Influence of cationic *meso*-substituted porphyrins on the photodynamic inactivation and cell membrane interaction with *Escherichia coli*

Alexandra N. Hurst^{1,3,4}, Beth Scarbrough^{1,3,4}, Roa Saleh¹, Jessica Hovey¹, Farideh Ari¹, Shreya Goyal^{2,3}, Richard J. Chi^{2,3}, Jerry M. Troutman^{1,3,4,*}; Juan L. Vivero-Escoto^{1,3,4,*}

¹ Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA

² Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte NC 28223, USA

³ The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA

⁴ Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA

Materials and Methods

All commercial chemicals and solvents were of reagent grade or higher and were used as received. Tetraphenyl porphyrin (TPP) was purchased from TCI. 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (5) and 5,10,15,20-tetrakis(N-methylpyridinium)porphyrin iodide (6) were purchased from PorphyChem. All experiments with moisture/air-sensitivity were performed in anhydrous solvents under a nitrogen atmosphere. Column chromatography was performed using silica G60 (70-230 mesh). IR spectra were recorded on a Perkin-Elmer 100 IR spectrophotometer. ¹H NMR spectra were recorded on a 300 MHz or 500 MHz JEOL NMR spectrometer and are referenced with CDCl₃ and DMSO-*d*₆ solvents. Mass spectra were obtained using a Voyager Biospectrometry Laser MALDI-TOF spectrometer or Thermal Scientific MSQ Plus ESI spectrometer. UV-Vis spectra were recorded on a Jobin Yvon Fluorolog 3. High resolution fluorescence microscopy z-stacking images were collected using a DeltaVision Elite Workstation based on an inverted microscope (1X-70; Olympus) equipped with a 100x, 1.4 NA oil immersion lens.

Scheme S1. Schematic representation to illustrate the synthesis of cationic porphyrins (1-4). For simplicity, only the synthetic protocol for **3** is depicted. First, the nitration of the para position of the tetraphenyl porphyrin (TPP) was carried out using NO₂BF₄ as a nitrating agent. The resulting nitro groups were then reduced with SnCl₂ in acidic medium. In the final step, the amino phenyl porphyrin derivatives were alkylated using a large excess of methyl iodide.Porphyrin **2** was synthesized following a similar approach. Cationic porphyrins **1** and **4** were synthesized by methylation with CH₃I from the corresponding amino derivatives.

Figure S1. EC₅₀ survival curve of **1** (blue), **2** (red), **3** (black), **4** (orange) and **6** (green) against E. coli. Values are reported as a percent survival relative to DMSO treated controls. Data obtained for a minimum of three independent experiments with fresh cultures. Plots depict the same data with a linear (top left) or log (all others) % survival-axis. Hill coefficients were assigned as shown in Table 2. Hill coefficients were weighted to fit the higher concentration data that did not lead to complete inactivation. Zero is given a 10⁻⁵ % survival, which is the detection limit of the assay. All replicate points at a given concentration were from independent experiments. Fitting statistics for each compound were as follows: **1**: R=0.9801, **2**: R=0.8742, **3**: R=0.8777, **4**: R=0.9002, **6**: R=0.9749. The lower two plots are of data with compounds **4** and **6** using the Hill coefficient of 2.5 (dotted line) versus the coefficient used here to determine EC₅₀ (solid line).

Figure S2. Fluorescence micrographs depicting the interaction of cationic porphyrins **1-6** with *E. coli*. [PS] = 1 μ M; Incubation time: 30 min.

Figure S3. Calibration curves were constructed for 3 and 4 in 2% SDS.