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Abstract: Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by the
progressive substitution of functional myocardium with noncontractile fibro-fatty tissue contributing
to ventricular arrhythmias and sudden cardiac death. Cyclophilin A (CyPA) is a ubiquitous protein
involved in several pathological mechanisms, which also characterize ACM (i.e., fibrosis, inflammation,
and adipogenesis). Nevertheless, the involvement of CyPA in ACM cardiac remodeling has not been
investigated yet. Thus, we first evaluated CyPA expression levels in the right ventricle (RV) tissue
specimens obtained from ACM patients and healthy controls (HC) by immunohistochemistry. Then,
we took advantage of ACM- and HC-derived cardiac mesenchymal stromal cells (C-MSC) to assess
CyPA modulation during adipogenic differentiation. Interestingly, CyPA was more expressed in the RV
sections obtained from ACM vs. HC subjects and positively correlated with the adipose replacement
extent. Moreover, CyPA was upregulated at early stages of C-MSC adipogenic differentiation and was
secreted at higher level over time in ACM- derived C-MSC. Our study provides novel ex vivo and
in vitro information on CyPA expression in ACM remodeling paving the way for future C-MSC-based
mechanistic and therapeutic investigations.

Keywords: cyclophilin A; arrhythmogenic cardiomyopathy; cardiac mesenchymal stromal cells;
adipogenesis; fibrosis

1. Introduction

Arrhythmogenic cardiomyopathy (ACM) is a rare inherited disease characterized by progressive
cardiomyocyte death and fibro-fatty replacement of functional myocardial tissue [1,2]. The typical
form of ACM is due to mutations in genes encoding for desmosomal proteins [3,4]. Alterations
in desmosome organization compromise the mechanical and electrical interaction among cardiac
cells [5,6], especially under conditions that increase myocardial strain (e.g., strong athletic activity),
and provide signaling at the basis of the widely recognized ACM pathological features (i.e., fibrosis,
adipogenesis, and inflammation) [7–11]. The progression of fibro-fatty substitution, predominantly
located in the right ventricle (RV), causes ventricular dilatation, wall thinning, and in about 50% of
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patients, aneurysmal dilation typically located in the “triangle of dysplasia” (i.e., RV outflow tract,
apex, and infundibulum) [12]. Moreover, this remodeling process negatively influences the already
compromised intraventricular conduction of electrical impulses, worsening ventricular arrhythmias
and increasing the risk of sudden cardiac death [5,13,14]. Despite several theories on the possible
cellular and molecular pathways involved in ACM pathogenesis have been postulated in the last
few years [13,15,16], the exact mechanisms are not fully unraveled. Noteworthy, we have recently
demonstrated that cardiac mesenchymal stromal cells (C-MSC) contribute to adipogenesis in ACM
patients [17] introducing a new tool for ACM in vitro modeling [18].

Cyclophilin A (CyPA) is a ubiquitous immunophilin that physiologically regulates protein folding,
trafficking, and interaction [19]. However, it is also involved in pathological processes underlying
several cardiovascular diseases (e.g., cardiac hypertrophy, inflammatory cardiomyopathies, critical
limb ischemia, and coronary artery diseases) [20–26]. Of note, CyPA can be secreted by endothelial
cells, vascular smooth muscle cells, cardiac fibroblasts, and inflammatory cells to exert its autocrine
and paracrine actions [27]. In cardiac hypertrophy, CyPA promotes cardiac fibroblast proliferation and
migration, while in atherosclerosis it participates both to fatty streak formation and to low-density lipid
uptake in the vessel wall [21,28]. Interestingly, CyPA has been recently proposed as a novel adipokine
due to its proadipogenic activity demonstrated both in vitro in 3T3-L1 and in vivo in an obese murine
model [29].

Thus, considering the role of CyPA in the aforementioned processes, we have investigated
CyPA modulation in ACM. Interestingly, we found that CyPA expression (1) was upregulated in
ACM patient-derived tissue samples, (2) correlated with tissue fatty substitution extent, and (3) was
modulated in patient-derived C-MSC subjected to adipogenic stimuli.

2. Results

2.1. CyPA Expression in the RV Tissue

CyPA expression levels have been evaluated by immunohistochemistry in RV specimens derived
from three ACM patients and four healthy controls (HC). CyPA expression levels, calculated as
densitometric value normalized for the analyzed tissue area, were significantly higher in the tissue
samples of ACM (mean± SEM: 61,135± 2348) than in those of HC (24,998± 4911, p = 0.002; Figure 1a–c).
Interestingly, differences in CyPA distribution have been observed in the RV sections of ACM patients
with respect to HC. Indeed, in HC RV tissue CyPA was localized predominantly at nuclear level, while
in ACM samples evenly accumulation was observed at nuclear as well as cytosolic and extracellular
matrix level (Figure 1a,b).
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Figure 1. Representative cyclophilin A (CyPA) immunostaining of healthy control (HC) (a) and
arrhythmogenic cardiomyopathy (ACM) patient (b) right ventricle (RV) sections. Positive signal stained
brown. Quantification of CyPA expression level in HC and ACM RV tissues (c). ** p value ≤ 0.01 at
Student’s T test.
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2.2. Correlation between CyPA Expression Levels and Fatty Substitution

To investigate whether CyPA expression levels correlate with myocardial fatty substitution,
we assessed in RV the amount of myocardial area replaced by adipose tissue. Noteworthy,
fatty substitution was significantly larger in ACM patients than in HC. In particular, fatty substitution
area in the RV sections corresponded to 4.2 ± 2.9 of analyzed tissue in HC and 11.0 ± 1.3 in ACM
patients (p = 0.014, Figure 2a). Interestingly, CyPA expression levels significantly and positively
correlated with adipose substitution extent in RV sections (Pearson r = 0.870, p = 0.011; Figure 2b).
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Figure 2. Quantification of fatty substitution area in HC and ACM RV sections (a). Correlation between
CyPA expression levels and the extent of fatty substitution (b). * p value ≤ 0.05 at Student’s T test.

Then, to elucidate whether the increased CyPA expression found in ACM patients was principally
related to the disease or to the presence of adipocytes, we assessed CyPA expression levels in a subset
of selected RV tissue fields obtained from an aged HC, who showed physiological cardiac adipose
tissue accumulation, and from an ACM patient. Specifically, we selected the fields characterized mostly
by intact myocardium or mostly by the presence of adipocytes (Figure S1a–d). Interestingly, we found
that CyPA was overall more expressed in ACM- than in HC-derived RV tissue fields (Figure S1e).
Moreover, it was higher in peri-adipocyte than in myocyte regions both in HC and in ACM patients
(Figure S1e). Together, these results suggest a specific association between CyPA modulation and the
ACM disease process underlying fatty substitution.

We then performed a Masson’s trichrome staining to evaluate the amount of fibrotic tissue in
collected slides. As expected, fibrotic substitution was significantly larger in ACM patients than in
HC (Figure S2a,b). In particular, fibrotic deposition area was 0.05 ± 0.02 in HC and 1.70 ± 0.86 in
ACM patients (p = 0.010, Figure S2c). Anyway, CyPA expression levels only partially correlated with
connective tissue deposition (Spearman r = 0.750, p = 0.066; Figure S2d).

2.3. CyPA Is Expressed in C-MSC during Adipogenic Differentiation

To evaluate whether CyPA was expressed by C-MSC during adipogenesis, we performed an
immunofluorescence staining on ACM RV sections with three specific antibodies recognizing CyPA,
the mesenchymal marker CD29, and the adipocyte marker perilipin 1 (PLIN1, a protein localized at the
membrane of lipid droplets). The triple staining clearly revealed that those cells found double positive
for CD29 and PLIN1, representing C-MSC at a preadipocyte differentiation stage, also expressed CyPA
in the cytoplasm (Figure 3).



Int. J. Mol. Sci. 2019, 20, 2403 4 of 10
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 10 

 

 
Figure 3. Immunofluorescence staining of ACM RV section (a). Particular of a preadipocyte, positive 
for CD29 and perilipin 1 (PLIN1), expressing cyclophilin A (CyPA) (b). The image of merged signals 
is also shown. 

2.4. CyPA Expression is Modulated during C-MSC Adipogenic Differentiation  

We then isolated C-MSC from ACM patients and HC RV specimens and cultured them in 
adipogenic condition to evaluate CyPA gene expression levels at different time points (0, 24 h, and 72 
h). Interestingly, C-MSC derived from ACM and HC showed a different pattern of CyPA gene 
expression over time (p = 0.021, Figure 4). Specifically, CyPA gene expression was modulated over 
time in ACM C-MSC, but not in HC C-MSC. The highest difference was observed after 24 h of 
adipogenic conditioning, when CyPA gene expression was upregulated in ACM (mean ± SEM: 1.75 ± 
0.25) with respect to HC C-MSC (0.95 ± 0.15, p = 0.015; Figure 4).  

 

Figure 4. CyPA gene expression levels in HC- and ACM-derived cardiac mesenchymal stromal cells 
(C-MSC) cultured in adipogenic condition. * p value ≤0.05 at two-way ANOVA and ° p value ≤0.05 at 
Bonferroni post-test. 

Furthermore, we evaluated CyPA amount in cell lysates by Western blot analysis. CyPA protein 
expression levels increased over time in ACM C-MSC (mean ± SEM: 1.05 ± 0.26 at baseline, 1.44 ± 0.30 
at 24 h, and 2.23 ± 0.51 at 72 h, p ≤ 0.001) as well as in HC C-MSC (1 ± 0.15 at baseline, 1.13 ± 0.20 at 24 
h, and 1.75 ± 0.27 at 72 h, p ≤ 0.001) with a significant peak of increase at 72 h (Figure 5a).  

Since CyPA can be secreted from different cell types, we evaluated, by slot blot analysis, the 
protein amount in the supernatants of C-MSC culture during adipogenic differentiation finding a 
significant increase in CyPA amount only in the media of ACM C-MSC over time (median 
interquartile range (IQR): 1.06 (0.76–1.18) at baseline, 1.18 (1.15–1.69) at 24 h, and 1.34 (1.24–1.83) at 
72 h, p ≤ 0.01) and specifically after 72 h of treatment vs. baseline (p ≤ 0.05, Figure 5b). 

Figure 3. Immunofluorescence staining of ACM RV section (a). Particular of a preadipocyte, positive
for CD29 and perilipin 1 (PLIN1), expressing cyclophilin A (CyPA) (b). The image of merged signals is
also shown.

2.4. CyPA Expression is Modulated during C-MSC Adipogenic Differentiation

We then isolated C-MSC from ACM patients and HC RV specimens and cultured them in
adipogenic condition to evaluate CyPA gene expression levels at different time points (0, 24 h, and 72 h).
Interestingly, C-MSC derived from ACM and HC showed a different pattern of CyPA gene expression
over time (p = 0.021, Figure 4). Specifically, CyPA gene expression was modulated over time in
ACM C-MSC, but not in HC C-MSC. The highest difference was observed after 24 h of adipogenic
conditioning, when CyPA gene expression was upregulated in ACM (mean ± SEM: 1.75 ± 0.25) with
respect to HC C-MSC (0.95 ± 0.15, p = 0.015; Figure 4).
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Figure 4. CyPA gene expression levels in HC- and ACM-derived cardiac mesenchymal stromal cells
(C-MSC) cultured in adipogenic condition. * p value ≤ 0.05 at two-way ANOVA and ◦ p value ≤ 0.05 at
Bonferroni post-test.

Furthermore, we evaluated CyPA amount in cell lysates by Western blot analysis. CyPA protein
expression levels increased over time in ACM C-MSC (mean ± SEM: 1.05 ± 0.26 at baseline, 1.44 ± 0.30
at 24 h, and 2.23 ± 0.51 at 72 h, p ≤ 0.001) as well as in HC C-MSC (1 ± 0.15 at baseline, 1.13 ± 0.20 at
24 h, and 1.75 ± 0.27 at 72 h, p ≤ 0.001) with a significant peak of increase at 72 h (Figure 5a).

Since CyPA can be secreted from different cell types, we evaluated, by slot blot analysis, the protein
amount in the supernatants of C-MSC culture during adipogenic differentiation finding a significant
increase in CyPA amount only in the media of ACM C-MSC over time (median interquartile range
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(IQR): 1.06 (0.76–1.18) at baseline, 1.18 (1.15–1.69) at 24 h, and 1.34 (1.24–1.83) at 72 h, p ≤ 0.01) and
specifically after 72 h of treatment vs. baseline (p ≤ 0.05, Figure 5b).
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vs. “24 h”, # p value ≤ 0.05 vs. “0”, ### p value ≤ 0.001 vs. “0” at Bonferroni post-test. ◦◦ p value ≤ 0.01
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3. Discussion

The data obtained in this study support the hypothesis of a possible involvement of CyPA in ACM
cardiac remodeling. First of all, we found higher CyPA expression levels in ACM than in HC RV tissue.
Then, we pointed out a positive correlation between the RV adipose tissue extent and the expression
levels of CyPA. As expected, we also detected a moderate degree of adipose tissue in HC specimens
of the RV, probably due to a physiological age- and body weight-dependent accumulation [30].
However, in ACM patient-derived RV tissue we found an extensive myocardial fatty substitution in
parallel with a considerable expression of CyPA, principally located in the adipose regions, suggesting
an association between CyPA levels and the ACM tissue degenerative process. The link between CyPA
and adipogenesis is supported by previously reported evidences in two different pathological contexts,
such as atherosclerosis and obesity [28,29]. Specifically, CyPA depletion in ApoE−/− mice determined
a decreased atherosclerotic lesion burden, owing to an impaired regulation of scavenger receptors
that determines fewer low-density lipid uptake into the vessel wall [28]. Furthermore, the lack of
CyPA determined impairment in lipid accumulation both in an obese mouse model and in an already
adipo-committed cell line (3T3-L1) [29]. These evidences indicate that the role of CyPA in adipogenesis
is not specifically confined to the cardiac district.

Thus, to further investigate CyPA involvement in cardiac ACM adipogenic differentiation,
we took advantage of C-MSC, a novel in vitro tool that we have recently demonstrated to recapitulate
ACM features [17]. Interestingly, we observed that CyPA was expressed in ACM-derived C-MSC
during adipogenic differentiation, both ex vivo by immunofluorescence and in vitro in the presence
of adipogenic conditioning. Specifically, CyPA transcript was modulated over the three days of
adipogenic stimuli only in ACM-derived C-MSC, while protein production increased over time both
in ACM- and HC-derived C-MSC cultured in adipogenic medium. Furthermore, we highlighted
that only patient-derived C-MSC released increasing amount of CyPA over time. This finding is in
agreement with previous evidences indicating CyPA as a novel adipokine secreted during 3T3-L1
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adipocyte differentiation [31]. Altogether, our results suggest that ACM-derived C-MSC, genetically
more prone to accumulate lipids [17], generally respond to the adipogenic stimuli with an increased
CyPA production and secretion. Since CyPA has been found to be strongly involved in the active
recruitment of leukocytes, macrophages, and T cells in different pathological contexts [19,25,32–34],
we speculate that, through a paracrine/autocrine action, it may promote the ACM proinflammatory
milieu [11] which has been demonstrated to boost the typical cardiac remodeling [10].

In conclusion, although our current findings are observational and thus do not demonstrate
a mechanistic link between CyPA modulation and genetic-related ACM defects, they turn the spotlight
on CyPA as a player in the detrimental pathological context of ACM. Thus, we envisage CyPA as
a future object of C-MSC-based translational investigations to fill this gap of knowledge.

4. Materials and Methods

4.1. Sample Collection

This study complies with the Declaration of Helsinki and was approved by “Centro Cardiologico
Monzino IRCCS” Ethics Committee (07/06/2012). Written informed consent was obtained from
all participants. Bioptic samples of RV tissue were collected during endomyocardial mapping
procedures [35] from 9 patients with clinical suspicion of ACM. The clinical diagnosis of ACM
was confirmed following the standard criteria reported in the 2010 modified Task Force Criteria [36].
Out of the 9 collected bioptic specimens, 3 were embedded in paraffin and processed for tissue slide
sectioning, while the other 6 were digested in order to isolate C-MSC, as previously reported [37].
As control, tissues and C-MSC were obtained from the RV endomyocardial samples of 7 cadaveric
donors, who died accidentally. The latter were provided by the Treviso Tissue Bank Foundation
(Treviso, Italy).

4.2. Immunohistochemistry

To perform CyPA immunostaining, slice sections were deparaffinized, rehydrated, and boiled
for 20 min in the target retrieval solution (sodium citrate, pH 6.0; DAKO, Glostrupt, Denmark).
After washing in phosphate-buffered saline (PBS) supplemented with 0.1% Tween-20 (PBST), slides
were incubated in 3% hydrogen peroxide for 10 min and blocked in PBST with 5% goat serum
(1 h, room temperature, RT). Primary antibody against human CyPA (Bioss, Woburn, MA, USA)
was dissolved in antibody diluent (DAKO) and incubated in a humidified chamber (O/N, 4 ◦C).
Sections were incubated first with biotin-conjugated goat anti-rabbit antibody (Vector Laboratories,
Burlingame, CA, USA) and then with HRP-conjugated streptavidin (ABC kit) (Vector Laboratories) for
30 min, RT. Immunoreactions were revealed using 3,3-diaminobenzidine (ImmPACT DAB substrate)
(Vector Laboratories) as chromogen, and slides were counterstained with hematoxylin. Negative
controls were performed omitting primary antibody incubation. Quantification of CyPA positive
staining and of fatty substitution area in the RV sections was made by taking images with an Axioskop II
microscope (Zeiss, Oberkochen, Germany) and using AxioVision 4.8.1 software (Zeiss). Twenty different
fields from each section were taken at 20×magnification for each staining. CyPA expression levels were
defined as the fraction of the positive staining quantified in the entire RV bioptic sample, expressed in
densitometric value, to the total evaluated area (µm2), while fatty substitution extent was expressed as
the adipose area adjusted for the field area.

4.3. Immunofluorescence

For immunofluorescence staining, RV tissue sections were deparaffinized, rehydrated, and boiled
for 20 min in target retrieval solution (Tris-EDTA, pH 9.0; DAKO). After washing in PBS, slides were
blocked for 30 min in 10% goat serum-PBS (Sigma Aldrich, St. Louis, MO, USA) and incubated with
specific primary antibodies against CyPA (1:100, sc-133494; Santa Cruz Biotechnology, Santa Cruz,
CA, USA), PLIN1 (1:100, BP5015; OriGene, Herford, Germany) and CD29 (1:200, NCL-CD29; Leica,
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Wetzlar, Germany) in 2% goat serum-PBS O/N at 4 ◦C. After washing in PBS, sections were incubated
with Alexa546 (ThermoFisher, Waltham, MA, USA), Alexa488 (Santa Cruz Biotechnology), and Alexa633
(ThermoFisher) fluorochrome conjugated secondary antibodies dissolved in 2% goat serum-PBS (1 h,
RT in the dark), respectively. To visualize cell nuclei, Hoechst33342 (Invitrogen, Carlsbad, CA, USA)
diluted 1:1000 in PBS (15 min, RT in dark) was added. Twenty images for each section were taken at
20×magnification using the software Zen2010D of the confocal microscope (Zeiss LSM710-ConfoCor
3 LSM).

4.4. C-MSC Culture

The C-MSC were cultured in growing medium (TMES: Iscove’s Modified Dulbecco’s Medium
[IMDM], 20% fetal bovine serum [FBS], 0.02 M Glutamine, 10,000 U/mL Penicillin, 10,000 µg/mL
Streptomycin, 10 ng/mL basic fibroblast growth factor) or adipogenic conditioning (ADIPO:
IMDM, 10% FBS, 0.02 M Glutamine, 10,000 U/mL Penicillin, 10,000 µg/mL Streptomycin, 0.5 mM
3-isobutyl-1-methylxanthine, 1 µM hydrocortisone, 0.1 mM indomethacin) for 3 days on the basis of
experimental design.

4.5. qRT-PCR

Total RNA was extracted from HC and ACM C-MSC using the Total RNA Purification Plus kit
(Norgen Biotek Corp., Thorold, ON, Canada) and reverse transcribed by SuperScript III First-Strand
Synthesis SuperMix for qRT-PCR (Invitrogen). Then qRT-PCR was performed in triplicate using 15 ng
of cDNA and the iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA).
All these processes were performed following manufacturers’ instructions. The primer sequences of
analyzed genes are reported in Table 1.

Table 1. Primer sequences (5′-3′).

Gene Forward Primer Reverse Primer

CyPA CCA CCG TGT TCT TCG ACA TT CCT TGT CTG CAA ACA GCT CA
GAPDH ATG TTC GTC ATG GGT GTG AA GTC TTC TGG GTG GCA GTC AT

4.6. Western Blot

Cytoplasmic extracts of C-MSC were collected by cell lysis buffer (Cell Signaling Technology,
Danvers, MA, USA) supplemented with a protease inhibitor cocktail (Sigma Aldrich) and quantified by
Bio-Rad Protein Assay (Bio-Rad). Then, equal amount of total protein lysates were subjected to reducing
SDS-PAGE (Novex 4–12% Tris-glycine Mini Gels, Bio-Rad Laboratories) and transferred at 25 V, 1.3 A
for 10 min onto a nitrocellulose membrane by Trans-Blot turbo blotting system (Bio-Rad Laboratories).
After blocking with 5% non-fat dry Blotto milk (ChemCruz Huissen, The Netherlands) in washing
buffer (0.1% Tween-20 in TBS), the membrane was incubated O/N at 4 ◦C with the appropriate primary
antibody. The primary antibodies used were specific for CyPA (Santa Cruz Biotechnology) and tubulin
(Sigma Aldrich). The membrane was then incubated with the appropriate peroxidase-conjugated
secondary antibodies for 1 h and developed using enhanced chemiluminescence detection systems
(Thermo Scientific, Rockford, IL, USA). The images were acquired and quantified respectively with the
Alliance Mini 2M and the Alliance Mini 4 16.07 software (UVITEC, Cambridge, UK). The amount of
CyPA was normalized to housekeeping protein tubulin.

4.7. Statistical Analysis

Data are presented as mean ± standard error of the mean (SEM) or median (25–75 percentile),
as appropriate. The Shapiro-Wilk test was used to assess the normal distribution of the considered
variables. Comparison between two groups was made using the Student’s T or the Mann-Whitney
U test, as appropriate. For analyses over time, two-way ANOVA for repeated measures with
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Bonferroni post-test or Friedman test with Dunn’s Multiple Comparison post-test have been performed,
as appropriate. Correlation analyses were performed by the Pearson or the Spearman’s rank correlation
test, as appropriate. Statistical significance was set at p ≤ 0.05. All the analyses were performed using
GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/10/
2403/s1.
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