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Abstract: Fatty Acid Amide Hydrolase (FAAH) is one of the main enzymes responsible for
endocannabinoid metabolism. Inhibition of FAAH increases endogenous levels of fatty acid
ethanolamides such as anandamide (AEA) and thus consitutes an indirect strategy that can be
used to modulate endocannabinoid tone. In the present work, we present a three-dimensional
quantitative structure-activity relationships/comparative molecular similarity indices analysis
(BD-QSAR/CoMSIA) study on a series of 90 reported irreversible inhibitors of FAAH sharing
a piperazine-carboxamide scaffold. The model obtained was extensively validated (q = 0.734;
r?2 = 0.966; r2, = 0.723). Finally, based on the information derived from the contour maps we
designed a series of 10 new compounds with high predicted FAAH inhibition (predicted pICsq of the
best-proposed compounds = 12.196; 12.416).

Keywords: fatty acid amide hydrolase; cannabinoid; carboxamide inhibitors; 3D-QSAR; CoMSIA

1. Introduction

The endocannabinoid system (ECS) remains a highly relevant topic in the scientific community as
it is involved in several regulatory actions and pathophysiological conditions [1]. Current available
knowledge suggests that the ECS is constituted by the cannabinoid receptors, type 1 and 2, the main
endogenous ligands anandamide (AEA) and 2-arachidonyl glycerol (2-AG) as well as the enzymes that
participate in their biosynthesis (N-acyl phosphatidylethanolamine phospholipase D, or NAPE-PLD)
and degradation (Fatty Acid Amide Hydrolase or FAAH and Monoacylglycerol Lipase, or MAGL) [2].

FAAH is an integral membrane protein of ~60 kDa (579 amino acids) that belongs to the amidase
family of enzymes [3]. It exists as a dimer in its membrane-associated form [3] and is highly expressed
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in the brain, liver, kidney, and testis. While most other mammalian serine hydrolases possess a
Ser-His-Asp catalytic triad, FAAH has a distinctive Ser-Ser-Lys triad [4].

In vitro studies show that FAAH can inactivate various lipid amides and allows modifications
in both the amide headgroup and lipid acyl chain. In addition to AEA, other bioactive lipid amide
substrates include related N-acylethanolamine (NAE), oleamide (cis-9,10-octadecanoamide), and
N-acyl taurines (NATs) [4].

Endogenous FAAH substrates such as AEA play key regulatory functions in the body and have been
implicated in a variety of pathological disorders, including pain, inflammation, anxiety [5], depression and
vascular hypertension [6]. Therefore, inhibition of FAAH represents a rational therapeutic approach to treat
conditions where higher endocannabinoid activity can be beneficial. Furthermore, as opposed to direct
cannabinoid activation, enzyme inhibition offers spatio-temporal control, increasing endocannabinoid
activity only at the sites where lipid signaling molecules are being produced. Accordingly, animal studies
showed that FAAH inhibitor URB597 elevated endocannabinoid tone without producing motor side
effects [7]. For this reason, diverse FAAH inhibitors have been developed [6].

The first-generation of FAAH inhibitors were designed in order to covalently bind to the
catalytic residue Ser241 [3,4]. Despite their ability to block FAAH in in vitro pharmacological assays,
they remained poor candidates for preclinical studies due to their lack of selectivity [4]. Subsequently,
FAAH inhibitors with significantly improved selectivity were developed, including carbamates
(ORG-231295), «-ketoheterocycles (OL-135) carbamoyl tetrazoles (LY-2183240), benzothiazole
derivatives and piperidine/piperazine ureas [4] (PF-3845, PF-04457845) (Figure 1).
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Figure 1. Examples of reported Fatty Acid Amide Hydrolase (FAAH) inhibitors

Some quantitative structure-activity relationships (QSAR) studies have been performed on the
cannabinoid system (CB1 and CB2 receptors) [8-13], however, few structure-activity relationship
studies have been performed on FAAH inhibitors, and mostly with carbamate-type structures.
Dainese et al. calculated theoretical molecular descriptors in a series of naturally occurring
FAAH inhibitors [14]. Késnédnen et al. reported the synthesis and 3D-QSAR studies of carbamate
inhibitors [15]. Mor et al. constructed 2D-QSAR equations that could explain the inhibition activity of
biphenyl-alkylcarbamates. [6]. Vacondio et al. developed structure-property relationships to explain
the hydrolytic stability of carbamate inhibitors [16]. Han et al. reported a comparative molecular field
analysis (CoMFA) study on a series of oleoylethanolamide structure inhibitors [17]. To date, there are
no 3D-QSAR studies of irreversible inhibitors with the piperazine-carboxamides structure. This type
of general structure was shown to have good physical and pharmacokinetic properties and has been
reported to be capable of elevating plasma concentrations of AEA, AEP, and AEO in rats [18]. For this
reason, the formulation of a QSAR model for the design and prediction of FAAH inhibitor activity
based on this structural moiety is significant from a pharmacological point of view.
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In the present work, three-dimensional quantitative structure-activity relationships (3D-QSAR)
studies based on comparative molecular similarity indices analysis (CoMSIA) were carried out on
a set of various reported urea-based FAAH inhibitors. The aim of our 3D-QSAR is to derive useful
binding information in order to guide the design of future FAAH inhibitors. The importance of steric,
electrostatic and hydrogen-bond characteristics can be analyzed by aligning similar analogues based
on key pharmacophoric features [19]. Knowledge of binding requirements can then be used to derive
predictive 3D-QSAR models that can, in turn, aid in the design of new inhibitors.

2. Results and Discussion

2.1. Statistical Results

The statistical results for COMSIA are presented in Table 1. All possible field combinations were
tested for both CoMFA and CoMSIA. In the case of CoMFA, no combination was statistically significant.
The CoMSIA models with the highest q? values were those that considered the field combinations SEDA,
EDA, EHDA, and SEHDA. The SEDA and EHDA models presented a donor hydrogen-bond contribution
of 0.099 and 0.093 respectively. While in the EDA model, the H-bond donor contribution was 0.111 versus
0.889 of the Electrostatic and H-bond Acceptor contributions. The imbalance in the field contribution of
these models made us discard them. The final selected model SEHDA, presents a good balance between
the field contributions, a high value of q2 (0.734) and 12y (0.937) and higher value of F (138.36). Extensive
additional validation was carried out to test the predictive quality of this model.

Table 1. Statistical parameters and field combinations for comparative molecular similarity indices

analysis (CoMSIA).
Model ¢ N SEP SEE Poey F Field Contributions
S E H D A
CoMSIA-S 0.293 3 1.042 0903 0470 20.383
CoMSIA-E 0534 10 0893 0476  0.867 40.592 1
CoMSIA-H 0317 4 1.032 0788  0.602 25.722 1
CoMSIA-D 0.253 8 1112 1.031  0.359 4.482 1
CoMSIA-A 0.520 5 0.871 0.638  0.743 38.785 1
CoMSIA-SE 0519 10 0907 0417  0.898 54.799 0.314  0.686
CoMSIA-SEH 0.534 8 0879 0216 0977 110.701 0.183  0.492  0.324
CoMSIA-SEHD  0.628 7 0779 0382 0910 94.448 0.159 0458 0260  0.123
CoMSIA-SEHA  0.688 7 0713 0332 0933 128.486 0.131 0346 0177 0.347
CoMSIA-SED 0.626 9 0793 0382 0913 73.600 0.245  0.639 0.116
CoMSIA-SEA 0.725 7 0670 0350 0925 114.665 0.182  0.387 0.421
CoMSIA-SEDA 0.765 7 0620 0327 0934 132.475 0.154  0.357 0.099  0.389
CoMSIA-SH 0316 4 1.033 0772 0.618 27.502 0.408 0.592
CoMSIA-SD 0364 19 1128 0525 0.862 17.433 0.814 0.186
CoMSIA-SA 0.572 7 0836 0484  0.857 55.453 0.344 0.656
CoMSIA-SHD 0.426 3 0939 0799 0585 32.396 0.219 0479  0.303
CoMSIA-SHA 0.529 6 0870 0483  0.855 64.909 0.201 0.303 0.496
CoMSIA-SDA 0.719 7 0678 0404  0.900 83.485 0.235 0.210  0.555
CoMSIA-SHDA  0.673 7 0731 0.366 0918 103.744 0.156 0.240  0.164  0.440
CoMSIA-EH 0550 10 0877 0391 0911 63.307 0.537 0427
CoMSIA-ED 0.616 9 0.804 0407  0.902 64.163 0.856 0.144
CoMSIA-EA 0.701 6 0693 0408  0.89 95.020 0.498 0.502
CoMSIA-EHD 0.641 8 0771 0376 0915 85.695 0.525 0343  0.132
CoMSIA-EHA 0.691 7 0710 039 0925 115.138 0390 0234 0.376
CoMSIA-EDA 0.752 7 0636 0366 0918 103.539 0.453 0.111  0.437
CoMSIA-EHDA  0.742 8 0654 0311  0.942 128.936 0341 0211  0.093  0.355
CoMSIA-HD 0.428 9 0981 0528  0.834 35.186 0.804  0.196
CoMSIA-HA 0537 6 0862 0493  0.849 61.685 0.426 0.574
CoMSIA-HDA 0682 10 0738 0331  0.936 90.828 0356  0.155  0.490
CoMSIA-DA 0705 11 0716 0465  0.876 39.132 0.240  0.760
CoMSIA-ALL 0.734 7 0659 0320 0937 138.360 0110 0304 0.156  0.100  0.330

q? = the square of the LOO cross-validation (CV) coefficient; N = the optimum number of components; SEP = standard
error of prediction; SEE is the standard error of estimation of non CV analysis; ey is the square of the non CV
coefficient; F is the F-test value; S, E, H, D and A are the steric, electrostatic, hydrophobic, hydrogen-bond donor,
and hydrogen-bond acceptor contributions respectively. No statistically significant models were found for CoMFA.
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Table 2 presents a summary of the external validation parameters of the CoMSIA model. The model
has a high value of r? (0.966), which indicates satisfactory external predictive power. Nevertheless,
as described by Golbraikh and Tropsha, high values of q? and r? (conditions 1 and 2) are not sufficient
for model validation. For a reliable predictive capacity, the line of experimental versus predicted
activity should be as close as possible to the line y = x. This is observed when the conditions (3a or 3b),
(4a or 4b) and (5a or 5b) shown in Table 2 are fulfilled. Condition 6 or r?;,, metrics, measures the
agreement between the observed and predicted activity. Our derived CoMSIA model satisfied all
the conditions for internal and external validation. In addition, we performed the calculation of
several external validation descriptors (conditions 7 to 12) [20-22]. In all cases, our model passed the
validation tests.

Furthermore, the Y-randomization test [23] (Table 3) was applied to assess the robustness of
the model (see Table S1 of the Supplementary Material) as previously described by Lorca et al. [24].
The obtained QSAR models show low q2 and 1,y values (Table 3).

Table 2. Summary of external validation parameters for CoOMSIA.

Condition Parameters Threshold Value CoMSIA
1 7 >0.5 0.734
2 72 >0.6 0.966

3a 702 Close to value of r? 0.920
3b ¥ o Close to value of r? 0.944
4a k 0.85 <k <1.15 1.004
4b K 0.85<k <1.15 0.995
5a (=12 )2 <0.1 0.048
5b (=12 )2 <0.1 0.023
06 [r29—1"2)| <0.3 0.024
7 2, >0.5 0.723
8 Q% >0.7 0.944
9 Q%r) >0.7 0.943
10 Q?r3 >0.7 0.951
11 CCC >0.85 0.967
12 Ar?, <0.2 0.056

q? = the square of the LOO cross-validation (CV) coefficient; r? is the regression coefficient for the test set exclusively;
ro? and k are the correlation coefficient between the actual and predicted activities for test set and the respective
slope of regression; and ry’? and k’ are the correlation coefficient between the predicted and actual activities for
test set and the respective slope of regression. 12, was defined in equation 5. Parameters 8-12 are defined in the
methods section.

Table 3. Y-randomization test for CoMSIA model.

Iteration q2 Prev Iteration q2 Prev
Random 1 -0.013 0.107 Random 6 0.006 0.119
Random 2 —0.030 0.087 Random 7 —0.093 0.183
Random 3 —0.052 0.082 Random 8 0.085 0.188
Random 4 —0.198 0.108 Random 9 -0.034 0.086
Random 5 —-0.202 0.179 Random 10 —0.100 0.073

The values of experimental activity, predicted activity, and the residual values for the best CoMSIA
model are shown in Table 4. All the compounds showed low residual values and deviations of the
predicted activity greater than a logarithmic unit were not observed. Figure 2A shows a plot of
experimental versus predicted activity and the data distribution is close to the y = x line. The model
shows a good balance in terms of predictive capacity. Forty-two compounds showed negative residual
values and 48 presented positive deviations (Figure 2B). The residual range was from —0.82 to 0.89.
As shown in Figure 2C the CoMSIA model shows a satisfactory predictive capability throughout the
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whole data set (training and test set) as well as a good predictive power for both, less active (1, 6 and 7)
and most active compounds (65, 66, and 67).

Table 4. Experimental and predicted pICsy and residual values for the analyzed compounds obtained
with the CoMSIA model.

Mol Exp. pICs Pred. pICs Residual Mol Exp. pICs Pred. pICsg Residual

1 5.331 5.620 -0.29 46t 8.009 7.774 0.23
2t 6.076 6.034 0.04 47 6.575 6.286 0.29
3 6.893 6.317 0.58 48 7.987 7.699 0.29
4t 5.607 5.961 -0.35 49 7.886 7.915 -0.03
5 5.558 6.107 -0.55 50 7.301 7.231 0.07

6 5.176 5.295 -0.12 51 5.574 6.018 -0.44
7 5.331 5.438 -0.11 52t 7.638 7.624 0.01
8 6.456 6.032 0.42 53 5.933 6.164 -0.23
9t 5.815 6.141 -0.33 54 5.984 5.876 0.11
10 6.310 6.291 0.02 55 6.495 6.381 0.11
11 7.131 6.816 0.31 56 7.155 7.619 —-0.46
12 7.208 7.689 -0.48 57 6.495 6.436 0.06
13 7.921 7.810 0.11 58 7.155 7.268 -0.11
14t 7.337 7.386 -0.05 59 7.638 7.512 0.13
15 7.824 7.497 0.33 60 7.444 7.467 -0.02
16 8.854 8.718 0.14 61 7.553 7.408 0.14
17 7.921 8.062 -0.14 62 6.854 6.741 0.11
18 8.319 7.972 0.35 63 8.658 8.820 -0.16
19 8.432 8.206 0.23 64 8.824 8.740 0.08
20t 6.959 7.170 -0.21 65 10.143 10.287 -0.14
21 8.770 8.758 0.01 66 10.602 10.685 -0.08
22 8.538 8.559 -0.02 67t 10.143 9.759 0.38
23t 6.921 7421 -0.50 68 10.097 10.144 -0.05
24 8.620 8.273 0.35 69 8.061 8.023 0.04
25 9.036 9.126 -0.09 70 8.114 8.106 0.01
26 8.678 8.415 0.26 71 7.495 7.397 0.10
27 9.174 9.057 0.12 72 6.987 6.787 0.20
28 8.495 8.427 0.07 73t 7.553 7.707 -0.15
29 8.921 9.236 -0.32 74 7.553 7.757 -0.20
30t 9.066 8.814 0.25 75 8.237 7.347 0.89
31 7.482 6.743 0.74 76 5.886 5.739 0.15
32 6.818 6.490 0.33 77 8.174 8.153 0.02
33 5.731 6.422 —-0.69 78 8.469 8.155 0.31
34 6.762 6.654 0.11 79 7.161 7.463 -0.30
35 5.886 6.710 -0.82 80 8.000 8.225 -0.23
36 6.714 6.734 -0.02 81 7.658 8.237 -0.58
37t 6.460 6.848 -0.39 82 9.301 9.394 -0.09
38 6.590 6.753 -0.16 83 7.337 7.216 0.12
39 7.499 7.072 0.43 84t 7.482 7.278 0.20
40 7.018 6.901 0.12 85 7.000 7.134 -0.13
a1t 6.845 6.878 -0.03 86 7.770 8.110 -0.34
42 5.972 6.412 -0.44 87 6.854 6.957 -0.10
43 6.079 6.471 -0.39 88 9.000 8.926 0.07
44 7.161 7.148 0.01 89 8.886 8.686 0.20
45t 7.574 7.855 -0.28 90 9.000 8.960 0.04

! test set compound.

2.2. Applicability Domain

In this work we used the method developed by Roy et al. [25] for determination of applicability
domain (AD) as previously described by Lorca et al. [24].
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The calculation was carried out using the free application available on the author’s page and all
compounds were found to be within the domain of applicability, except compounds 83 and 87. These
two compounds are the only ones bearing an imidazopyridine or imidazopyrimidine ring and the
only difference between them is the position in which the heterocycle is connected to the urea moiety.
For this reason, compounds with these heterocyclic systems connected to the urea moiety were not
proposed as new molecules.

In summary, the CoMSIA model generated here presents good internal and external validation
parameters (q° = 0.734; r* = 0.966), and meets the validation criteria of Tropsha and Roy (r?, = 0.723).
All the molecules studied are within the applicability domain (except compounds 83 and 87) and the
model was validated by the Y-randomization test. Therefore, reliable information can be extracted
from the contour maps as discussed in the next section.
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Figure 2. (A) Plots of experimental versus predicted pICsy values for the training and test set
compounds. (B). Residual plots between predicted and experimental values. (C) CoMSIA predictions
for all molecules in the set.

2.3. Contour Maps Analysis

The result of a 3D-QSAR study can be visualized graphically unlike a traditional 2D-QSAR
equation. Contour maps represented by colored polyhedrons can be seen around the molecules.
The maps obtained in our study correspond to the steric, electrostatic, hydrophobic, H-bond donor
and H-bond acceptor contour maps. Regions where a molecular property is favorable or unfavorable
are indicated by different colored polyhedrons. Figure 3 presents the different maps around the most
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active compound (66, pICsg = 10.602; on the left) and the least active compound (6, pICsg = 5.176;
on the right).

2.3.1. Steric Contour Map

The steric contour map shows a large yellow polyhedron close to the pyridazine ring of the
most active compound indicating that bulky substituents in this region should be avoided in order to
favor biological activity (Figure 3A,B). Alternatively, a smaller five-membered ring could replace the
pyridazine ring following the same steric requirement. This can be seen in the proposed molecules
(Table 5) where the analog 2x shows a considerable increase in predicted activity when the pyridazine
ring is replaced by a pyrazole ring. This relation is further supported by compounds 54 and 55 (Table 6)
which bear phenyl substituents in the corresponding position and show low activity consistent with
their bulkier nature.

Table 5. The proposed structures of new molecules and their predicted pICsy values using the

CoMSIA model.
N° Structure Pred. pICsy N° Structure Pred. pICs
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Figure 3. CoMSIA steric (A,B), electrostatic (C,D), hydrophobic (E,F), donor (G,H) and acceptor (I,])
contour maps around compounds 66 (left) and 6 (right), the most active and least active of the series
respectively. Sterically favored areas are in green and disfavored areas are in yellow. Electropositive
favoured areas are in blue and electronegative favoured areas are in red. Hydrophobic favoured areas
are in yellow and unfavourable areas in grey. Donor and acceptor favoured areas are in cyan and
magenta respectively, and donor and acceptor unfavourable areas are in purple and red, respectively.
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Table 6. Chemical structure, IC5y (nM) and pICsg values of the studied molecules
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Table 6. Cont.
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1Csp = Half maximal inhibitory concentration; pICsy = —logICsp; M = mol- L1

On the other side, the yellow polyhedron that surrounds the pyrimidine ring indicates that
reducing the size of this ring or replacing it with a smaller linker while maintaining the electronic
properties would be beneficial for activity. Additionally, the green polyhedrons around the ortho and
meta positions of the disubstituted benzene ring indicate that bulky substituents in these positions
can be favorable for activity. This can also be seen in Table 5 where substitution with a methyl
group considerably increases the predicted activity in all the proposed molecules. For the least active
compounds (Figure 3B), the steric factor by itself does not seem to explain the lower activity values.

2.3.2. Electrostatic Contour Map

Regarding the electrostatic contour maps, the red polyhedrons around the pyridazine ring
(Figure 3C) highlight the importance of nitrogenated heterocycles that can confer electronegative
areas in this region. This may explain why molecules 1, 6 and 7 (Table 6) bearing benzene rings
with more homogeneous charge distribution show lower activity. The blue polyhedron inside the
pyridazine ring shows that an electropositive center is beneficial for activity, therefore, incorporating
electro withdrawing substituents in positions 5 and 6 of the pyridazine ring could increase activity.
This electron distribution with an electron rich edge and electron deficient center suggests possible
pi-stacking or pi-cation interactions with the target enzyme. Similarly, the expansion of the blue contour
at position 4 of the pyridazine ring indicates that electron withdrawing substituents particularly at this
position are favorable for activity. In agreement with this, proposed analogues 1x, 9x and 10x (Table 5)
that follow this substitution pattern display high predicted activity. The polarization of the carbon
atom directly attached to the electroattractive or electronegative groups nitrile and fluorine lower the
electron density right where the blue polyhedron lies.
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On the other side, the red contour over the pyrimidinic nitrogen (Figure 3C) shows the importance
of an electronegative atom at this position as is present in the most active molecules (65, 66, 67 and 68
from Table 6) and absent in the least active one (compound 6). Likewise, an electron rich benzene ring
is favorable and thus replacing the fluorine atom for an electrodonating group would be recommended.
Accordingly, the proposed molecules 9x and 10x substituted with electrodonating methylene groups
show the highest predicted activities. In Figure 3D the red contour over the electron deficient nitrile
carbon atom may explain the lower activity of this analog.

2.3.3. Hydrophobic Contour Map

The hydrophobic contour maps (Figure 3E,F) show a gray polyhedron over the pyridazine nitrogen
atoms of the most active molecules, indicating that incorporating hydrophilic atoms in this region can
favor activity. The yellow polyhedron over the pyrimidine ring shows that a hydrophobic linker region
is important. Additional yellow polyhedrons surrounding the disubstituted benzene ring suggest
hydrophobic substituents in the meta and ortho positions can also increase activity. Following both
the hydrophobic and the previously mentioned steric requirement all proposed molecules (Table 5)
possess an ortho-methyl substituent in the benzene ring.

2.3.4. Donor and Acceptor Contour Maps

In the hydrogen bond donor map (Figure 3G,H) cyan polyhedrons surrounding the pyridazine
ring suggest that incorporation of hydrogen bond donor groups can favor activity. For this reason,
the proposed molecule 3x (Table 5) was designed with a hydroxyl group able to form hydrogen bonds.
Furthermore, cyan polyhedrons around the urea linker suggest that the urea moiety is involved in a
hydrogen bond interaction with the target enzyme.

Finally, the hydrogen bond acceptor map shows red polyhedrons next to position 4 of the
pyridazine ring (Figure 3L]), position 5 of the pyrimidine ring and over the urea carbonyl. Indicating
that hydrogen bond acceptor groups in these positions is unfavorable for activity. Therefore, using
different linker groups without hydrogen bond acceptor groups could be advisable in order to design
new inhibitors.

2.4. Design of New FAAH Inhibitors

Based on the information obtained from the contour maps, we have designed a series of compounds
evaluating multiple combinations of fragments. Substituents and functional groups were proposed,
taking into consideration the electronic, steric, hydrophobic and hydrogen bonding properties suggested
by the contour maps. Table 5 shows the compounds that presented the best predicted inhibitory
activity. All proposed molecules have better predicted activity than the most active compound in the
series (66, pICsp = 10.602). In general, the presence of 6-member rings or fused systems on the left side
did not greatly increase activity (1x pICsg = 10.889; 4x pICs¢ = 10.990). However, the insertion of a
pyrazole ring generated derivatives with a significant increase in the pICsg value (best compounds:
9x, pICsp = 12.416; 10x, pICsp = 12.196). This is because the pyrazole system meets the electronic,
hydrophilic and hydrogen bonding requirements suggested by the contour maps. On the right side,
the insertion of halogens and alkyl groups slightly increased the activity.

Due to the reported potential toxicity of heterocyclic compounds similar to those presented
in Table 5 [26], we conducted a predictive toxicity study using the PreAdmet online platform
(https://preadmet.bmdrc.kr/adme/). The calculation showed that only compound 1x presents a high
risk of toxicity mediated by affinity to the anti-target hERG.
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3. Materials and Methods

3.1. Molecular Alignment

CoMSIA studies were performed with Sybyl X-1.2 software (1.2, Tripos International, St. Louis,
MS, USA) [27] installed in a Windows 10 environment on a PC with an Intel core i7 CPU. Each
compound was drawn in ChemDraw and then geometry optimized using MM2 molecular mechanics
as implemented in ChemBio3D software (15.1.0, PerkinElmer, Waltham, MA, USA). The structures were
further minimized by Tripos force field implemented in Sybyl. MMFF94 charges were assigned to each
atom. Among the techniques to perform molecular alignment are: (1) atom-by-atom alignments using
a common fragment, (2) rigid alignment that minimizes rms distance, (3) flexible alignments [28] and
(4) receptor guided alignments. In the present study, the first two options were carried out (Figure 4).
In the first case, the piperazinyl-urea nucleus was chosen as the common scaffold for alignment. In the
second case, the alignment was carried out using the Distill rigid protocol, as implemented in Sybyl.
The best results in terms of statistical validation (4%, N) were for the atom-by-atom alignment, which
was chosen as the basis for the development of the models.

Figure 4. The superimposed structures of all compounds used in the CoMSIA model. (A) Atom fit
method. (B) Distill rigid method.

3.2. CoMSIA Field Calculation

To derive the CoMSIA descriptor fields, the aligned training set molecules were placed in a 3D
cubic lattice with grid spacing of 2A in x, y, and z directions such that the entire set was included in it.
The CoMSIA analysis, the standard settings (probe with charge +1.0, radius 1A, hydrophobicity +1.0,
hydrogen-bond donating +1.0, hydrogen bond accepting +1.0 [29]) were used to calculate five different
fields: steric, electrostatic, hydrophobic, donor and acceptor. Gaussian-type distance dependence was
used to measure the relative attenuation of the field position of each atom in the lattice, and led to
much smoother sampling of the fields around the molecules when compared to CoMFA. The default
value of 0.3 was set for the attenuation factor o.

3.3. Data Set Selection and Inhibitory Activity

CoMSIA studies were performed on a set of 90 piperazinyl urea derivatives reported in the
literature [18,30-36] (Table 6). The derivatives displayed potent fatty acid amide hydrolase (FAAH)
inhibitors activity. The ICs) values were converted to pICs (-logICsp). The compounds were divided
into training (73 compounds, 81%) and test sets (17 compounds, 19%), ensuring that both sets contained
structurally diverse compounds with high, medium and low activity, and a uniform distribution to
avoid possible problems during the external validation. The distribution of pICsg values for the whole
set, the training set and the test set is shown in Figure 5. In all three cases the biological activity follows
a Gaussian distribution.
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Figure 5. Histogram of frequency distribution data.

3.4. Internal Validation and Partial Least Squares (PLS) Analysis

PLS analysis [37] was used to construct a linear correlation between the CoMFA and CoMSIA
descriptors (independent variables) and the activity values (dependent variables) as previously
described by Lorca et al. [24].

3.5. External Validation

The models were subjected to external validation criteria according to the proposed test by
Golbraikh and Tropsha [38,39], which considers a QSAR model predictive, if the following conditions
are satisfied:

7 >05 (1)
> 0.6 )
},2 _ 1,2 7,2 _ 712
( 2°)<010r£—3lﬁ<01 3)
T T
0.85<1.150r0.85 <k’ <1.15 (4)

It has been demonstrated [38] that to adequately assess the predictive ability of a QSAR model the
above criteria are necessary.

Furthermore, the external predictive power of the developed 3D-QSAR models using the test set
was examined by considering 72, metrics as shown below [40]:

rzm:rz(l—‘ r2—r2

) ©)

where 72 and 72 are squared correlation coefficients between the observed and predicted activities
of the test set with and without intercept, respectively. For a significant external model validation,
the value of r?,, should be greater than 0.5.

Additionally, the following descriptors were calculated:
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CCC = )

where, TR = training set, EXT = external prediction set, y; = experimental data values, §}; = predicted
data Values ¥ = average of the experimental data values, § = average of the predicted data values.
Finally, 72, is calculated using the experimental values on the ordinate axis, while 7/2 using them on
the abscissa.

3.6. Applicability Domain (AD) Calculation

The AD was evaluated based on the simple standardization method reported by Roy et al. [25]
and as described by Lorca et al. [24].

4. Conclusions

In this contribution, a 3D-QSAR CoMSIA study was carried out on an extensive database of
90 irreversible inhibitors of the enzyme FAAH with a pyrimidinyl-piperazine-carboxamide general
structure. The best model obtained considered all the field contributions, being the electrostatic and
hydrogen-bond acceptor properties the ones that contributed most to the activity (30.4% and 33.0%
respectively). The model was validated internally (q*> = 0.734) and externally (r?st = 0.966) and
was also submitted to Tropsha validation criteria, r?m calculation (0.723) and Y-randomization test,
passing all tests. The information derived from the contour maps was used to design a series of new
compounds that showed promising predicted activities (pICsg of the most active compounds = 12.196
and 12.416). The main structure-activity relationships found in this study and summarized in Figure 6
are a useful tool to guide the future design of new FAAH inhibitors. The extensive database used in
this study could motivate future work complementing the information obtained from contour maps
with QSAR studies by Dragon-based descriptors [41].

Electropositve
favored region
Avoid bulky
substituents Electronegaﬂve
atom
Bulky and hydrophobic
| N 0 <3— substituents
Electronegative N \N/ N
favored region E— H Electronegative
favored region
|
Hydrophilic
favored region

Avoid bulky substituents or
replace with a smaller linker

Hydrogen bond donnor
group is important

Figure 6. Main structure-activity relationships derived from this study.
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3D-QSAR Three-dimensional Quantitative Structure-Activity Relationship

CoMSIA Comparative Molecular Similarity Indices Analysis
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