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Abstract: Predicting response to systemic treatments in breast cancer (BC) patients is an urgent, yet
still unattained health aim. Easily detectable molecules such as long non-coding RNAs (lncRNAs)
are the ideal biomarkers when they act as master regulators of many resistance mechanisms, or of
mechanisms that are common to more than one treatment. These kinds of markers are pivotal in
quasi-personalized treatment selection, and consequently, in improvement of outcome prediction.
In order to provide a better approach to understanding development of disease and resistance to
treatments, we reviewed current literature searching for lncRNA-associated systemic BC treatments
including endocrine therapies, aromatase inhibitors, selective estrogen receptor modulators (SERMs),
trastuzumab, paclitaxel, docetaxel, 5-fluorouracil (5-FU), anthracyclines, and cisplatin. We found
that the engagement of lncRNAs in resistance is well described, and that lncRNAs such as urotelial
carcinoma-associated 1 (UCA1) and regulator of reprogramming (ROR) are indeed involved in
multiple resistance mechanisms, which offers tantalizing perspectives for wide usage of lncRNAs as
treatment resistance biomarkers. Thus, we propose this work as the foundation for a wide landscape
of functions and mechanisms that link more lncRNAs to resistance to current and new treatments in
years of research to come.
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1. Background

1.1. Breast Cancer

Breast cancer (BC) is the most common cancer diagnosed in women with about one million
estimated new cases every year; it is the leading cause of cancer deaths among females. Thus, this
disease is an important health problem worldwide [1]. Being such a highly heterogeneous disease in
terms of clinical course and biological behavior, BC was only successfully classified through molecular
and genomic tools, as luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), basal,
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and normal-like subtypes [2]. Luminal A tumors have positive estrogen and progesterone receptor
expression, negative HER2 expression, and low Ki-67 expression. Luminal B tumors have positive
estrogen and progesterone receptor expression, negative or positive HER2 expression, and high Ki-67
expression. Both luminal tumors are the most common subtypes, being luminal A predominant,
and in general, both subtypes show a good prognosis. The HER2 subtype includes tumors with
negative estrogen and progesterone receptor expression, HER2 positive expression, and high Ki-67
expression; these are tumors with poor prognosis. Basal subtype (triple negative) refers to tumors with
negative estrogen and progesterone receptor expression, negative HER2 expression, and positive basal
marker expression; this subtype presents with an aggressive clinical course. The normal-like subtype
encompasses tumors with positive estrogen and progesterone receptor expression, and negative HER2
and Ki-67 expression; it shows intermediate prognosis. Each subtype has different treatment and
responses, as we discuss later [2].

Systemic treatment of BC patients is assigned according to the molecular classification and
includes endocrine treatment, targeted therapy, and chemotherapy. In spite of advances in different
treatment options, a substantial number of patients exhibit recurrence of disease and decreased survival
as consequence of de novo or acquired resistance to treatments, which increases metastasis rates [3].
Once the metastasis is detected, the five-year overall survival (OS) rate is estimated to be below 25% [4].
In this scenario, it is crucial to identify novel molecular biomarkers that characterize or predict therapy
response in order to extend patient OS and to avoid or delay the disease recurrence that promotes
metastatic BC to be a chronic disease.

1.2. Long Non-Coding RNAs

The Encyclopedia of DNA elements (ENCODE) project exposed that more than 80% of the
human genome is transcribed into non-coding RNAs with a biochemical function; they are classified
as follows: transfer RNA (tRNA), ribosomal RNA (rRNA), small nucleolar RNA (snoRNA, which
functions as part of ribo-protein complexes which are exported into the nucleolus to participate
in rRNA processing, and tRNA and messenger RNA (mRNA) editing), small nuclear RNA
(snRNA, which is involved in alternative splicing of pre-mRNA), microRNAs (miRNAs), and long
non-coding RNAs (lncRNAs) [5]. In addition to basic research, lncRNA clinical applications are
an area of emerging interest, due to their ideal qualities as diagnostic biomarkers and therapeutic
targets [6]. Their differential expression forms patterns that are proven specific for various complex
diseases, such as cardiovascular, autoimmune, rheumatoid arthritis, type 1 diabetes, systemic lupus
erythematosus, psoriasis, neurodegenerative disorders, Alzheimer’s, Parkinson’s, Huntington’s,
psychiatric, schizophrenia diseases, depression/anxiety disorders, and cancer; once the effects of
their regulation are elucidated, they are tantalizing therapeutic targets [7].

Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length of over 200
bases and quite a complicated biogenesis. Most lncRNAs are transcribed by RNA polymerase II,
although some lncRNAs are transcribed by RNA polymerase III; the majority of them are spliced
and polyadenylated. They can be classified into five categories according to their genomic location:
sense lncRNA, antisense lncRNA, bidirectional lncRNA, intronic lncRNA, and intergenic lncRNA [8].
Expression of several lncRNAs might affect cancer prognosis, as they were proposed as master
regulators of cancer pathways through the modulation of gene expression [9]. Gene regulation
by lncRNAs can be exerted at different levels including chromatin modification, transcription,
posttranscriptional processing, scaffolding or decoy function for mRNAs, and post-transcriptional
messenger RNA regulation [10]. Despite lncRNA research being comparatively young, early releases
of the GENCODE project consortium based on manual curation, computational analysis, and targeted
experimental validation released in April 2018, include 15,779 lncRNA genes for 28,468 lncRNA
transcripts (current human version, Genecode28) [11]. Notwithstanding constant advances, the precise
molecular mechanisms and functions of lncRNAs remain unclear. The role of lncRNAs as major
regulators of drug resistance is being elucidated; in this respect, Leucci E recently summarized the



Int. J. Mol. Sci. 2018, 19, 2711 3 of 20

lncRNAs that can be used to sensitize cancer cells to several treatments in different types of cancer [6].
For instance, lncRNA Activated in renal cell carcinoma with Sunitinib Resistance (lncARSR) in renal
cancer, nuclear paraspeckle assembly transcript 1 (NEAT1) in breast and ovarian cancer, long intergenic
ncRNA for Kinase activation (LINK-A) in triple negative BC, Epithelial Growth Factor Receptor
AntiSense 1 (EGFR-AS1) in squamous cell carcinoma, and Prostate Cancer Associated Intregenic
noncoding RNA transcripts (PCAT8) and Prostate Cancer Gene Expression Marker 1 (PCGEM1) in
prostate cancer [6]. We henceforth focus on lncRNAs that predicted response to systemic treatments
in BC.

1.3. Long Non-Coding RNAs and Breast Cancer

A number of papers report genome-wide sequencing or microarray analysis that describes
the differential expression of lncRNAs in breast tumor tissue vs. normal breast tissues [12–14],
even between subtypes [15,16]. Moreover, lncRNA expression levels are related to development,
prognosis, metastasis, and recurrence [13]. Wang et al. summarize the principal dysregulated
lncRNAs with oncogenic function such as: Hox antisense intergenic RNA (HOTAIR), H19,
urotelial carcinoma-associated 1 (UCA1), colon cancer-associated transcript 2 (CCAT2), adriamycin
resistance-related (ARA), and regulator of reprogramming (ROR); and those with tumor suppressor
function: metastasis associated lung adenocarcinoma transcript 1 (MALAT1), maternally expressed
gene 3 (MEG3), growth arrest-specific transcript 5 (GAS5), and NF-KappaB interacting lncRNA
(NKILA), among others [17]. The function of numerous lncRNAs was analyzed by in vitro cell-based
assays, mouse models, and cancer sample expression surveying. This review summarizes the current
knowledge and research approaches to lncRNAs as potential response biomarkers to systemic
treatments in BC (Table 1 and Figure 1), based on our search for experimental research papers
indexed in the Medline database. We also highlight their mechanisms delineating their potential
target molecules and consequently affected cancer signaling pathways. The overall vision is to
understand the heterogeneous and complex disease in order to optimize therapeutic regimens for
personalized treatment leading to opportunely prevent BC recurrence.

Table 1. Long non-coding RNAs associated with resistance to systemic treatments.

LncRNA Predictive Target Pathway Regulated Reference

Aromatase Inhibitors

↑MIR205HG ERα PI3K/AKT [18]

Tamoxifen

↑RP11.259N19.1

PI3K/AKT, focal adhesions and WNT
signaling [19]

↑KB.1460A1.5
↑PP14571
↓PINK1.AS
↓KLF3.AS1
↓LINC00339
↓LINC00472
↓RP11.351I21.11
↓PKD1P6.NPIPP1
↓PDCD4.AS1
↓KLF3.AS1
↓PP14571

↓RP11.69E11.4
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Table 1. Cont.

LncRNA Predictive Target Pathway Regulated Reference

↑UCA1 WNT/β-catenin signaling [20]

↑UCA1 AKT/mTOR [21]

↑UCA1 miR-18a→ HIF1α HIF1α signaling [22]

↑CCAT2 Apoptosis/cell proliferation [23]

↑ROR miR-205-5p→
ZEB1, ZEB2

Epithelial mesenquimal
Transition/autophagy [24]

↑HOTAIR ER [25]

↑BCAR4 Cell proliferation [26]

Trastuzumab

↑ATB miR-200c→ ZEB1,
ZNF-217 Epithelial mesenquimal transition [27]

↓GAS5 miR-21→ PTEN Cell proliferation [28]

↑UCA1 miR-18a→ YAP1 PI3K and MAPK signaling [29]

Paclitaxel

↑H19 LIK and LOXA Apoptosis [30]

↑MA-Linc1 Apoptosis and cell cycle [31]

↑HIF1A-AS2
Metabolism and Cell division cells [32]↑AK124454

↑ROR Epithelial mesenquimal transition [33]↑ST8SIA3

↑MAPT-AS1 MAPT [34]

5-FU

↑NEAT1 miR-211→ HMGA Epithelial mesenquimal transition [35]

↑LINP1 Epithelial mesenquimal transition [36]

↑ROR Invasion capability [33,37]

Anthracyclines

↑ARA MAPK signaling, focal adhesion, PPAR
and metabolism signaling pathways [38]

↑NONHSAT057282
ELF1 and E2F1 [39]↑NONHSAG023333

↑PANDA [40]

↑H19 H19-CUL4A-ABCB1/MDR1 axis [41]

The arrows indicate over and underexpression.
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Figure 1. Long non-coding RNAs (lncRNAs) associated with treatment resistance. Upregulated
lncRNAs (inner section) regulate several pathways (middle section) that ultimately lead to
resistance to systemic treatments (outer section). LncRNAs: BC anti-estrogen resistance 4 (BCAR4),
Urotelial carcinoma-associated 1 (UCA1), RNA regulator of reprogramming (ROR), Hox antisense
intergenic RNA (HOTAIR), Colon cancer-associated transcript 2 (CCAT2), lncRNA activated by
transformig growth factor-beta (ATB), Mitosis-Associated Long Intergenic Non-Coding RNA 1
(MA-Linc1), MAPT antisense RNA 1 (MAPT-AS1), HIF antisense RNA 2 (HIF1A-AS2), lncRNA
in non-homologous end joining (NHEJ) pathway 1 (LINP1), ncRNA nuclear paraspeckle assembly
transcript 1 (NEAT1), adriamycin resistance-related lncRNA (ARA), lncRNA P21-associated lncRNA
DNA damage activated (PANDA). Pathways: Phosphatidylinositol 3-kinase/Serine/Threonine Kinase
1 (PI3K/AKT), Mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor
(PPAR), epithelial-mesenchymal transition (EMT), Treonine Kinase1/mammalian target of rapamycin
complex 1 (AKT/MTOR), Hypoxia-inducible factor 1-alpha (HIF1α), Cullin-4A (CUL4A), ATP Binding
Cassette Subfamily B Member 1 (ABCB1), Multi-Drug Resistance Gene (MDR1).

2. Main Text

2.1. Endocrine Therapy

Breast cancer with expression of estrogen receptor (ER+) is diagnosed in around 70% of BC patients;
this cancer subtype depends on the hormone estrogen for growth and proliferation [42]. There are two
principal estrogen receptor isoforms—ERα and ERβ—that drive nuclear and extranuclear pathways.
Nuclear pathways comprise the interaction of ligand-bound ER dimers with estrogen-responsive
elements in target gene promoters, and extracellular pathways consist of the activation of kinase
cascades mediated by the translocations of nuclear receptors to the cytoplasmic side of the cell
membrane [43].

There are three treatment options for these patients: (a) aromatase inhibitors, (b) selective estrogen
receptor modulators (SERMs), and (c) selective estrogen receptor degraders (SERDs) that antagonize
ER [44]. Unfortunately, over 30% of ER+ tumors are intrinsically hormone-resistant at diagnosis
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and around 40% of the tumors that initially respond to hormone therapies eventually present with
resistance [45,46].

2.2. Aromatase Inhibitors

Aromatase is an enzyme (a cytochrome P450, heme-containing protein) that, through the
aromatization of the A-ring of androgens, catalyzes the biosynthesis of estrogens—estradiol and
estrone—from the androgenic precursors—testosterone and androstenedione. Third-generation
aromatase inhibitors (AIs), which exhibit great effectiveness and specificity, along with lower toxicity,
comprise anastrozole, letrozole, and exemestane [47]. These AIs can be divided into two categories:
steroidal AIs (such as exemestane) and nonsteroidal AIs (such as anastrozole and letrozole). There
are three United States (US) Food and Drug Administration (FDA)-approved oral AIs in clinical use
for the treatment of post-menopausal women with hormone receptor-positive BC, and clinical trials
reported that AIs are usually more tolerable and more effective in terms of clinical response rate (RR)
and median time to progression than tamoxifen [48,49]. For instance, AIs were shown to reduce the
recurrence by 30% vs. five years of tamoxifen alone. However, intrinsic and acquired resistance to AIs
is a major clinical obstacle, and to date, no biomarkers are used clinically to guide treatment in these
patients [50,51].

At the time of writing, only one report described an lncRNA whose expression is correlated with
aberrant signaling of cancer cells that induce AI treatment resistance [18]. Briefly, in a cohort of 4658
BC patients, two single-nucleotide polymorphisms (SNPs) were identified (rs4476990 and rs3802201)
in the gene MIR205HG, which is an lncRNA. The expression of this polymorphic gene may alter
ERα expression, which consequently impacts response to AIs (anastrozol or exemestane) as adjuvant
therapy for early-stage BC. In vitro analysis demonstrated that MIR205HG is a functional polymorphic
gene whose overexpression increased ERα expression leading to augmented cell proliferation in ERα+

BC cells; however, when BC cells were treated with AI therapy (anastrozol or exemestane), a decrease in
both MIR205HG lncRNA and ESR1—the gene encoding ERα—expression was evident. Overexpression
of this lncRNA improved cell proliferation, colony formation, and ERα expression, corroborating the
positive MIR205HG–ERα association. Moreover, in order to understand the mechanism of action of
this association, the authors evaluated phosphorylated (p)-AKT and p-FOXO3 levels in MIR205HG
knocked-down cell lines, and observed an increase in p-AKT levels (on both Ser473 and Thr308
residues) which promoted downregulation of p-FOXO3 (on Ser318/Ser321) and total FOXO3; in
consequence, the ESR1 expression was downregulated. Then, the authors proposed that MIR205HG
regulates ERα expression through different levels that involve the AKT pathway. This way, the SNPs
related to MIR205HG were rendered as potential AI response biomarkers [18]. The lack of studies to
identify lncRNAs associated with response to this treatment is evident; more studies are needed to
have a comparison point for MIR205HG.

2.3. Selective Estrogen Receptor Modulator (SERM) Therapy

Tamoxifen

Selective estrogen receptor modulators (SERMs) are synthetic molecules that bind ERα and ERβ
to regulate its transcriptional potential in several ways in estrogen target tissues [52]. The first clinically
used SERM was tamoxifen; this drug is approved by the FDA as a first-line endocrine treatment in
pre- and post-menopausal luminal BC patients [53]. Although this drug reduces the risk of recurrence
in around 41% and mortality in 34%, about 30–40% of patients who take tamoxifen become resistant
to endocrine therapy within 3–5 years, which leads to cancer recurrence or metastasis with poor
disease-free or OS [45,54].

The most studied mechanisms of tamoxifen resistance are loss of ER expression, ER mutations,
and cross-talk between ER and growth-factor signaling pathways [54,55]. Some biomarkers were
proposed to predict the drug resistance of these ER-positive patients primarily treated with tamoxifen,
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such as ER expression, progesterone receptor (PR) expression, and HER2 and multigene signatures [56].
The role of lncRNAs as biomarkers of response to treatments in BC is gaining a lot attention. In this
context, Wang K. and colleagues recently described a signature based in 11 lncRNAs for prediction
of relapse risk, through raw microarray of GSEI7705 recovered from cohorts of the Gene Expression
Omnibus (GEO) database and data from the Cancer Genome Atlas (TCGA). The high expressions of
RP11.259N19.1, KB.1460A1.5, and PP14571, and low expressions of PINK1.AS, KLF3.AS1, LINC00339,
LINC00472, RP11.351I21.11, PKD1P6.NPIPP1, PDCD4.AS1, KLF3.AS1, PP14571, and RP11.69E11.4
predict disease relapse to tamoxifen in ER+ BC patients [19]. Through gene set enrichment analysis
(GSEA) based on GSE17705, the signaling pathways related to these lncRNAs were identified and
visualized in Cytoscape (version 2.8.2); the PI3K/AKT, focal adhesions, and WNT (The name Wnt is
resultant from a fusion of the name of the Drosophila segment polarity gene wingless and the name of
the vertebrate homolog, integrated or int-1) signaling pathways that stood out (p < 0.05). With these
results, the authors reported a signature to predict the benefits of tamoxifen treatment based on 11
lncRNAs [19].

Urotelial carcinoma-associated 1 (UCA1) is involved in tamoxifen resistance; its aberrant
expression is associated with drug resistance in several types of cancer such as bladder cancer [57],
gastric cancer [58], colorectal cancer [59], and BC [20]. Long non-coding RNA UCA1 is encoded in
chromosome 19p13.12, and regulates several functions such as proliferation, apoptosis, invasion, cell
cycle, and drug resistance [60,61]. In 54 samples of stage I–IV BC, UCA1 expression was evaluated
by RT-PCR, and it was demonstrated that its expression was higher in advanced stages (III–IV).
In the same samples, using an immunohistochemistry assay, higher β-catenin expression in the
nuclei was also observed. This finding was confirmed using tumor tissues from xenograft mouse
model, and higher β-catenin nuclear expression was observed by Western blot when UCA1 was
overregulated. Furthermore, in vitro analysis using a UCA1 knockdown displayed diminished cell
survival and migration ability, and promoted apoptosis of tamoxifen-resistant BC cells. These findings
indicated that UCA1 expression contributed to tamoxifen resistance through the stimulation of the
WNT/β-catenin signaling pathway, allowing the extracellular redistribution of ER; thus, the inhibition
of the WNT pathway or UCA1 expression could overcome the resistance to tamoxifen [20].

The AKT/mTOR cell signaling pathway is also involved in UCA1-activated tamoxifen resistance.
This finding was examined through Western blot detection of p-AKT and m-TOR in LCC2, LCC9
(tamoxifen-resistant BC cells), and MCF-7 (tamoxifen-sensitive BC cell line). The authors observed
concurrent UCA1 overexpression and significantly higher expression of p-AKT and p-mTOR in LCC2
and LCC9 cells. Conversely, UCA1 silencing significantly reduced the p-AKT and p-mTOR expression
in LCC2 and LCC9 cells. These findings suggested that UCA1 regulates the AKT/mTOR signaling
pathway positively, leading to increased tamoxifen resistance [21].

When searching for the mechanism behind UCA1 overexpression in ER+ breast-cancer-derived
cell lines, was found a very interesting regulation loop: UCA1 sponges miR-18, effectively blocking
its availability, and thus, decreasing its effects on its target mRNAs; HIF1A is among these targets
and regulates the transcription of UCA1. In addition to describing the association of an lncRNA with
tamoxifen resistance, this work offers a glimpse into a complex network of interactions that regulates
gene expression [22].

Exosomes have an important role in lncRNA, miRNA, and RNA transfer, taking an important
function in the mechanism of acquired drug resistance. In BC, MCF-7 BC cells pre-treated in vitro with
exosomes from tamoxifen-resistant LCC2 cells showed increased tamoxifen resistance. Furthermore,
UCA1 expression was detected in exosomes released from tamoxifen-resistant BC cells, demonstrating
how exosomes spread tamoxifen resistance [62].

Colon cancer-associated transcript 2 (CCAT2)—An lncRNA that was identified for the first time in
colorectal cancer—is increasingly detected in human cancers, and its overexpression is associated with
poor clinical outcome. Tamoxifen-resistant BC cells (MCF-7 and T47D) were observed to overexpress
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CCAT2, while CCAT2 knockdown promoted apoptosis and diminished cell proliferation, improving
the tamoxifen sensitivity [23].

Higher expression of a large intergenic non-coding RNA regulator of reprogramming
(lncRNA-ROR) was detected in 74 BC tissue vs. adjacent tissue samples (4.96 vs. 1.02; p < 0.01) [24].
In vitro analysis detected a peculiar function of this lncRNA; it acts as a sponge which blocks
miR-205-5p expression. Subsequently, it increases the expression of target genes such as ZEB1 and
ZEB2 in order to potentiate the epithelial–mesenchymal transition (EMT) process, which is increased
in tamoxifen-resistant BC cells. Preclinical studies demonstrated that inhibition of ROR expression
increased LC3 and Beclin expression, inducing autophagy, suppressing cell invasion and migration,
and reducing tumor size, thus reverting tamoxifen resistance [24]. A similar study demonstrated
ROR overexpression in BC tissue and BC cell lines (MCF-7, BT-20, MDA-231, and BT474), and also
demonstrated that blocking ROR suppressed cell proliferation, invasion, and migration, and reverted
tamoxifen resistance via an autophagy mechanism in tamoxifen-resistant BC cells (BT474) [63].

Hox antisense intergenic RNA (HOTAIR) is the most studied lncRNA, due to it being the first
identified lncRNA involved in cancer epigenetic regulation [64]. It is a 2.2-kb gene located in
chromosome 12, and its principal function is chromatin remodeling; its 5′ region interacts with
polycomb repressive complex 2 (PRC2), while the 3′ region has affinity for the lysine-specific
demethylase/repressor element-1 silencing transcription factor (LSD1)/so-REST/REST) complex
to coordinate histone H3 lysine-27 methylation and lysine-4 demethylation, thereby controlling
transcription through chromatin structure alterations and promoting cancer metastasis [65,66].

Gupta et al. reported HOTAIR as the most upregulated lncRNA in stage I–II BC as per their
RT-PCR analyses, and its expression was already associated with metastasis (p = 0.0004) [65]. Also,
Sørensen KP. et al. reported HOTAIR as a strong predictor of poor prognosis (p = 0.012) correlated
with ER expression (p = 0.0086), suggesting that HOTAIR is a potential predictor for metastasis in
ER+ BC patients [67]. Nonetheless, Gökmen-Polar Y et al., through tissue microarray from 133 BC
patients, revealed that HOTAIR had a role as a biomarker of lymphatic metastases in ER-negative
patients (p = 0.018) vs. ER-positive patients (p = 0.018); these data were validated using TCGA data
from BC subjects [68].

HOTAIR expression is regulated in BC through ER-interceded transcriptional repression, whereby
it is restored upon the blockade of ER signaling via FOXA1 or FOXM1; hence, HOTAIR overexpression
is notable in tamoxifen-resistant BC. Through RNA pulldown and RNA immunoprecipitation assays,
it was demonstrated that this lncRNA interacts with the ER protein in order to potentiate ER
transcriptional action in absence of estrogen, evidencing that HOTAIR has a crucial role in the
development of tamoxifen resistance [25]. Furthermore, its expression strikes us as a promissory
and advantageous biomarker or therapeutic target.

The BC anti-estrogen resistance 4 (BCAR4) gene expresses a protein but, interestingly, also an
lncRNA of the same name [69]. It was observed at high expression levels in patients treated with
tamoxifen that manifested poor prognosis [26]. Another study performed a knockdown BCAR4 which
was able to inhibit cell proliferation and tamoxifen resistance, upon exposure to lapatinib [26].

Many more lncRNAs are associated with resistance to tamoxifen than with resistance to other
drugs; moreover, its biological role is more deeply described. This may be due to various circumstances
such as drug availability, cost benefit, or the sheer fact that tamoxifen is the first-line endocrine
treatment in pre- and post-menopausal luminal BC patients.

2.4. Long Non-Coding RNA-Targeted Therapies

Trastuzumab

Trastuzumab is a monoclonal antibody against ERBB2 (HER2 or HER-2/neu), approved as
target therapy for HER2 protein expression and HER2 gene amplification in BC patients [70]. In a
similar fashion to other EGF-like family members, the ERBB2 protein phosphorylates and activates a
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wide range of cellular processes and pathways such as metastasis, cell cycle, survival, proliferation,
angiogenesis, and apoptosis. Trastuzumab targets this receptor, limiting its ability to start many of
these pathways, or via antibody-mediated cancer cell lysis through natural killer cells [71,72].

HER2-positive BC patients represent around 15–20% of all cases [73]. Although the expression
of HER2 is correlated with more aggressive tumors, trastuzumab therapy can result in improvement,
although its adverse effects include cardiac toxicity, in around 30% of patients, according to a 2011
study [74]. Trastuzumab alone has a response rate of about 26%, a rate that goes up to 82% in
combination with drugs such as lapatinib. Mechanisms of trastuzumab resistance are present in rates
as high as 60%, which means that a substantial number of patients will eventually relapse or develop
resistance [75–77]. Hence, it is essential to gain better understanding of these resistance mechanisms
toward truly personalized treatment for these patients.

In this regard, the role of the lncRNAs is far from completely elucidated. A recent work; it was
described by microarray assay using trastuzumab-resistant BC cell lines and trastuzumab-resistant
BC tissues. Among 30 lncRNAs detected in 50 BC and 50 normal tissue samples, the most
upregulated lncRNA associated with trastuzumab resistance was lncRNA activated by transformig
growth factor-beta (TGFB) (lncRNA-ATB). Functional analysis determined that lncRNA-ATB sponged
miR-200c (a microRNA generally overexpressed in trastuzumab-resistant cells) in order to favor
upregulation of ZEB1 and ZNF-217, to induce EMT so as to promote trastuzumab resistance and
metastasis. This way, this lncRNA is a likely responsible for malignant phenotype development [27].

A similar report, also by microarrays of trastuzumab-resistant cell lines and trastuzumab-resistant
BC tissues, showed that the lncRNA-growth arrest-specific transcript 5 (GAS5) was downregulated.
This downregulation was associated with advanced stage, histological grade, and poor disease-free
survival and OS. GAS5 knockdown promoted tumorigenesis and metastatic potential in SK-BR-3 BC
cells. Likewise, athymic mice inoculated with GAS5-silenced cells resulted in an increase in tumoral
mass. Moreover, low GAS5 levels correlated with low Phosphatase and tensin homolog (PTEN)
levels in BC tissues. In vitro assays were performed to understand this biological mechanism, and it
was demonstrated that GAS5 sponged miR-21 (which targets PTEN), favoring PTEN expression and
suppressing cell proliferation. GAS5 has great potential as a prognostic marker [28].

A later report, performed with very sophisticated next-generation RNA-sequencing, surveyed
RNA from sensitive and trastuzumab-resistant HER2+ cell lines and biopsy tumors, and identified an
lncRNA and mRNA profile strongly associated with trastuzumab resistance. The authors focused on
S100P mRNA, which was upregulated by epigenetic changes at enhancers. Functional analysis showed
that its inhibition reverted trastuzumab resistance, and interestingly, this gene was able to activate the
RAS/MEK/MAPK pathway as a compensatory mechanism of HER2 inhibition by trastuzumab [78].
So far, the role of lncRNAs in trastuzumab resistantance is still to be elucidated, and further studies are
needed in order to understand their potential utility.

The UCA1 lncRNA seems to have a role in trastuzumab resistance as well. It was silenced by
siRNA in the trastuzumab-resistant BC cell line SK-BR-3, and consequent;y, trastuzumab-triggered
apoptosis was increased and miR-18a expression was upregulated. This suggested that, in
trastuzumab-resistant cells, UCA1 is upregulated and sponges miR-18a, which targets YAP1—a key
protein associated with upregulation of PI3K and MAPK signaling—allowing its overexpression. Then,
the role of the UCA1/miR-18a/YAP1 axis would be needed to validate in vivo HER2+ BC models [29].

Summarizing research on trastuzumab-resistance-promoting lncRNAs was feeble as well;
we found reports about three involved lncRNAs—UCA1, ATB, and GAS5—and their biological
mechanisms described above.
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2.5. Taxanes for Breast Cancer

2.5.1. Paclitaxel

Paclitaxel (taxol) is a taxane-class agent that stabilizes microtubules, preventing mitosis (M)-phase
entry and eventually leading to cell death; as an anti-neoplasic, it is a prescribed for several cancer
types such as lung, breast, ovarian, and liver cancer [79]. It is indicated as a first-line therapy for many
cancers including breast cancer. An overall response rate of between 30% and 42% was reported for
single-agent docetaxel [80].

However, its effectiveness is still hindered by resistance, and a number of lncRNAs were shown
to participate in several resistance mechanisms. For instance, the expression level of lncRNA H19
was previously reported in various cancers, where it is thought to take part in tumorigenesis and
metastasis [81]. Moreover, H19 expression correlates with paclitaxel resistance in BC. A recent study
evaluated this correlation and found that H19 regulates the expression of the proapoptotic genes LIK
and LOXA negatively, thus mediating the previously known ERβ-dependent resistance [30]. Also,
H19 is upregulated in doxorubicin-resistant cells and its knockdown re-sensitizes them. According
to the elegant model proposed by Zhu et al., H19 upregulates the expression of CUL4A, a ubiquitin
ligase component that was observed to be a positive regulator of the multi-drug resistance protein 1
(MDRP1), although the molecular mechanisms are still to be fully understood [41].

Bida and collaborators described the novel lncRNA, Mitosis-Associated Long Intergenic
Non-Coding RNA 1(MA-linc1), which participates in cell-cycle regulation favoring M-phase exit.
Although the authors did not originally search for a paclitaxel resistance mechanism, they found that
paclitaxel-induced apoptosis was enhanced by 90% when MA-linc1 was silenced concomitantly; this
suggested that lncRNA leads to mitosis completion through microtubule destabilization, and that
the effect of MA-linc1 silencing on paclitaxel-induced apoptosis is also mediated by its effects on its
neighboring gene Purα, which is often deleted in cancer [31].

On the other hand, Jiang et al. performed a prospective study involving 275 patients aimed at
finding a predictive and prognostic mRNA–lncRNA signature. The signature was finally integrated by
FCGR1A, RSAD2, and CHRDL1 mRNAs, and HIF1A-AS2 and AK124454 lncRNAs. Both lncRNAs
were found to interfere with paclitaxel-induced gap 2 (G2)–M arrest in in vivo assays, presumably by
altering the expression of metabolism and cell-division-related genes, respectively, according to the
results of in silico analysis performed by the authors [32].

Significantly upregulated in BC samples, linc-ROR, also known as lincRNA-ST8SIA3 was found
to induce an EMT phenotype and expression of the EMT markers vimentin and neural (N)-cadherin to
the MDA-MB231 cell line. By means of overexpression and shRNA-mediated knockdown experiments,
Chen and collaborators established that linc-ROR both enhances the invasion ability of these cells and
decreases their sensibility to paclitaxel [33].

The MAPT antisense RNA 1 lncRNA (MAPT-AS1) is an antisense transcript to the MAPT gene,
which, in turn, codes for the TAU protein; this protein competes with paclitaxel for microtubule
binding, rendering cells resistant to its effects [34]. MAPT-AS1 was found to be overexpressed in
relation to paclitaxel resistance in ER-negative BC by Pan and colleagues [82]. They observed that
MAPT-AS1 expression correlated with MAPT expression as well, and established that MAPT-AS1
knockdown sensitized cells to paclitaxel. The underlying mechanism turned out to be very interesting:
MAPT-AS1 binds the MAPT transcript and stabilizes it, thus contributing to high TAU levels [34].

2.5.2. Docetaxel

Similar in chemical nature to paclitaxel, docetaxel is also a microtubule-stabilizing taxane;
however, as shown by several studies, it produces significantly extended survival times and decreased
secondary effects in metastatic BC. As a primary neoadjuvant, it improves OS (91% vs. 87% p = 0.05)
compared to anthracyclines [82,83].
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Although taxanes are a first-line treatment in metastatic, triple-negative, or HR+HER2− BC,
resistance to them is not as studied as resistance to tamoxifen. This shows that research in this area is a
wide open area of opportunity at the time of writing.

2.6. Other Agents

2.6.1. 5-Fluorouracil and Capecitabine

The fluoropyrimidine, 5-fluorouracil (5-FU), is an antimetabolite drug, widely used for BC
patients in clinical settings [84]. The compound 5-FU is an analog of uracil with a fluorine atom at
the C-5 position, and its mechanism of action involves the inhibition of thymidylate synthase and
the incorporation of its metabolites into RNA and DNA, thus inhibiting their normal function [84].
Capecitabine is an oral fluoropyramidine that mimics continuous 5-FU infusion, and phase II studies
demonstrated a 20–30% (95% confidence intervals (CIs): 19–43%) response rate as a first line of
treatment for BC [85], similar to the 5-FU response rate (32%) in BC patients [86,87]. The difference
between both drugs is that capecitabine is not cytotoxic. Although poly-chemotherapy regimens based
on these drugs increased the OS of BC patients, most of them experience recurrence [88].

There are several reports focused on analyzing the up- and downregulation of lncRNAs related to
5-FU chemoresistance in colorectal cancer [89] and pancreatic cancer [90]; nevertheless, few reports
explore the expression of lncRNAs in 5-FU-treated BC. Among the recently described is the ncRNA
nuclear paraspeckle assembly transcript 1 (NEAT1) which was upregulated in BC cells and BC patients,
preferentially in stage III–IV tumors vs. stage I–II tumors. This overexpression was associated with
poor prognosis and metastasis. In order to comprehend its biological function, through in vitro assays,
Li and colleagues demonstrated that NEAT1 induces 5-FU resistance by sponging miR-211; this is a
tumor suppressor miRNA that targets high mobility group A (HMGA), a positive regulator of EMT,
present in 5-FU-resistant BC cells [35]. Then, NEAT1 lncRNA may represent an unfavorable marker
of BC.

The lncRNA in non-homologous end joining (NHEJ) pathway 1 (LINP1), was reported as a
promoter of BC progression and chemoresistance through negative regulation of apoptosis-related
proteins. In addition, it stimulates metastasis inducing the expression of EMT-related markers and
decreasing the inhibitory effects of p53 on cancer cell metastasis, showing association between p53
and LINP1. It was also found to be highly upregulated in BC patients with distant metastases and
advanced clinical stage; moreover, its overexpression was correlated with lower OS and disease-free
survival [36].

The third report that we found described that ROR expression was higher in BC tissues,
in lymph-node metastasis, and in BC cell lines (MDA-MB-231). The ROR-expressing BC cells
displayed resistance to 5-FU, epithelial (E)-cadherin underexpression, and increased vimentin and
N-cadherin expression; invasion capability also improved. This makes ROR upregulation an important
drug-resistance marker [33,37]. Unfortunately, lncRNA expression in association with capecitabine
resistance is yet to be described, as we did not find any report about it at the time of writing. Thus,
there is still much to learn about resistance to this and other agents.

2.6.2. Anthracyclines

First known as antibiotics, anthracyclines, including, daunorubicin (DAU), doxorubicin (DOX),
epirubicin (EPI), and idarubicin (IDA), are currently an important class of drugs which exhibit a
strong efficacy in anticancer chemotherapy, mainly used for BC [91]. Although their mechanisms
of action are still controversial, the anticancer activity of anthracyclines may involve the inhibition
of macromolecule synthesis through DNA intercalation, free-radical generation, and inhibition of
topoisomerase II—causing DNA damage, binding, alkylation, and cross-linking—and induction of
apoptosis [92]. Up-to-date literature sustains that patients with intermediate- or high-risk BC, or with
high recurrence should be considered for anthracycline-based regimen depending on factors such as
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age, comorbidities, tumor grade, lymphovascular invasion, and genomic profile. Anthracyclines are
not required for all BC patients, and should be eluded in patients with high cardiac risk. Nonetheless,
many patients are resistant to these agents, which manifests itself in short recurrence times [93,94].

Several lncRNAs are implicated in BC recurrence. However, the regulatory roles of lncRNAs
in chemotherapy resistance of BC to anthracyclines still remain unclear. There are two seminal
works where lncRNA expression in adriamycin-resistant BC cells (MCF-7/ADR) was analyzed using
microarrays, and both works compare their lncRNA profile with that of parental chemosensitive cells
(MCF-7) in order to identify and characterize dysregulated lncRNAs that might be directly involved in
BC chemoresistance. Briefly, Jiang and collaborators summarized, for the first time, a global aberrant
expression of lncRNAs in cells with acquired adriamycin resistance. Among hundreds of differentially
expressed lncRNAs, they identified and explored the role of a new adriamycin resistance-related
lncRNA (ARA), suggesting that it may induce resistance by upregulating long-chain fatty-acid CoA
ligase 4 (ACSL4), which regulates overall gene expression and multiple signaling routes such as MAPK
signaling, focal adhesion, PPAR, and metabolism signaling pathways [38].

On the other hand, more recent microarray analyses allowed identification of another lncRNA
as key player in anthracycline-resistant BC. However, most of the dysregulated lncRNAs in current
databases are not yet functionally annotated; for this reason, the authors predicted their functions
based on their correlated mRNAs and experimental validation. In this work, they showed specific
interactions between lncRNAs and genes, as well as lncRNAs and transcription factors. Based on
this, it was validated that the lncRNA NONHSAT028712 regulated nearby Cyclin-dependent kinase 2
(CDK2), interfering with cell cycle and chemoresistance. Also, the authors identified another group of
lncRNAs—NONHSAT057282 and NONHSAG023333—that interact with chemoresistance-modulating
transcription factors such as ELF1 and E2F1 [39].

Some other studies reported functional screenings in which mechanisms of anthracycline
resistance can be identified; such is the case of lncRNA P21-associated lncRNA DNA damage activated
(PANDA). The overexpression of this lncRNA inhibited the expression of apoptotic genes such as
APAF1, BKI, FAS, and LRDD through competitive binding of the transcription factor NF-YA; there was
a direct association between poor outcome in patients with BC and high PANDA overexpression [40].
The most recently described lncRNA is the imprinted oncofetal H19, which is overexpressed in 70%
of BC patients and its expression was associated with poor prognosis [95]. Zhu Q. et al. reported
that H19 was found significantly overexpressed in doxorrubicine-resistant MCF-7 BC cells. Through
pharmacological and genetic approaches, it was suggested that H19 lncRNA mediates chemoresistance
through the H19/CUL4A/ABCB1/MDR1 axis [41]. As mentioned before, lncRNAs associated with
anthracycline resistance are still uncertain.

2.6.3. Gemcitabine

Gemcitabine (2′,2′-Difluoro 2′-deoxycytidine, dFdC) is a pyrimidine nucleoside antimetabolite,
analog to cytosine arabinoside, originally attributed an antiviral activity; however, it is currently
indicated as a single chemotherapeutic agent for patients with pancreatic cancer in the metastatic
stage [96], small-cell lung cancer (SCLC) [97], bladder cancer [98], head and neck cancers [99], ovarian
cancer [100], and BC [101]. Clinical studies suggest that gemcitabine treatment could be prescribed to
recurrent BC patients that were previously treated with taxanes, and these patients manifest an overall
RR of 25% [102]. Moreover, combined regimens that contain gemcitabine showed a better significant
response rate that gemcitabine alone, although with increased hematologic toxicity [103]. For instance,
a phase II study of the gemcitabine-plus-paclitaxel doublet demonstrated consistent high response
rates (40% to 71%) and manageable toxicity as a first-line therapy in advanced BC patients. In spite of
this, disease recurrence was observed [101]. At the time of writing, we found no reports of lncRNA
associated to docetaxel resistance in BC.
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2.6.4. Cisplatin

Cisplatin, also known as cis-diamminedichloroplatinum(II), was first synthesized in 1844, but it
was not until 1978 that the FDA approved platinum compounds for cancer treatment [104]. Cisplatin
is a metallic (platinum) coordinate compound with a square planar geometry; it is used for treating
a variety of malignancies, including BC [104]. The most well-described modes of action are DNA
damage, DNA synthesis and mitosis inhibition, and apoptosis induction [105]. Platinum salts are
used as a neoadjuvant and palliative treatment for BC. Carboplatin displayed a 43.7% (95% CIs
38.1–49.4) response rate [106], while cisplatin proved more effective with a 64% (95% conditional CIs,
44–81%) response rate [107]. Both treatments cause cell death through disruption of homologous
recombination pathways, a concept known as synthetic lethality [108]. Cisplatin is particularly useful
for triple-negative BC (TNBC), a group of tumors with high genomic instability often associated with
HR deficiencies, accounting for approximately 15–20% of all BC cases [109]. We found a sole report on
lncRNAs associated with NEAT1; Adriaens et al. showed that NEAT1 was able to sensitize MCF7 BC
cell lines to different chemotherapeutics and PARP inhibitors through p53 reactivation [110].

3. Future Perspectives

Ever since the discovery of lncRNAs, accumulating evidence provided a new horizon for
understanding the orchestrated regulation of several genes involved in carcinogenesis and in malignant
phenotype maintenance. Nonetheless, in spite of the progresses of lncRNA studies, few reports
highlight their role as master regulators of drug resistance; thus, there is still much to say in the realm
of drug-resistant lncRNAs.

Here, we performed a literature review searching for current reports that identified, analyzed, and
proposed lncRNAs as potential systemic treatment-resistance biomarkers in BC (endocrine therapy,
targeted therapies, and chemotherapy). In addition to the actual data discussed above, we found that
lncRNA studies published in high-impact journals were not as frequent as those from other seemingly
similar research areas, such as miRNAs [111]. This might be a consequence of the lack of widely
accepted standardized methodologies, but it might also reflect that lncRNAs are yet to be recognized
as important regulators of gene function, meriting solid experiment planning that yields strong results.
We hope that this review helps lncRNA research gain traction among the scientific community so that
more resources are devoted to it, widening our understanding of their functions.

Our analysis allowed us to identify lncRNAs whose higher expression is associated with resistance
to one or more systemic treatments (Table 1 and Figure 1). For instance, UCA1 was reported to enhance
resistance to tamoxifen [20,21] and trastuzumab therapies [29]. Higher UCA1 expression also predicts
gemcitabine resistance in bladder cancer [57], but there are no reports about its biomarker role in BC.
Therefore, lncRNAs could be a very broad field of future research with clinical applications.

It is particularly interesting that lncRNAs participate in multi-level post-transcriptional regulation:
they downregulate miRNAs through sponging—which, in turn, regulate mRNAs—effectively
upregulating the messengers, i.e., they regulate the regulators. For example, UCA1 regulates
several routes such as AKT/mTOR, PI3K, MAPK, and WNT/β-catenin signaling by sponging
miR-143 [112] and miR-18 [22]. Also, ROR overexpression has an important role favoring resistance
to tamoxifen, paclitaxel, and 5-FU through epithelial–mesenchymal transition [63], and invasion
capability regulation [33,37]. Several studies reported the role of HOTAIR as a relevant lncRNA in
BC [65,67,68] since it is associated with tamoxifen resistance through interaction with the ER protein
that activates transcription in absence of estrogens [25]. Likewise, the role of HOTAIR in cisplatin
resistance was reported in ovarian [113] and lung adenocarcinoma [114]. Perhaps it is not studied in
BC due to this drug being less used in this cancer.

Taken together, these data show us the complexity that known treatment evasion mechanisms can
reach, and highlight the importance of further deepening our understanding of them. Therefore, we
propose these lncRNAs as potential biomarkers of resistance to systemic treatment in BC and find it
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reasonable to speculate that blocking UCA1 or ROR will allow us to sensitize breast tumors to several
drugs at the same time.

This review leaves several lines of research open, since several lncRNAs (Table 1) involved in
drug resistance are categorized as such from association studies, and their precise functions are still
unknown. The fact that they are not yet functionally annotated in current databases complicate the
analysis; however, He DX et al. were able to predict the biological function of NONHSAT028712,
NONHSAT057282, NONHSAG023333, and NONHSA6023333 using informatics tools [39].

The role of lncRNAs in resistance to common drugs docetaxel, gemcitabine, and cisplatin, and
other less described therapies, such as bevacizumab, lapatinib, and everolimus, is urgently needed
so as to complete an integrative scenario of lncRNAs as potential biomarkers of resistance to all
systemic treatments. Data from our search make it reasonable to speculate that such a role exists,
at least for the more common aforementioned therapies, as lncRNAs do mediate resistance to them
in other cancer types. For instance, UCA1 [115], POTEF-AS1 [116], and MALAT1 [117] contribute
to resistance to docetaxel in prostate cancer cells; UCA1 is also reportedly overexpressed in human
bladder carcinoma, where it promotes cancer cell proliferation, migration, invasion, and gemcitabine
resistance [57]. Meanwhile, lncRNA-LET is downregulated in chemoresistant urinary bladder cancers,
and its overexpression delayed gemcitabine-induced tumor recurrence [118]. The correlation between
HOTAIR and cisplatin resistance was described in ovarian cancer [113] and lung adenocarcinoma [114],
where it causes inhibition of cisplatin-induced apoptosis and downregulation of the p21 gene,
respectively. Likewise, it was reported that UCA1 overexpression increased cisplatin-resistant
bladder cancer; it increases WNT6 expression which, in turn, regulates the WNT signaling pathway
positively [119]. It was demonstrated that NEAT1 regulated cisplatin resistance in nasopharyngeal
carcinoma by targeting Rsf-1 [120]. Conversely, in lung cancer, NEAT1 enhanced cisplatin sensitivity
by upregulating CTR1 [121]. Research in this area will lead to identifying potential therapy targets with
the purpose of eventually avoiding or reverting resistance, the principal obstacle of treatment success.

Thankfully, lnRNAs are an en vogue topic; thus, in addition to the expression profiles, more
biological and clinical studies involving signaling pathways, biological mechanisms, stages, and
subtypes are surely in the pipeline, and our understanding of their role in drug resistance will only
broaden in the foreseeable future.
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