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Abstract: Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western
world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel
most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid
tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes
a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these
conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to
their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly,
independent of microenvironmental factors, mitochondria spatial redistribution has been associated to
both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations
have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive
ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of
chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration
in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the
deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as
critical in sustaining solid tumor progression.
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1. Introduction

The most recent global statistic estimates 295,414 newly diagnosed cases of ovarian cancer every year
and 184,799 annual death from this disease [1]. Such a high mortality rate is primarily attributed to the
fact that early disease produces absent or nonspecific symptoms, leading to delayed diagnoses until late
stages. Greater than 75% of ovarian cancer cases go undetected until an advanced stage, which is difficult to
treat effectively. The 5-year survival rate of late stage ovarian cancer remains around 30%, in spite of novel
chemotherapy regimens such as intraperitoneal delivery and targeted therapies including poly (ADP-ribose)
polymerase (PARP) inhibitors, anti-angiogenics [2]. Standard treatment consists of tumor debulking surgery
followed by platinum and paclitaxel chemotherapy. Patients typically tolerate the treatment well and go into
remission, but disease recurrence is common. Chemoresistance in ovarian cancer is due to both the intrinsic
ability of ovarian cancer cells to resist chemotherapy and the ovarian cancer tumor microenvironment.
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The latter, which is composed by extracellular matrix (ECM), cancer-associated fibroblasts (CAF) and
immune and endothelial cells, provides a positive feedback for ovarian cancer to thrive by increasing cancer
cells’ proliferation, promoting angiogenesis, and help remodeling the extracellular matrix so to create space
for the tumor to grow [3,4].

Due to these complexities, effective treatment of recurrent and chemotherapy-resistant disease
remains a significant challenge in the management of epithelial ovarian cancer.

Recurrence arises when cell populations evade the effects of chemotherapy. Non-proliferative,
or quiescent, cancer cells are resistant to paclitaxel and carboplatin. Although a general problem for all
ovarian cancers, recurrence is variable among subtypes. The majority (90%) of ovarian cancers develop
in the epithelium. Epithelial ovarian cancer (EOC) is what is referred to in generalizations of ovarian
cancer. EOC is also made up of several subtypes, such as serous, endometrioid, clear cell, mucinous,
and mixed [5]. Ovarian clear cell carcinoma (OCCC) has the highest rate of recurrence among
EOC, suggesting a poor response to treatment [6]. Besides the epithelium, ovarian cancer can also
originate from germ cells or stromal tissue, however these are diagnosed at earlier stages on average,
and therefore have much higher survival rates. Small cell carcinoma of the ovary, hypercalcemic type
(SCCOHT) is a rare ovarian cancer, typically found in young women, that is essentially untreatable [7].
This review primarily focuses on EOC.

A consideration of the unique cellular and environmental features of chemoresistant ovarian cancer
cells could shed light on potential therapeutic improvements targets. Depleted oxygen and glucose in the
microenvironment of ovarian cancer limits the potential for cellular metabolic plasticity, which has only
recently been appreciated as playing a key role in cancer progression and chemoresistance. This review
focuses on the metabolic profiles and adaptations of chemoresistant ovarian cancer cells in order to
exploit their unique characteristics and improve treatment outcomes. Historically, cancer cell metabolism
has been understood through the Warburg effect, which describes a compensation for increased energy
demand via upregulated glycolysis [8,9]. However, while Warburg effect is a necessary metabolic
shift for cell division and proliferation [10], recent evidences suggests that mitochondria and Oxidative
Phosphorylation (OXPHOS) are essential to bioenergetics, biosynthesis, and signaling in proliferative and
quiescent cancer cells [11–14]. In fact, recent findings in ovarian cancer suggest that chemoresistant cell
types have an elevated dependence on OXPHOS and sensitivity to OXPHOS inhibitors. We propose that
tumor-selective inhibition of the electron transport chain (ETC) could eliminate these cells while allowing
a therapeutic window for normal cells, therefore preventing ovarian cancer reoccurrence.

2. Microenvironment of Ovarian Cancer

The majority of ovarian cancer patients are diagnosed after the disease has metastasized
throughout the abdominal cavity [15]. At this stage, the average ovarian tumor is about the size
of a lime [16]. A tumor of this size becomes irregularly vascularized resulting in poorly perfused,
hypoxic regions [17]. While tumor hypoxia is widely appreciated, an occasionally overlooked detail is
that avascular regions of tumors are not only hypoxic but also nutritionally compromised, resulting in
a limited potential for cellular metabolic plasticity. Late stage and recurring ovarian cancer consist of
solid tumors throughout the abdominal cavity. As tumors grow in size, they shed cells into the ascitic
fluid [18]. Suspended ovarian cancer cells aggregate to form dense spherical clusters (spheroids),
which invade surface tissues to form new tumors [19]. An accumulation of peritoneal ascitic fluid is
more common in ovarian cancer than any other tumor type and thought to be the major conveyance
for metastatic spread of ovarian cancer [18,20]. It causes bloating, decreased appetite, and discomfort
and is one of the identifying symptoms of the disease. As depicted in Figure 1, the disease is usually
contained to pelvic and peritoneal tissues for the majority of its progression. As a result, ovarian cancer
subsists and spreads within a unique biochemical microenvironment compared to cancers that utilize
the vasculature for metastasis [18,20]. Malignant ascites is hypoxic (~50% less soluble oxygen than the
blood [21]) and has been reported to contain depleted levels of glucose [22].
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Figure 1. Ovarian cancer metastasis throughout the abdominal cavity. Proliferative ovarian cancer 
cells are indicated in dark blue. Adherent ovarian tumors (primary and metastatic) are irregularly 
vascularized, which results in cell populations that are deprived of necessary nutrients (indicated in 
light blue). These cells become quiescent making them resistant to chemotherapy. Ovarian tumors 
shed cells into the ascites fluid in the form of single cells or small cell clusters. Suspended ovarian 
cancer cells can aggregate and compact to form dense spheroids. Spheroids are proliferative on the 
surface, but contain a large population of quiescent cells within. Spheroids can invade surface tissues, 
such as the omentum, to access more nutrients and form metastatic tumors. 

A subset of cancer cells found throughout the ascites and spheroids in ovarian cancer are 
considered to have stem cell-like capabilities such as the ability to self-renew, differentiate, and 
initiate new tumors at low seeding [23,24]. Unlike somatic stem cells, ovarian cancer stem cells (CSCs) 
have been described to have rate of proliferation similar to other tumor cells, to be characterized by 
selective chemoresistance pathways and markers [25–27] and treating of the disease with 
chemotherapy, to enrich their prevalence [28]. Thus, CSCs pose a major hurdle for effective ovarian 
cancer treatment and are attractive targets for novel cancer therapies [29]. Depleted nutrients in the 
cellular microenvironment forces ovarian cancer cells to adapt their metabolic needs in order to 
survive creating vulnerability we hope to exploit. 

3. Ovarian Cancer Spheroids and Their Characterization 

Ovarian cancer spheroids suspended in the ascites can grow up to 500 µm in diameter [30]. Like 
tumors, spheroids of this size can develop chemical and nutritional gradients [17]. The outer cellular 
layer of a spheroid is proliferative and depends on the limited levels of glucose and oxygen in the 
ascites, but inside the spheroid, cells are dense and hypoxic [17]. Spheroids are considered a major 
vehicle for peritoneal metastasis [19] and are difficult to eliminate with chemotherapy. The main site 
for spheroid invasion is the omentum [18,31], which is a layer of fatty tissue that drapes over the 
abdomen and pelvis [20]. The omentum is made up of white adipocytes [32], which are actively 
involved in cytokine signaling [18]. Cytokines such as interleukin (IL)-6 and IL-8 attract spheroids to 
the omentum [31]. IL-6 may also contribute to the symptoms of nausea, vomiting, and anorexia, 
which compromise the availability of glucose [33]. Importantly, in vitro multicellular tumor spheroids 
(MCTS) have been used in drug screens to identify compounds that are effective against 3-
dimensional spheroids including spheroids derived from ascites of ovarian cancer patients [34–36]. 

4. Microenvironment-Dependent Metabolism in Ovarian Cancer 

The standard chemotherapy regimen for ovarian cancer patients is a combination of paclitaxel 
and carboplatin, which selectively eliminate rapidly proliferating cells [2]. In poorly vascularized 
areas of tumors, environmental factors will result in cells becoming quiescent [37], making them 
unresponsive to carboplatin and paclitaxel. In spheroids, for example, it is estimated that less than 
40% of the cells are proliferative [38]. Hyperthermic intraperitoneal chemotherapy (HIPEC) has been 
used with some success to eliminate poorly vascularized tumors. A multicenter, open-label, phase 3 
trial, conducted on ovarian cancer patients with stage III disease, showed that the use of HIPEC 
resulted in longer recurrence-free survival and overall survival than surgery alone suggesting that 

Figure 1. Ovarian cancer metastasis throughout the abdominal cavity. Proliferative ovarian cancer
cells are indicated in dark blue. Adherent ovarian tumors (primary and metastatic) are irregularly
vascularized, which results in cell populations that are deprived of necessary nutrients (indicated in
light blue). These cells become quiescent making them resistant to chemotherapy. Ovarian tumors
shed cells into the ascites fluid in the form of single cells or small cell clusters. Suspended ovarian
cancer cells can aggregate and compact to form dense spheroids. Spheroids are proliferative on the
surface, but contain a large population of quiescent cells within. Spheroids can invade surface tissues,
such as the omentum, to access more nutrients and form metastatic tumors.

A subset of cancer cells found throughout the ascites and spheroids in ovarian cancer are considered to
have stem cell-like capabilities such as the ability to self-renew, differentiate, and initiate new tumors at low
seeding [23,24]. Unlike somatic stem cells, ovarian cancer stem cells (CSCs) have been described to have
rate of proliferation similar to other tumor cells, to be characterized by selective chemoresistance pathways
and markers [25–27] and treating of the disease with chemotherapy, to enrich their prevalence [28]. Thus,
CSCs pose a major hurdle for effective ovarian cancer treatment and are attractive targets for novel cancer
therapies [29]. Depleted nutrients in the cellular microenvironment forces ovarian cancer cells to adapt their
metabolic needs in order to survive creating vulnerability we hope to exploit.

3. Ovarian Cancer Spheroids and Their Characterization

Ovarian cancer spheroids suspended in the ascites can grow up to 500 µm in diameter [30].
Like tumors, spheroids of this size can develop chemical and nutritional gradients [17]. The outer
cellular layer of a spheroid is proliferative and depends on the limited levels of glucose and oxygen in
the ascites, but inside the spheroid, cells are dense and hypoxic [17]. Spheroids are considered a major
vehicle for peritoneal metastasis [19] and are difficult to eliminate with chemotherapy. The main
site for spheroid invasion is the omentum [18,31], which is a layer of fatty tissue that drapes over
the abdomen and pelvis [20]. The omentum is made up of white adipocytes [32], which are actively
involved in cytokine signaling [18]. Cytokines such as interleukin (IL)-6 and IL-8 attract spheroids
to the omentum [31]. IL-6 may also contribute to the symptoms of nausea, vomiting, and anorexia,
which compromise the availability of glucose [33]. Importantly, in vitro multicellular tumor spheroids
(MCTS) have been used in drug screens to identify compounds that are effective against 3-dimensional
spheroids including spheroids derived from ascites of ovarian cancer patients [34–36].

4. Microenvironment-Dependent Metabolism in Ovarian Cancer

The standard chemotherapy regimen for ovarian cancer patients is a combination of paclitaxel and
carboplatin, which selectively eliminate rapidly proliferating cells [2]. In poorly vascularized areas of tumors,
environmental factors will result in cells becoming quiescent [37], making them unresponsive to carboplatin
and paclitaxel. In spheroids, for example, it is estimated that less than 40% of the cells are proliferative [38].
Hyperthermic intraperitoneal chemotherapy (HIPEC) has been used with some success to eliminate poorly
vascularized tumors. A multicenter, open-label, phase 3 trial, conducted on ovarian cancer patients with
stage III disease, showed that the use of HIPEC resulted in longer recurrence-free survival and overall
survival than surgery alone suggesting that HIPEC could be used in the management of ovarian cancer as
a part of first line therapy and second line therapy for recurrent disease [39].



Int. J. Mol. Sci. 2019, 20, 229 4 of 14

Quiescent cancer cells in avascular regions, however, use mitochondrial OXPHOS for the majority
of ATP production [10]. OXPHOS is able to function optimally at oxygen levels as low as 0.5% [11].
In ovarian cancer cells, increased dependence on OXPHOS corresponds to lower rates of proliferation and
chemoresistance whereas increased glycolysis was associated with chemosensitivity [40]. Ovarian tumors
show increased mtDNA copy numbers [41] and intact mitochondria isolated from human ovarian tumors
have been shown to have substantive oxidative phosphorylating activities [42]. These observations are in
agreement with recent studies of other types of cancer [43–45].

Spheroids have a significantly more active TCA cycle than their 2-dimensional counterpart and
depend on OXPHOS for ATP production in both quiescent and proliferative layers [46]. A study
in breast cancer spheroids showed that OXPHOS was the predominant supplier of ATP in both
quiescent and proliferative layers [47]. Increased OXPHOS in ovarian cancer cells enhances IL-6
production [48], which promotes cancer cell survival and proliferation [49], impairs responsiveness to
chemotherapy, and shortens progression-free survival of ovarian cancer patients [50]. CSCs have shown
high metabolic plasticity prior to differentiation [51–54] and an increase in TCA cycle activity [46].
Ovarian CSCs have active mitochondria [55,56], higher rates of OXPHOS, and are more sensitive to
OXPHOS inhibitors than non-CSC [54,56,57]. Taken together, this supports the notion that spheroid
formation, lower proliferation rates, and chemoresistance in ovarian cancer are associated with greater
mitochondrial function and dependence on OXPHOS. OXPHOS dependence of quiescent ovarian
cancer cells, in combination with the limited potential to switch to glycolysis in glucose-deprived tumor
regions, offers the potential for targeted therapies in cooperation with chemotherapy to eliminate
proliferative and quiescent cancer cells simultaneously and prevent reoccurrence. See Figures 2 and 3.
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Figure 2. Therapeutic window for cancer cells in the presence of an OXPHOS inhibitor. (Top) Normal
body cells have moderate ATP demand and adequate levels of oxygen and glucose. Thus, they survive
in presence of OXPHOS inhibitors by upregulating glycolysis to meet their ATP demands. Middle panel.
Highly proliferating cancer cells have extraordinarily high ATP demand and adequate levels of oxygen and
glucose. Despite glycolytic pathway upregulation, OXPHOS inhibition causes cancer cells not to be able to
meet their ATP demand and die. (Bottom) Quiescent cancer cells have low ATP demand but live in a highly
compromised microenvironments characterized by low glucose and hypoxia. For these cells, inhibition of
OXPHOS is lethal as there is not sufficient glucose to compensate for the loss of ATP production. Thicker
arrows indicate relatively greater activity. Bold text indicates a relatively higher abundance of the item.
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Figure 3. Hypothesis of how standard chemotherapy in combination with OXPHOS inhibitors
could be a promising strategy for ovarian cancer elimination and the prevention of reoccurrence.
In ovarian tumors and spheroids, standard chemotherapy treatment is very effective at killing highly
proliferative cells (dark blue). However, populations of quiescent cells (light blue) survive causing
tumor regeneration and cancer reoccurrence. OXPHOS inhibitors are effective at eliminating quiescent
ovarian cancer cells in metabolically compromised microenvironments.

5. MYC-CDK2/4-RB1 Signaling Pathways

One of the anabolic pathways commonly activated in tumor cells is the MYC pathway [58]. MYC
has multiple functions, one of which is to increase oxygen consumption and mitochondrial mass [59].
This regulation may either be direct via binding of MYC to mitochondrial genes and also binds the
TFAM gene, a key transcriptional regulator and mitochondrial DNA replication factor [59]. MYC is
amplified in Ovarian Clear Cell Carcinoma and alterations in MYC-CDK2/4-RB1 signaling pathways
is found in 75% of all tumors in this group [60]. Both disease-free and overall survival of ovarian
cancer patients as negatively associated with high MYC expression and high MYC levels are associated
with platinum resistance [61]. Interestingly, treatment with MYC-siRNA has been found to result in
significant reduction in vivo tumor growth [62]. Whether increased mitochondrial biomass observed
in ovarian cancer [41] is correlated to MYC amplification has to our knowledge not been investigated.

6. Microenvironment-Independent Mitochondrial Addiction in Ovarian Cancer SWI/SNF
Mutations and Metabolism

In addition to microenvironmental factors in ovarian tumors and spheroids leading to quiescence
and OXPHOS-dependence, there are also genetic mutations that cause aberrant dependence on
OXPHOS in specific subtypes of ovarian cancer [63]. The SWI/SNF nucleosome remodeling complex
plays a role in cell proliferation, stemness, and differentiation and is among the most frequent
mutations in cancer [64]. Inactivating mutations of ARID1A, a DNA binding subunit of the SWI/SNF
complex, are found in over 50% of ovarian clear cell carcinoma (OCCC) cases [65] and 30% of ovarian
endometrioid carcinomas [66] and are associated with late stage diagnosis and recurrence. Mutations
in SMARCA4, an ATPase and helicase subunit of the SWI/SNF complex, are characteristic features of
SCCOHT [67,68], and considered a major cause of the disease. A recent study on lung cancer implicated
ARID1A and SMARCA4 in the enrichment of OXPHOS pathways and increased mitochondrial
respiration [63]. Furthermore, SMARCA4 and ARID1A mutated tumors were significantly more
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sensitive to inhibition of OXPHOS as compared with wild-type [63], which opens a therapeutic
window for cancer treatment via OXPHOS inhibitors. As previously mentioned, OCCC has a higher
rate of recurrence and lower survival rate compared to other types of EOC. Although rare, SCCOHT
occurs primarily in young women (median age of 24 years [69]) and is virtually untreatable. Less than
10% of SCCOHT patients survive the first 5 years after diagnosis [7]. OXPHOS inhibition as a targeted
treatment for ovarian cancer could be especially impactful on the outcomes of patients with these
mutations and subtypes leading to personalized treatments for patients.

7. Microenvironment-Independent Mitochondrial Addiction in Ovarian Cancer Mitochondria
Motility and Metastasis

In addition to playing a role during cancer cells’ adaptation to hypoxic environment, mitochondria
have been shown to be important during solid tumor metastasis and in chemoresistance [70–72].
During metastasis, energetically active mitochondria need to reposition from the perinuclear regions
where they are normally found, to the cells’ leading edges. This repositioning has been suggested to
promote tumor invasion and metastasis via providing the local energy needed for cancer cells to invade
the surrounding tissues [70]. Microtubules associated proteins (MAPs) including syntaphilin (SNPH)
play a crucial role in mitochondria dynamics by anchoring mitochondria to microtubules thus limiting
their trafficking within cells. In this scenario, cells lacking SNPH have more motile mitochondria.
While SNPH was originally identified as a regulator or axonal mitochondria, a number of increasing
evidences indicate that downregulation of SNPH is a trait of aggressive and metastatic human tumors
as it leads to accumulation of mitochondria to cells’ leading edges thus promoting metastasis [73].
According to the Cancer Genome Atlas (https://cancergenome.nih.gov/), in ovarian cancer, the levels
of SNPH are 4-fold lower than in the normal ovarian tissues suggesting that abnormal mitochondria
positioning may be a contributor of poor patient outcome.

8. Drug Screens and Prospective Therapies

Depriving cells of glucose and oxygen in vitro has been shown to reduce the efficacy of
several conventional anticancer drugs, including cisplatin [74], which underscores the importance
of identifying anticancer agents under conditions of nutrient depravation. Esumi and coworkers
have described a number of natural products and other drugs that show anti-proliferative effects on
tumor cells grown under conditions of nutrient starvation. Strikingly, all of these drugs interrupt
OXPHOS by inhibiting members of the electron transport chain (ETC). In vitro multicellular tumor
spheroids (MCTS) have been used in drug screens to identify compounds that are effective against
3-dimensional spheroids. One such screen resulted in the identification of a number of ETC inhibitors
(oligomycin A, rotenone, atpenin A5 and metformin) as well as mitochondrial uncouplers that dissipate
the proton gradient driving ATPase function (valinomycin, dinitrophenol, and FCCP) [75]. A separate
MCTS 16,000-compound screen identified ETC inhibitors pyrvinium pamoate and salinomycin,
and uncouplers closantel, nitazoxanide, and niclosamide [76]. A 10,000-compound MCTS screen
identified one novel OXPHOS inhibitor, VLX600, which reduces the viability of quiescent cells in in vivo
tumors as well as causing spheroid reduction, and inhibition of tumor proliferation [77]. In summary,
drug screens under nutrient starvation conditions and screens using MCTS have consistently identified
candidates that interrupt OXPHOS by inhibiting or uncoupling the ETC.

Many of the mitochondrial inhibitors from the aforementioned drug screens are antibiotic
or anti-parasitic agents. Antibiotics such as macrolides, clindamycin, tetracycline, chloramphenicol,
and linezolid have an inhibitory effect on the expression of ETC complexes. Azithromycin has been
shown to enhance the effects of cisplatin and paclitaxel [78] and inhibit sphere formation [79]. Doxycycline
inhibits the proliferation of ovarian cancer cells and is selectively potent against cisplatin-resistant cells [80].
Salinomycin inhibits growth, decreases viability, and promotes apoptosis of ovarian CSCs in combination
with paclitaxel [81,82]. Alone, salinomycin has an apoptotic affect that selects for ovarian cancer cells,
but not normal ovarian cells [83] and is more potent against cisplatin-resistant ovarian cancer cell lines

https://cancergenome.nih.gov/
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than cisplatin-sensitive. Bedaquiline inhibits ATP-synthase in bacteria and mitochondria [84] and has been
shown to hinder CSCs [85]. While not a direct inhibitor of mitochondrial activity, the activator of pyruvate
dehydrogenase (PDH), CPI-613 has been shown to indirectly suppress mitochondrial ATP production and
lead to cell death in several cancer cell lines including ovarian cancer cells [86].

Clinically available drugs, including antibiotics, are attractive options for exploring alternative
treatments for ovarian cancer because their toxicity and dosing are already understood; so too is
the diabetes medication, metformin, which inhibits Complex I of the ETC [87]. Systemic review of
metformin use and ovarian cancer showed a 40% reduction in cancer incidence and a 60% improvement
in survival, however, the studies reviewed were primarily observational and the authors suggest these
results should be interpreted cautiously [88]. In-vivo, metformin alone inhibits cell proliferation [89,90]
tumor growth, metastasis and angiogenesis [89]. Combination with cisplatin enhanced the effect [91]
and combination with paclitaxel showed a 60% reduction in tumor mass [90]. In Table 1 are examples
of mitochondrial inhibitors reported to have antineoplastic activity in different tumor models. At least
three of these inhibitors have been entered into clinical Phase 1 trials (Clinicaltrials.gov). Results on
inhibition of tumor progression are generally not available or have been included as endpoints of the
studies. The complex I inhibitor BAY 87-2243 has been evaluated in a Phase 1 study (NCT01297530) but
results were not reported. Niclosamide was concluded not to be a viable compound for treatment of
colorectal cancer due to toxicity (NCT02532114) [92]. Finally, a number of Phase 1 studies are ongoing
or have been conducted with metformin with results generally not reported. One of the studies where
have results were reported is NCT01579812 (“Evaluation of Metformin, Targeting Cancer Stem Cells for
Prevention of Relapse in Gynecologic Patients”). Only 38 patients were evaluated in the study where
metformin was combined with chemotherapy, too few in order to address the question of whether
metformin will indeed improve the clinical course of ovarian cancer.

Table 1. Examples of mitochondrial inhibitors reported to have antineoplastic activity.

Target Effect in Tumor Model References

Salinomycin Mitochondrial K+/H+ Exchange [93]

Colon cancer [94]
Pancreas cancer, combination [95]

Ovarian cancer [96]
Nasopharyngeal carcinoma [97]

Colon cancer [98]

Nitazoxanide Uncoupler [76] Colon cancer, combination [76]
Breast cancer [99]

Niclosamide Uncoupler [100]

Colon cancer metastasis model [100]
Radiotherapy-resistant breast cancer [101]

Adrenocortical carcinoma [102]
Breast cancer [103]

Bedaquiline OXPHOS [85] Lung cancer [84]

VLX600 OXPHOS [77]
Colon cancer [77]

Gastrointestinal stromal tumor [104]

Pyrvinium OXPHOS [79] Pancreas cancer [105]

Metformin OXPHOS [106]

Ovarian cancer [89]
Ovarian cancer [90]
Ovarian cancer [91]
Glioblastoma [107]
Colon cancer [108]

BAY 87-2243 Complex I [109] Melanoma [110]

Atovaquone Complex III [111] Head-neck cancer, radiation enhancement [111]

Azithromycin Mitochondrial protein synthesis [79] Lung cancer [112]

Doxycycline Mitochondrial protein synthesis [79] Ovarian cancer, peritoneal [80]
Breast cancer bone metastasis [113]

Tigecycline Mitochondrial protein synthesis [114] Lung cancer [115]
Hepatocellular carcinoma [116]

Mitochondrial protein synthesis [114] Lung cancer [115]
Hepatocellular carcinoma [116]

Clinicaltrials.gov
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9. Conclusions

Late stage ovarian cancer remains an aggressively recurrent disease. Ovarian tumors grow to
be very large and shed malignant cells into the ascites that organize into compact cellular spheroids
capable of adhering to peritoneal tissues and forming metastatic tumors. Depletion of environmental
oxygen and glucose arises due to irregular vascularization of tumors and confinement to the peritoneal
cavity. The standard chemotherapy treatment of carboplatin and paclitaxel is effective at eradicating
proliferative cells, but leaves behind populations that can cause the disease to reoccur. Recurring
patients have widely metastatic disease, decreased response to future chemotherapy and almost always
ultimately succumb to it. Effective treatment of late stage ovarian cancer remains a major challenge.

In order to tackle the problem of recurrence in ovarian cancer, chemoresistant cell populations
must be characterized and their weaknesses exploited. Since chemotherapy targets rapidly proliferating
cells, quiescent cells are immune to its effects. The microenvironment of ovarian cancer is hypoxic
and glucose deprived due to irregular vascularization. Quiescent tumor cells depend on OXPHOS
for the majority of energy production. Due to their state of nutritional starvation the capacity
for metabolic plasticity is limited, which sensitizes them to mild inhibition of their major source
of ATP: OXPHOS. OXPHOS inhibition could also improve our ability to target CSCs, which are
major contributors to recurrence. Highly chemoresistant and present throughout ovarian tumors,
ascites, and spheroids, CSCs depend on metabolic plasticity to survive adverse microenvironments.
Accordingly, they have hyperactive mitochondria and are highly dependent on OXPHOS. Furthermore,
subtypes of ovarian cancer that are particularly difficult to treat have a genetic enhancement of
OXPHOS activity. The aberrant dependence on OXPHOS in ovarian cancer calls for therapeutic
improvements with inhibitors of mitochondrial respiration that allow a therapeutic window for
normal cells. Such a threshold has been demonstrated in cells for several OXPHOS inhibitors. Recently,
mitochondria spatial redistribution has also been associated to tumor metastasis.

In this scenario, antibiotics that disrupt the ETC such as azithromycin, doxycycline, salinomycin,
and bedaquiline have demonstrated anti-cancer activity including inhibition of spheroid formation,
growth inhibition of chemoresistant cells, and elimination of CSCs [78–85]. The commonly-used
diabetes drug and ETC inhibitor, metformin, has had a remarkable anti-cancer effects in ovarian cancer
cells and CSCs and is suggested to dramatically improve survival rates in diabetic ovarian cancer
patients [88,91]. As previously mentioned, many of these drugs significantly improve the effects of
standard ovarian cancer treatment. Use in combination with carboplatin and/or paclitaxel could lead
to major improvements in outcomes of ovarian cancer patients.
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