 partially
protects against suppressed expression of PGC-1α induced by obesity [67]. Decreased expression
of PGC-1α in Drosophila results in reduced inhibition of FA synthase, thereby leading to cardiac
TAG accumulation and lipotoxicity which are reversed by overexpression of PGC-1α [71]. Moreover,
activation of myocardial PGC-1α by overexpression of pyruvate dehydrogenase kinase 4 stimulates
FA β-oxidation and reduces lipid deposits during HFD feeding [72]. Furthermore, our group reported
a slight but significant increase in expression of genes related with mitochondria biogenesis (i.e.,
Pgc-1α, Endog, and Mtfa) in WT mice compared with IL-6−/− mice when feeding HFD, suggesting
that IL-6 deficiency impairs mitochondria synthesis [36]. As mitochondria are the sites where
FA β-oxidation occurs, enhanced mitochondria biogenesis potentiates FA oxidation capacity and
protects against lipid accumulation and lipotoxicity [73]. Recent studies in skeletal muscle revealed
that stimulation of FA β-oxidation alleviates intracellular lipid accumulation and enhances insulin
sensitivity [74,75], thereby suggesting similar protective roles of IL-6 in cardiac muscle. However,
inconsistency remains as other researchers demonstrated that enhanced FA β-oxidation results in
elevated production of acetyl-CoA which inhibits pyruvate dehydrogenase and eventually leads to
cardiac insulin resistance [76,77].

In addition, IL-6 deficiency negatively impacts mitochondrial oxidative phosphorylation
(OXPHOS). Mitochondrial cytochrome c (cyto c) is an indicator of OXPHOS efficiency as it is
involved in electron transport chain. HFD induces reduced expression of cardiac cyto c in both
WT and IL-6−/− mice; however, the decrease in IL-6−/− mice is more prominent than that
in WT mice, suggesting that IL-6 plays a protective role against mitochondria dysfunction [67].
One possible explanation is that IL-6 deficiency reduces PPAR and PGC-1α levels and this in turn
inhibits mitochondrial biogenesis, which results in decreased mitochondria amount as reflected
by lower cyto c levels and, hence, OXPHOS. However, no significant differences of mitochondrial
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protein cytochrome c oxidase and citrate synthase levels, which also reflect mitochondria amount,
were observed between WT and IL-6−/− mice when feeding HFD [67], thereby suggesting that the
preservative effects of IL-6 on cyto c are not secondary to the impacts on mitochondrial biogenesis.
Consequently, decreased OXPHOS leads to accumulation of acylcarnitine when FA β-oxidation
rate remains unaltered [78]. Acylcarnitine, a cardiac lipotoxin, consequently perturbs sarcolemmal
integrity and electrophysiological properties [79], thereby predisposing to cardiac dysfunction and
lipotoxicity (Figure 3).
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Figure 3. The role of IL-6 deficiency in mitochondria dysfunction. IL-6 deficiency negatively regulates
PPARα, which results in downregulation of proteins involved in mitochondria biogenesis (e.g., PGC-1α,
MTFA, and EndoG) and enzymes of fatty acid oxidation. Furthermore, IL-6 deficiency inhibits
expression of cytochrome c, which is involved in the electron transport chain, thereby resulting
in cardiac ATP deficiency. Taken together, IL-6 deficiency impairs mitochondria biogenesis as well as
fatty acid oxidation, which leads to cardiac energy deficit. Red arrows indicate inhibitory effects of
IL-6 deficiency and black arrows represent stimulatory effects or consequences of upstream factors.
FA, fatty acid; RXR, retinoid X receptor; PPAR, Peroxisome Proliferator-activated Receptor; PGC-1α,
PPARγ coactivator 1α; MTFA, mitochondrial transcription factor A; EndoG, Endonuclease G; Cyto C,
cytochrome C; ETC, electron transport chain.

However, discrepancy exists with regards to the positive correlation between IL-6 and PPAR.
Haffar and colleagues observed that palmitate treatment of rat neonatal cardiomyocytes induces an
early increase in PPAR activity measured by mRNA levels of PPAR target genes, which is followed
by a later decrease [80]. The reduction phase is supported by decreased protein levels of PPAR
and suppressed expression of its target gene Cpt1. Furthermore, palmitate-induced IL-6 expression
precedes the reduction of PPAR activity. Therefore, these authors proposed that palmitate acts as PPAR
ligand and thus is responsible for the early increase in activity, whereas IL-6 potentially contributes to
degradation of PPAR and the later decreased activity [80]. However, another possible explanation for
the later decrease is the existence of a negative feedback loop. In this regard, target gene expression
facilitates PPAR degradation, as evidenced by decreased PPAR protein levels during the later phase.
Although other studies involving adipocytes and hepatocytes demonstrated that IL-6 treatment leads
to reduced expression and activity of PPAR [81,82], it remains unclear until further validation is given
by studies using cardiomyocytes treated with IL-6. Taken together, current evidence suggests that
IL-6 preserves FA oxidation and mitochondrial biogenesis by maintaining cardiac PPAR and PGC-1α
expression, which is beneficial to cardiac function.

4.3. IL-6, AMPK and ACC

AMP-activated protein kinase (AMPK) is a key cellular energy sensor which is activated by
increased concentration of AMP. AMPK activation elicits various downstream events, with the net
effect being an enhanced production of ATP to meet energy demand. In myocardium, a high AMP/ATP
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ratio leads to phosphorylation of AMPK which in turn stimulates glucose uptake and glycolysis, as well
as FA oxidation [83]. One of the key targets regulated by AMPK is acetyl-CoA carboxylase (ACC) which
is responsible for catalyzing the conversion of acetyl-CoA to malonyl-CoA. Therefore, AMPK also
regulates FA de novo synthesis by phosphorylating ACC and thus controls the rate-limiting step
(i.e., conversion of acetyl-CoA to malonyl-CoA) in a series of reactions leading to FA production.

Several studies suggest the potential regulatory role of IL-6 in the AMPK–ACC axis. The majority
of these studies utilized non-cardiac tissue (e.g., skeletal muscle and adipose tissue) and indicate that
IL-6 treatment stimulates AMPK and ACC phosphorylation [84]. Exercise stimulates IL-6 synthesis in
contracting muscle and, therefore, the same effects were reproduced in gastrocnemius muscle from
exercise-trained mice [85]. However, no significant difference of AMPK phosphorylation levels was
observed in left ventricle cardiac tissue between WT and IL-6−/− mice after treadmill training [85].
That said, the possibility that the AMPK–ACC axis is regulated by cellular responses secondary to IL-6
cannot be excluded. In this regard, our group showed markedly enhanced phosphorylation of cardiac
AMPK and ACC in IL-6−/− mice in comparison with WT mice during HFD feeding [36]. As discussed
above, we noticed that IL-6 deficiency negatively regulates FA oxidation and mitochondrial biogenesis,
which in turn leads to depletion of ATP and accumulation of AMP. Thus, we propose that the
enhanced AMPK phosphorylation results from the indirect effects of IL-6 deficiency. Taken together,
current evidence suggests that IL-6 may regulate the AMPK–ACC axis in an indirect manner via
multiple downstream factors which converge on the AMP/ATP ratio, although additional research is
required (Figure 4).
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Figure 4. The role of IL-6 deficiency in the AMPK/ACC axis. IL-6 deficiency inhibits FA oxidation
and mitochondria biogenesis through multistep pathways, thereby resulting in cardiac ATP depletion.
Consequently, reduced [AMP]/[ATP] ratio activates AMPK and subsequently stimulates ACC which
in turn catalyzes the conversion of acetyl CoA to malonyl CoA. As this reaction is the rate-limiting step
in FA de novo synthesis, activation of ACC promotes TG pool expansion and lipotoxicity. Moreover,
malonyl CoA inhibits CPT1 which is responsible for translocation of activated FA into mitochondria for
oxidation, thereby exacerbating lipid accumulation and lipotoxicity. Black arrows denote stimulatory or
consequential effects of upstream factors and red arrows indicate inhibitory effects. FA, fatty acid; CPT1,
carnitine palmitoyltransferase-1 (CPT-1); AMPK, AMP-activated protein kinase; ACC, acetyl-CoA
carboxylase; TG, triglycerides.
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The proposed indirect activation of AMPK by IL-6 deficiency is suggested to play a protective
role for the heart against lipotoxicity. Inhibition of FA synthesis by ACC phosphorylation may reduce
synthesis of TG, and, in turn, the risk of cardiac lipid accumulation and consequent lipotoxicity.
Moreover, reduced production of malonyl-CoA due to ACC phosphorylation removes the inhibitory
effects on carnitine palmitoyltransferase-1 (CPT-1), which in turn enhances mitochondrial FA uptake
and oxidation [86,87], which protects cardiomyocytes against lipotoxicity by facilitating clearance of
intracellular lipid. One theoretical concern is that elevated AMPK phosphorylation was reported to
induce cardiac apoptosis [88] and autophagy [89]. However, these effects were not observed in our
study [36], thereby supporting the hypothesis that AMPK phosphorylation as a result of secondary
effects of IL-6 deficiency might play a beneficial role in protecting against cardiac dysfunction. Of note,
this may help explain the apparent discrepancy between the protective effects of IL-6 treatment in
mitochondrial biogenesis and function and the beneficial roles of IL-6 deficiency in TG pool expansion.
In this regard, IL-6 deficiency impairs cardiac FA consumption, while this in turn activates the intrinsic
protective mechanism by suppressing de novo FA synthesis.

5. Conclusions

The pleiotropic cytokine IL-6 is involved in lipid metabolism in both humans and rodents despite
its key role during inflammation. Since the high energy demand of a well-perfused heart is met
primarily by FA β-oxidation, IL-6 is implicated in cardiac lipotoxicity. The function of IL-6 in the
process of cardiomyocyte metabolic homeostasis is gradually becoming more clearly understood.
Current studies suggest that IL-6 deficiency results in cardiac lipotoxicity by deleterious effects on
intracellular lipid accumulation and, thus, generation of toxic lipid metabolites, thereby precipitating
cardiac dysfunction. However, many details in these processes remain unknown. Are there other
molecules that regulate IL-6 and its targets during HFD-induced cardiac lipotoxicity? Are there more
downstream molecules regulated by IL-6 in the process of cardiac FA oxidation? The molecular
mechanism of IL-6 in cardiac FA metabolism is not fully understood yet, but it is important to
address it due to the important roles in development of various cardiomyopathy. Decoding the
activators and effectors of IL-6 in cardiac lipotoxicity during HFD-induced obesity will provide cues
for treatment of obesity-associated dyslipidemia and cardiac lipotoxicity, and improve development of
novel drug therapies.
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IL-6 Interleukin-6
FA Fatty acid
rhIL-6 Recombinant human IL-6
VLDL Very low-density lipoprotein
HFD High-fat diet
sIL-6R Soluble IL-6 receptor
TAG Triacylglycerol
LPL Lipoprotein lipase
mtDNA Mitochondria DNA
TG Triglycerides
PPAR Peroxisome Proliferator-activated Receptor
PGC-1α PPARγ coactivator 1α
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FAT/CD36 Fatty acid translocase
WT Wild-type
FABPpm Plasma membrane isoform of fatty acid binding protein
FATP Fatty acid transport protein
PKC θ Protein kinase C θ

NRF Nuclear respiratory factor
AMPK AMP-activated protein kinase
CPT-1 Carnitine palmitoyltransferase-1
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