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Abstract: Abiotic stresses restrict the growth and yield of crops. Plants have developed a number
of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are
plant-specific transcription factors that play essential roles in multiple plant processes, including
abiotic stress response. At present, little information regarding drought-related WRKY genes in
maize is available. In this study, we identified a WRKY transcription factor gene from maize, named
ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll
protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region
of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic
acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h
after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis
by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines
was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under
drought stress. According to the results, the present study may provide a candidate gene involved in
the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in
response to abiotic stresses in maize.
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1. Introduction

Environmental stresses seriously affect plant growth and crop productivity. Meanwhile,
traditional crop breeding methods cannot meet the production demands of fine varieties with stress
tolerance. Cloning stress-related genes and using genetic engineering techniques to create new crop
varieties with higher stress tolerance has become a comparatively effective method. Based on the
evidence from previous research, transcription factors (TFs) may be promising potential stress-tolerant
candidates [1–6].
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As one of the largest TFs families in plants, WRKYs are characterized by their conservative
WRKY domains that can specifically recognize the W-box element in the promoter of its target genes,
and play an important role in gene transcription and regulation [7]. Depending on their structural
features, the WRKYs can be divided into three basic groups: group I (contains two WRKY domains),
group II and III (contain only one WRKY domain) [7]. The zinc finger motif in the WRKY domain
(C-X4-5-C-X22-23-H-X1-H or C-X7-C-X23-H-Xe-C, respectively) is different between groups II and
III [8].

As the first WRKY gene, SPF1, was identified in sweet potato [9], many WRKY TFs were identified
in different species, including Arabidopsis [10], rice [11], soybean [12], and barley [13]. Currently,
growing evidence has suggested that WRKY TFs play a central regulatory role in plant response
to abiotic stress [14,15]. For instance, the overexpression of Arabidopsis WRKY genes AtWRKY25,
AtWRKY26, and AtWRKY39 enhances heat tolerance, although the expression of AtWRKY25 and
AtWRKY26 is inhibited by high-temperature stress [16,17]. In addition, the pepper CaWRKY40
and soybean GmWRKY13/21/54 genes confer tolerance to different abiotic stresses in transgenic
plants [18,19]. Overexpressing the wheat TaWRKY33 enhanced the drought and heat tolerance of
transgenic Arabidopsis [20]. WRKYs are involved in various hormone signaling pathways in plants.
For example, AtWRKY40 can recognize the W-box regions of abscisic acid (ABA)-induced genes such
as AtABF4, AtABI4, AtABI5, AtDREB1A, AtMYB2, and AtRAB18, and suppress their expression [21].
Exogenous ABA can induce the expression of the cucumber CsWRKY46 gene, and overexpression of
CsWRKY46 can improve the cold resistance in transgenic plants by regulating related genes in the ABA
signaling pathway [22]. These findings confirm that WRKY TFs function as regulators in response to
hormones or abiotic stresses.

Because of the wide ecological potential and excellent characteristics of maize (Zea mays L.), it is
widely cultivated in the temperate zone and in the tropical belt. At present, the output of maize is
badly affected by decreased cultivated areas and the ever-worsening environment, especially water
scarcity. Even though numerous WRKY genes participate in plant abiotic stress responses, little
information is available on the mechanisms of WRKYs in maize. One-hundred and nineteen WRKY
genes from the maize B73 genome have been identified, which has made it possible to identify new
abiotic stress-related WRKY genes in maize [23]. In this study, the de novo transcriptome sequencing
of maize (SRP144573) under drought treatment was performed to investigate potential WRKY genes
related to maize drought tolerance. We identified a drought-responsive WRKY gene ZmWRKY40
(GRMZM2G120320), a member of WRKY group II. Overexpression of ZmWRKY40 promoted root
growth and reduced the water loss rates in transgenic Arabidopsis under drought stress. This study
may provide a foundation to understand the function of WRKY genes in maize drought response.

2. Results

2.1. De Novo Transcriptome Sequencing Analysis

To find maize stress-responsive genes under drought stress, three-leaf seedlings were dehydrated
on filter paper for 4 h, and then were collected for transcriptome sequencing analysis. The results
showed that the transcription levels of many genes have been changed after drought treatment
(Supplementary Figure S1A). Gene ontology (GO) analyses were used to classify the differentially
expressed genes (DEGs) into functional groups, and the DEGs were analyzed against the KEGG
database to further understand which pathways the DEGs may be involved in (Supplementary
Figure S1B,C). After selecting from the DEGs (the differentially expressed WRKYs are listed in
Supplementary Table S2), we chose the gene ZmWRKY40 (GRMZM2G120320) for the further study.

2.2. Phylogenetic Analysis of ZmWRKY40

The complete encoding sequence of ZmWRKY40 was 1191 bp, encoding 396 amino acids.
The ZmWRKY40 protein contained a conserved WRKYGQK domain, a coiled-coil domain (amino
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acids 102 to 142) at the N-terminus, and a zinc finger motif (C-X5-C-X23-H-X1-H) (Figure 1A). BLASTp
online tool was used to search for the homologous amino acid sequences of ZmWRKY40 in wheat and
Arabidopsis.
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Figure 1. Domain organization and phylogenetic analysis of ZmWRKY40. (A) Domain organization of
ZmWRKY40. (B) Phylogenetic relationship of ZmWRKY40 and other orthologs in different species.
Thirteen WRKY proteins from three species were divided into three groups. The phylogenetic tree was
produced using the neighbor-joining method with 1000 bootstraps by the MEGA5.0 program.

According to the criteria of classification of Ulker et al., (2004) [8] and multiple amino acid
sequence alignment, five proteins (TaWRKY2, -19; AtWRKY11, -44, and -20) belonged to group I and
each contained two WRKY domains; three proteins (AtWRKY64, -70 and TaWRKY1) belonged to
group III, five proteins were belonged to group II, and ZmWRKY40 was classified as a member of
group II (Figure 1B).

2.3. ZmWRKY40 Protein Was Localized in the Nucleus

To find out the sub-cellular localization of ZmWRKY40 fusion protein, the ZmWRKY40-green
fluorescent protein (GFP) recombinant was transformed into maize mesophyll protoplasts and the
p16318hGFP vector was transformed as a control. As shown in Figure 2, the p16318hGFP protein was
expressed in the whole cell, while the ZmWRKY40-GFP fusion protein was localized in the nucleus.
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Figure 2. Subcellular localization of ZmWRKY40. ZmWRKY40-green fluorescent protein (GFP)
recombinant and p16318hGFP control vector were transiently expressed in maize protoplasts. Scale
bars = 10 µm.

2.4. ZmWRKY40 Was Involved in Multiple Abiotic Stresses

Numerous cis-regulatory elements were identified by the online database PLACE (available
online: http://www.dna.affrc.go.jp/PLACE/) (Table 1). As shown in Table 1, the promoter region of
ZmWRKY40 contained various abiotic stress-related elements, such as ABA-responsive element (ABRE),
MYB, gibberellin (GA)-responsive element (GARE), and W-box, which suggested that ZmWRKY40
may function in abiotic stress response.

Table 1. Putative cis-elements in the ZmWRKY40 promoter.

Elements Number Sequence Function

ABRE 6 ACGTG/ACGTSSSC/MACGYGB ABA- and drought-responsive elements

MYB 2 WAACCA/YAACKG/CTAACCA/
CNGTTR/AACGG/TAACAAA ABA- and drought-responsive elements

GARE 2 TAACAAR GA-responsive element
ATC-motif 1 TGCTATCCG Light-responsive element
AuxRe-core 1 GGTCCAT Auxin-responsive element

W-Box 1 TTTGACY/TTGAC/CTGACY/TGACY SA-responsive element

ABA—abscisic acid; ABRE—ABA-responsive element; GA—gibberellin; SA—salicylic acid; GARE—GA-
responsive element.

In this study, we investigated the response of ZmWRKY40 to various abiotic stresses by
quantitative real-time PCR (qRT-PCR). The results showed that ZmWRKY40 was induced by drought,
high-temperature, NaCl, and ABA stresses, while it was not affected by low temperature (Figure 3).
The expression of ZmWRKY40 peaked (more than 10-fold) after 1 h of drought treatment. Under salt
stress, the transcript of ZmWRKY40 peaked (8.87-fold) at 2 h, and then declined rapidly to a level
similar to the control. Under high-temperature and exogenous ABA treatments, the transcript levels of
ZmWRKY40 were up-regulated and peaked at 2 h (3.08-fold) and 12 h (3.38-fold), respectively.

http://www.dna.affrc.go.jp/PLACE/
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Figure 3. Expression patterns of ZmWRKY40 under drought (A), NaCl (B), high-temperature (C),
low-temperature (D), and exogenous ABA (E). The vertical ordinates represent fold changes and the
horizontal ordinates represent treatment times. Error bar represent standard deviations (SD). The data
represent means± SD of three biological replications. Different letters in bar graphs indicate significant
differences at p < 0.05. ABA—abscisic acid.

2.5. ZmWRKY40 Enhanced Drought Tolerance in Transgenic Plants

WT was used as the background to transfer the PBI121-ZmWRKY40. Three T3 transgenic
Arabidopsis lines overexpressing ZmWRKY40 were selected to be analyzed. Under normal conditions,
no differences were observed in seed germination rates between WT and transgenic plants (Figure 4).
In the presence of 4% and 8% PEG6000, the germination rate of transgenic seeds was significantly
higher than WT (Figure 4). Likewise, the transgenic lines and WT seedlings had little difference
in total root length under normal conditions (Figure 5). When exposed to 10% PEG6000, total root
lengths of transgenic lines were longer than the WT seedlings after cultivating for seven days, although
the growth of both transgenic and WT plants was repressed by PEG6000 (Figure 5). In the seedling
stage, there was no significant difference between transgenic and WT plants (Figure 6). However,
the transgenic lines were stronger than WT after drought treatment, the survival and water loss
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rates of transgenic lines and WT plants during drought treatment were measured, and the transgenic
lines showed higher survival and lower water loss rates than those of WT plants (Figure 6). Other
stress treatments including NaCl treatment in the seedling stage and stomatal apertures experiment
under ABA treatment were also carried out, but the ZmWRKY40-overexpressing plants exhibited no
significant difference under salt and ABA stresses.
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Figure 4. Germination of transgenic Arabidopsis lines under drought stress. Seeds were incubated at
4 ◦C for three days followed by 22 ◦C for germination. Seeds from three independent transgenic lines
with ZmWRKY40 were grown on MS medium and MS added 4% or 8% PEG6000 (A). The germination
rate of seeds grown on MS medium and MS medium with 4% or 8% PEG6000 (B). All the data represent
the means ± SDs of three independent biological replicates and asterisks (**) represent the significant
differences at p < 0.01 (Student’s t-test). WT—wild-type.
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Figure 5. Total root lengths of transgenic Arabidopsis lines under drought stress. Five-day-old Arabidopsis
seedlings were planted on MS medium with or without 10% PEG6000 for 7 days (A). The total root
lengths were measured (B). Data are means ± SD of three independent experiments, and asterisks
(* or **) represent the significant differences at p < 0.05 or p < 0.01, respectively (Student’s t-test).
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Figure 6. Phenotype analysis and the water loss and survival rates of transgenic Arabidopsis and
WT under drought treatment. Phenotype analysis of WT and the transgenic Arabidopsis under
drought treatment (A). The water loss rate of WT and transgenic plants under drought condition (B).
The survival rate of WT and transgenic plants under drought condition was monitored seven days
after rewatering (C). Data are means ±SD of three independent experiments, and asterisks (* or **)
represent the significant differences at p < 0.05 or p < 0.01, respectively (Student’s t-test).
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2.6. ZmWRKY40 Changes the Expression of Stress-Responsive Gene

To further research the possible molecular mechanisms of ZmWRKY40 in stress responses,
the relative expression levels of stress-responsive genes were determined in transgenic and WT
plants under normal conditions. The results showed that stress-responsive genes STZ, DREB2B,
and RD29A had a more than two-fold increase in transgenic Arabidopsis relative to WT plants (Figure 7).
These results suggested that ZmWRKY40 may play a role in drought stress response by regulating
stress-related genes.
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Figure 7. Expression levels of stress-responsive genes in WT and transgenic Arabidopsis under normal
conditions. The vertical coordinates are fold changes and the horizontal ordinates are gene names.
Values are means ± SDs of three replicates, and asterisks (* or **) represent the significant differences at
p < 0.05 or p < 0.01, respectively (Student’s t-test).

2.7. ZmWRKY40 Changes the Reactive Oxygen Species (ROS) Content and Enzyme Activity

To better understand the function of ZmWRKY40 under drought treatment, we assessed the
activities of POD and CAT and the ROS content in ZmWRKY40 transgenic and WT plants at 0 h, 6 h,
and 24 h after drought treatment (Figure 8). The ROS content of WT remained at approximately 0.37 U
for all of the time points, and the content in transgenic lines had a higher accumulation compared
with WT, reaching the maximum at 12 h after drought treatment (Figure 8A). The activities of two
antioxidant enzymes, POD and CAT, in transgenic lines were significantly higher than WT plants
(Figure 8B,C). As shown in Figure 7B, increases of POD activity were observed in both WT and
transgenic lines, but the POD activity in transgenic lines remained higher than in WT plants at all
time points, reaching the maximum at 24 h after drought treatment. The activity of CAT was almost
unchanged in WT plants under drought treatment, while in transgenic lines, the activity of CAT had a
significantly higher level than WT plants (Figure 8C). Overexpression of ZmWRKY40 reduced the ROS
content and enhanced the activities of POD and CAT in transgenic lines under drought stress.
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Figure 8. The measurements of physiological-biochemical parameters under normal and drought
conditions. The reactive oxygen species (ROS) content (A) and the activities of peroxide dismutase
(POD) (B) and catalase (CAT) (C) in WT and transgenic lines were measured. Values are means ± SDs
of three replicates, and asterisks (* or **) represent the significant differences at p < 0.05 or p < 0.01,
respectively (Student’s t-test).

3. Discussion

As one of the most serious environmental stresses, drought has a severe effect on the quality and
yield of crops. Hence, many studies on drought-related genes have been carried out [1,24,25]. WRKY
transcription factors are a class of plant-specific transcription factors that have been mostly reported
in the regulation of plant defense responses against biotic stress [26–28]. For example, 49 Arabidopsis
WRKY genes were induced by pathogens or salicylic acid [29]. In addition to playing an important
role in biotic stress responses, WRKYs also regulate plant responses to abiotic stresses, such as high
salt, drought, and high and low temperatures [8,30–33]. As the first WRKY protein was isolated from
sweet potato [9], many WRKYs have been identified, and numerous WRKYs conferring abiotic stress
responses have been studied in many plants. For example, AtWRKY30 could enhance abiotic stress
tolerance during early growth stages in Arabidopsis by binding to W-boxes in promoters of many
stress-regulated genes [34]. Overexpressing AtWRKY47 increased drought resistance in Arabidopsis,
and AtWRKY57 enhanced drought tolerance in both transgenic Arabidopsis and rice plants [35,36].
OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice, and overexpressing
OsWRKY45 improved salt and drought stress tolerance of transgenic Arabidopsis [37]. In wheat,
15 wheat cDNAs were isolated, and 8 genes were responsive to low-temperature, high-temperature,
NaCl or PEG treatment [38]. Ten WRKY genes were identified from the genome of wheat, of which
TaWRKY10 enhanced drought and salt stress tolerance in tobacco by regulating the osmotic balance,
ROS scavenging, and transcription of stress-related genes [32]. Moreover, GmWRKY27 interacted with
GmMYB174 to improve salt and drought tolerance in transgenic soybean hairy roots by suppressing the
expression of GmNAC29 [39]. These results all suggest that WRKYs play important roles in responding
to abiotic stresses.
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Maize is one of the most important economic crops, but very few WRKY proteins have been
studied in maize, especially regarding their roles in abiotic stress [40]. Since the whole-genome
sequencing of maize was completed in 2009, more bioinformatics studies have been conducted to
identify the gene families of maize [23,41,42]. For example, a total of 136 WRKYs coded by 119 genes
were identified from the maize genome and were numbered [23]. Accordingly, we identified a WRKY
gene, ZmWRKY40, selected from the drought-treated maize de novo transcriptome data in this study.
Similar to other WRKY members, ZmWRKY40 contained one conserved WRKY domain (Figure 1),
meaning that it may retain a similar function to other WRKY proteins [23]. To our knowledge,
few WRKY genes have been studied in maize. ZmWRKY17 negatively regulated salt stress tolerance
and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive
genes [43]. ZmWRKY33 was induced by high-salt, dehydration, cold, and ABA treatments, and it
enhanced salt stress tolerance in transgenic Arabidopsis [40]. Moreover, ZmWRKY58 improved tolerance
to drought and salt stresses in transgenic rice [44]. These results all suggest that maize WRKYs may
play an important role in responding to abiotic stresses.

In our study, ZmWRKY40 was mainly induced by drought, high-temperature, salt, and exogenous
ABA treatments (Figure 3), which may be related to the cis-acting elements of its promoter region
(Table 1). For instance, the ABRE and MYB recognition sites in the ZmWRKY40 promoter region may
be responsible for various abiotic stresses and may be involved in ABA signaling. Previous studies
have revealed that overexpression of WRKYs in plants can enhance tolerance to drought, salt, cold,
and heat stress [14,16,19,33], or can only improve plant tolerance to a single abiotic stress, such as
drought [35], salt [40], or heat stress [17]. ZmWRKY40 improved tolerance to drought in transgenic
Arabidopsis (Figures 4–6), and we also observed the phenotype of ZmWRKY40-overexpressing plants in
the seedling stage under NaCl treatment, but there was no significant difference. ABA is an important
phytohormone, and plays a critical role in regulating plant response to abiotic stresses. Previous
studies have demonstrated that there existed ABA-dependent and ABA-independent pathways
in drought response [45,46]. Under drought conditions, plants accumulated a high level of ABA,
which induced stomatal closure to reduce water loss [47]. The stomatal apertures experiment under
ABA treatment was also carried out in our study, but there was no significant difference between
ZmWRKY40-overexpressing plants and wild-type (WT), which revealed that ZmWRKY40 was involved
in drought stress through ABA-independent signal pathway. ROS are important signaling molecules
in the regulation of many of biological processes, and many studies have revealed that the capacity
of ROS scavenging was associated with plant tolerance to abiotic stresses [48–51]. Overexpression
of ZmWRKY40 reduced ROS content and enhanced the activities of POD and CAT under drought
treatment (Figure 8), which briefly suggested that ZmWRKY40 might improve the tolerance to drought
by regulating ROS scavenging. Furthermore, overexpression of ZmWRKY40 activated the expression of
stress-responsive genes STZ, DREB2B, and RD29A (Figure 7). STZ, as a transcriptional repressor,
enhanced the abiotic stress resistance when overexpressed in transgenic Arabidopsis or rice [52].
DREB is known to regulate the expression of many stress-inducible genes in the ABA-independent
pathways. DREB2B was induced by drought, and overexpressing DREB2B resulted in significant
drought tolerance in transgenic Arabidopsis plants [53]. RD29A contains two major cis-acting elements,
the ABRE and the cis-acting DRE, both of which were involved in stress-inducible gene expression [54].
Collectively, these findings show that overexpression of ZmWRKY40 could improve drought tolerance
in transgenic plants possibly by regulating ROS scavenging and enhancing the expression levels of
stress-responsive genes. Though ZmWRKY40 could improve the transgenic Arabidopsis resistance to
drought, its function in maize still needs to be investigated. Despite this, the function of ZmWRKY40
in transgenic Arabidopsis suggests the future direction of research in maize or other crops.
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4. Materials and Methods

4.1. De Novo Transcriptome Sequencing

Three-leaf stage untreated maize seedlings and seedlings dehydrated on filter paper for four hours
were collected for RNA-seq analysis. The detailed process of RNA-seq was exhibited as previously
described [20]. The transcriptome data are available in NCBI under accession number SRP144573.

4.2. Stress Treatments and Sample Collection

Seeds of maize (X178) used in this study were provided by Dr Zhuan-Fang Hao (Institute of
Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China). Wild-type (WT) Arabidopsis
(Columbia-0) was kept by our laboratory. We planted maize seeds in an incubator before transferring
them to pots of 10 cm diameter, with 10 seedlings per pot. The soil contained vermiculite and nutrition
soil in a ratio of 1:1 (v/v). The seedlings were grown in a culture room with 60–70% relative humidity,
25 ± 2 ◦C, and a photoperiod of 16 h light/8 h dark at a light intensity of around 100 µM·m−2 s−2 until
the three-leaf stage [55]. For the heat and cold stress treatments, the seedlings were exposed to 45 ◦C
and 4 ◦C, respectively. For the exogenous ABA and NaCl treatments, the roots of maize seedlings
were soaked in 100 µM ABA and 250 mM NaCl solutions, respectively [40]. For the drought stress
treatment, the maize seedlings were placed on filter paper in the culture room [41]. Seedling samples
were collected at 0, 0.5, 1, 2, 4, 8, 12, and 24 h after different treatments. The un-treated transgenic and
WT Arabidopsis were collected to analyze the expression of stress-related genes. The collected samples
were dropped into liquid nitrogen for 15 min and then stored at −80 ◦C.

4.3. Reverse Transcription PCR (RT-PCR) and Quantitative Real-Time PCR (qRT-PCR)

The total RNAs were extracted from maize tissue with an RNAprep pure Plant Kit (TIANGEN,
Beijing, China). The RT-PCR was conducted using an EasyScript One-Step gDNA Removal and
cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing, China). The qRT-PCR was performed
with SuperReal PreMix Plus (TIANGEN, Beijing, China) on an ABI Prism 7500 system (Applied
Biosystems, Foster City, CA, USA), and each qRT-PCR was repeated three times. The specific primers
of ZmWRKY40 are listed in Supplementary Table S1. The data were analyzed according to the earlier
description [56].

4.4. Gene Isolation and Bioinformatics Analysis

The full-length of ZmWRKY40 was amplified from maize cDNA. The primers of ZmWRKY40-F
and ZmWRKY40-R were listed in Supplementary Table S1. The PCR products were cloned into the
pEASY-T1 vectors (TransGen Biotech, Beijing, China) and sequenced. The protein functional domains
of ZmWRKY40 were predicted by the online analysis tool SMART (available online: http://smart.
embl.de/). The amino acid sequence of ZmWRKY40 was used to search the other orthologs from
online NCBI database (available online: https://www.ncbi.nlm.nih.gov/) using the BLASTP program.
Thirteen WRKY proteins from three species were used for the phylogenetic analysis. The multiple
sequence alignments were conducted using ClustalW [57], and the phylogenic tree analysis was
performed by MEGA5.0 software with the neighbor-joining (NJ) method [58]. We set default values for
all the parameters, and the confidence levels were estimated with bootstrap analyses of 1000 replicates.
For further analysis of the transcriptional regulation mechanism of ZmWRKY40, cis-elements in the
promoter region of ZmWRKY40 were predicted as reported by Zhao et al., 2016 [22].

4.5. Subcellular Localization

The expression vector p16318hGFP was used for an investigation of subcellular localization.
The coding region of ZmWRKY40 was fused to p16318hGFP vector containing the CaMV35S promoter.
The specific primers were listed in Supplementary Table S1. To confirm the location of ZmWRKY40

http://smart.embl.de/
http://smart.embl.de/
https://www.ncbi.nlm.nih.gov/
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fusion protein in cells, the ZmWRKY40-GFP recombinant was transformed into maize mesophyll
protoplasts by the PEG-mediated method as described by He et al., 2016 [20]. Transfected protoplasts
were incubated in darkness at 22 ◦C for more than 18 h. The fluorescence signals were monitored by a
confocal laser scanning microscopy (LSM700; CarlZeiss, Oberkochen, Germany).

4.6. Generation of Transgenic Arabidopsis and Its Phenotype under Stress Treatment

The full-length of ZmWRKY40 was constructed to the plant expression vector pBI121,
and the recombinant was transformed to wild-type (WT) Arabidopsis (Columbia-0) using the
Agrobacterium-mediated floral dip method. The specific primers are listed in Supplementary Table S1.
The transformed seeds were selected on MS medium containing 50 mM Kanamycin to obtain the
positive plants. Three T3 generation overexpression lines (OE-ZmWRKY40-1, OE-ZmWRKY40-2,
OE-ZmWRKY40-3) with higher expression levels of ZmWRKY40 were selected by qRT-PCR for further
analysis. The method to clean Arabidopsis seeds was described by Feng et al., 2015 [1].

Germination assay and root growth assay were used to identify the phenotype under drought
stress. For germination assay, seeds of WT and transgenic Arabidopsis lines were cultured in MS
medium and MS added 4% (w/v) or 8% PEG6000 for a week. All the media were incubated at 4 ◦C for
three days before moving to 22 ◦C with a photoperiod of 16 h light/8 h dark. Seeds were considered
to be germinated when radicles emerged from the seed coats. For root growth assay, five-day-old
seedlings were transferred to MS medium without or with 10% PEG6000 for seven days, and total root
lengths of Arabidopsis lines were measured [59]. All the experiments were repeated three times.

For the drought treatment, 10-day transgenic and WT plants were transferred to pots filled
with a 1:1 mixture of rich soil and vermiculite, and the seedlings were grown at 22 ◦C with a light
intensity of around 100 µM·m−2 s−2 (16 h light/8 h dark photoperiod) under 60% humidity conditions.
After growing under normal conditions for three weeks, the drought treatment was imposed by
withdrawing irrigation. After severe drought stress for two weeks, water was added for recovery;
performance was photographed and the survival rate was monitored seven days after rewatering.
Rosette leaves of WT and transgenic plants, which were grown under drought conditions for 7 days,
were excised, weighed immediately, and incubated on a bench at room temperature with 60% humidity.
Losses in fresh weight were monitored at 0.5 h, 1 h, 2 h, 3 h, and 4 h. Water loss is expressed as the
percentage of initial fresh weight. All stress assays were performed three times.

4.7. Expression Profile of Stress-Related Genes

To elucidate the possible molecular mechanisms of ZmWRKY40, the expression levels of STZ,
DREB2B, and RD29A were assessed in transgenic and WT plants under normal condition by qRT-PCR.
The specific primers are listed in Supplementary Table S1.

4.8. Measurements of Physiological-Biochemical Parameters

The reactive oxygen species (ROS) content, and the activities of peroxide dismutase (POD) and
catalase (CAT), were assessed in transgenic and WT plants at 0 h, 6 h, and 24 h after drought treatment
as previously described [60].

5. Conclusions

We identified a putative drought-responsive WRKY gene, ZmWRKY40, a member of group II,
from the maize genome by de novo transcriptome sequencing (SRP144573). ZmWRKY40 protein was
localized in the nucleus. ZmWRKY40 was induced by drought, high-temperature, NaCl, and ABA
treatments. Further research revealed that ZmWRKY40 could improve drought tolerance in transgenic
Arabidopsis, and overexpression of ZmWRKY40 reduced ROS content and enhanced the activities
of POD and CAT under drought treatment. Furthermore, ZmWRKY40 changed the expression of
stress-responsive genes, including STZ, DREB2B, and RD29A. These results may provide a basis to
understand the functions of ZmWRKY40 in drought resistance in maize.
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Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
9/2580/s1. Supplementary Table S1. Primers used in the paper. Supplementary Table S2. The differentially
expressed ZmWRKYs screened from maize de novo transcriptome sequencing under drought stress. Supplementary
Figure S1. De novo transcriptome sequencing analysis of maize under drought stress. (A) The cluster analysis
of DEGs under drought treatment. (B) The KEGG analysis of the DEGs between control and drought treatment.
The left Y-axis indicated the KEGG pathway. The X-axis indicated the Rich factor. A high q-value was represented
by blue, and a low q-value was represented by red. (C) The enrichments of Go terms for DEGs between control
and drought treatment.
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