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Abstract: The effective delivery of menahydroquinone-4 (MKH), an active form of menaquinone-4
(MK-4, vitamin K2(20)), to the skin is beneficial in the treatment of various skin pathologies. However,
its delivery through the application of MK-4 to the skin is hampered due to the photoinstability
and phototoxicity of MK-4. This study aimed to evaluate the potential of ester prodrugs of
MKH for its delivery into the skin to avoid the abovementioned issues. The ester prodrugs,
MKH 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG) and MKH 1,4-bis-hemisuccinate
(MKH-SUC), were prepared using our previously reported methods. Photostability was determined
under artificial sunlight and multi-wavelength light irradiation, phototoxicity was determined by
intracellular ROS formation and cell viability of UVA-irradiated human epidermal keratinocyte cells
(HaCaT), and delivery of MKH into HaCaT cells was assessed by measuring menaquinone-4 epoxide
(MKO) levels. MKH prodrugs showed higher photostability than MK-4. Although MK-4 induced
cellular ROS and reduced cell viability after UVA irradiation, MKH prodrugs did not affect either
ROS generation or cell viability. MKH prodrugs enhanced intracellular MKO, indicating effective
delivery of MKH and subsequent carboxylation activity. In conclusion, these MKH prodrugs show
potential for the delivery of MKH into the skin without photoinstability and phototoxicity.

Keywords: menaquinone-4; menahydroquinone-4; prodrug; drug delivery system; phototoxicity;
photostability; photodegradation; skin application; vitamin K

1. Introduction

Menaquinone-4 (MK-4) or vitamin K2(20) is an important vitamin K compound used clinically.
Menahydroquinone-4 (MKH), the fully reduced and active form of MK-4, is a cofactor for γ-glutamyl
carboxylase (GGCX), which catalyzes the post-transcriptional carboxylation of vitamin K-dependent
proteins. MKH is produced by the enzymatic conversion of vitamin K1 and K3 in the body [1]. Since
MKH is readily oxidized to MK-4, MK-4 is available for clinical use.

Skin application of vitamin K exhibits several beneficial effects such as suppressing pigmentation
and resolving bruising [2–4], prophylactically limiting the occurrence of acneiform side effects in
patients receiving the monoclonal antibody cetuximab [5–8], and promoting wound healing [9].

Because vitamin K is highly unstable in light, it should be strictly protected from light exposure
during manufacturing, preparation, storage, and treatment [10–12]. Furthermore, vitamin K is
phototoxic against cultured epidermis upon ultraviolet A (UVA) irradiation (dose 6 J/cm2) [13]. Given

Int. J. Mol. Sci. 2019, 20, 2548; doi:10.3390/ijms20102548 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/20/10/2548?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20102548
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2548 2 of 13

that when vitamin K is applied to exposed skin, it is difficult to protect it from light exposure, and these
physicochemical properties of MK-4 limit its use as a skin application and hamper its beneficial effects.

It has been shown that the main photodegradation product of MK-4 is MK-4 chromenol (MKC),
which is produced from the naphthoquinone structure and isoprenyl side chain of MK-4. We have
previously reported that ester-type prodrugs of MKH, such as the 1,4-bis-N,N-dimethylglycinate
(MKH-DMG) and hemi-succinate (MKH-SUC) derivatives, can act as delivery systems for MKH
without a reductive activation step [14–17]. Since these compounds do not contain the naphthoquinone
structure, these prodrugs may overcome the photoinstability and phototoxicity problems. It has
been reported that the partition coefficient (log P) of MKH-DMG at physiological pH 7.4 is 3.66 [14];
this value indicates that MKH-DMG has good lipophilicity for membrane permeation. In addition,
MKH-DMG and MKH-SUC could deliver MKH into hepatocellular carcinoma (HCC) cells more
effectively than MK-4 [17]. Thus, MKH-DMG and MKH-SUC were considered to be good candidate
compounds for skin application. In the current study, we examined their effectiveness as photostable
and low-phototoxicity prodrugs of MKH in order to further development of a vitamin K skin application.
The concept underlying the dermal delivery system of MKH is shown in Figure 1.
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2. Results

2.1. Photostability of MKH-Ester Derivatives in Artificial Sunlight

To evaluate the photostability of the MK-4 and MKH derivatives in skin application, 1 µM solutions of
MK-4, MKH-DMG, or MKH-SUC in ethanol were irradiated with artificial sunlight (12,000 lx) at 25 ◦C with
and without shading, and the final amounts of MKH derivatives and their monoesters, MK-4 and MK-4
chromenol, were determined by LC-MS/MS. The relative irradiance of artificial sunlight at wavelengths
of 300 to 800 nm is almost equal to that of natural sunlight, according to the manufacturer. MK-4 and
MKH-DMG concentrations decreased in sunlight irradiation according to an apparent first order rate
(Figure 2A), but were unchanged under shading. MKH-SUC concentration decreased according to an
apparent first order rate both with and without shading, although the rate of decrease was accelerated
without shading. Apparent first order constants and half-lives are listed in Table 1. MKH-DMG and
MKH-SUC were more photostable than MK-4 by ca. 50- and 3-fold, respectively. These results indicate that
the use of MKH ester derivatives is a valid method to overcome the photolability of MK-4. In particular,
MKH-DMG exhibits excellent photostability in potential skin application.

Following sunlight irradiation, MK-4 in ethanol was mainly converted to MK-4 chromenol.
This photochemical result is consistent with previously reported results in polar solvents [11,12].
In contrast, MKH-DMG was mainly hydrolyzed to the corresponding monoester (MKH-mono-DMG).
MKH-SUC was hydrolyzed to MKH-mono-succinate (MKH-mono-SUC) under shading, with this
hydrolytic conversion being accelerated by unshaded sunlight irradiation (Figure 2B) (Chromatograms
of MK-4 chromenol, MKH-mono-DMG, and MKH-mono-SUC are shown in Supplemental Figure S1).
These results suggest that the difference in the degree of hydrolysis of MKH-DMG and MKH-SUC at
shading is probably due to the instability of the ester bonds.
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Figure 2. Photostability of MK-4 and MKH derivatives (1 µM in ethanol) in artificial sunlight (12,000 lx)
at 25 ◦C. (A) #: MK-4 and �: MKH-DMG; (B) MKH-SUC with (� ) and without (3) shading. Remaining
concentration was calculated as a percentage of the initial concentration of each respective compound.

Table 1. The apparent first order rate constants (k) and half-lives (t1/2) of degradation of MK-4 and
MKH derivatives in ethanol under irradiation with artificial sunlight (12,000 lx) at 25 ◦C.

Compound a Irradiation Conditions k (h−1) t1/2 (h)

MK-4 Sunlight 8.239 0.084
MKH-DMG Sunlight 0.167 4.150

MKH-SUC
Sunlight 2.796 0.248

Shading b 0.883 0.785
a Initial concentrations were 1 µM in ethanol. b During irradiation, compound was covered with aluminum foil
for shading.

To evaluate the effect of irradiation wavelength on photostability of MK-4 and MKH-ester
derivatives, 1 µM solutions of MK-4, MKH-DMG, and MKH-SUC in ethanol were irradiated with a
xenon light source monochromatic light at 279, 341, 373, 404, or 435 nm, and the concentration of each
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compound was measured by LC-MS/MS. The log of concentration of each compound was plotted
against irradiation energy (Figure 3), and the rates and half-life energies of degradation were obtained
from slopes (Table 2). MK-4 decomposition, primarily due to MK-4 chromenol, was accelerated by
a wide range of wavelengths (279−435 nm, Figure 3A). Hydrolytic degradations of MKH-DMG and
MKH-SUC to their corresponding monoesters were accelerated only at the short wavelength of 279 nm
(Figure 3B,C).
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Figure 3. Effects of irradiation wavelength on the photodegradation of MK-4 and MKH derivatives at
25 ◦C. (A) MK-4; (B) MKH-DMG; and (C) MKH-SUC were irradiated with monochromatic light of
wavelengths #: 279, �: 341, 4: 373, �: 404, and 5: 435 nm. Remaining concentration was calculated as
a percentage of the initial concentration of each respective compound.

Table 2. The rate constants (k) and half-lives (E1/2) of degradation of MK-4 and MKH derivatives in
ethanol under different irradiation intensities of monochromatic light at 25 ◦C.

Compound a Wavelength (nm) k (J−1·cm2) E1/2 (J−1·cm2)

MK-4

279 0.533 1.301
341 0.422 1.643
373 0.151 4.583
404 0.049 15.800
435 0.035 19.738

MKH-DMG

279 0.146 4.750
341 - b - b

373 - b - b

404 - b - b

435 - b - b

MKH-SUC

279 0.110 6.323
341 0.069 10.036
373 0.059 11.792
404 0.061 11.296
435 0.068 10.253

a Initial concentrations were 1 µM in ethanol. b No decomposition.
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2.2. Phototoxicity of MK-4 and MKH-Ester Derivatives

Some pharmaceutical substances are photosensitizers that can lead to the generation of reactive
oxygen species (ROS) that cause oxidative damage to skin cells. It has been also shown that vitamin K1

exhibits phototoxicity against cultured epidermis upon UVA irradiation [13]. Therefore, we evaluated
the generation of ROS from MK-4 and MKH derivatives by UVA (320–400 nm) irradiation, which is
strongly related to phototoxicity and accounts for approximately 95% of total ultraviolet radiation in
sunlight that reaches the surface of the earth.

It has been reported that singlet oxygen promotes the peroxidation of skin surface lipids, resulting in
the induction of skin inflammation [18]. Thus, we measured the irradiation intensity-dependent generation
of singlet oxygen by MK-4, MKH-DMG, and MKH-SUC in phosphate-buffered aqueous solution after
UVA irradiation using a p-nitrosodimethylaniline-based ROS assay (Figure 4). Following UVA irradiation
(0–15 J/cm2), MK-4 exhibited increased formation of singlet oxygen in an irradiation energy-dependent
manner similar to that of ketoprofen, the positive control, whereas MKH-DMG and MKH-SUC showed
little generation of singlet oxygen, comparable to that of sulisobenzone, the negative control (Figure 4).
The results indicate that the quinone structure of MK-4 accelerates singlet oxygen generation by UVA
irradiation and that the singlet oxygen formation of MKH ester derivatives is unaffected.Int. J. Mol. Sci. 2019, 20 FOR PEER REVIEW  6 
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Figure 4. Effect of UVA irradiation intensity on singlet oxygen generation in aqueous solutions of MK-4
and MKH derivatives. �: MK-4, �: MKH-DMG, #: MKH-SUC, �: ketoprofen (positive control), and
3: sulisobenzone (negative control). Data represent mean ± SD (n = 3).

The in vitro phototoxicity of MK-4 and MKH derivatives were assessed by measuring the
intracellular ROS generation and the viability of human epidermal keratinocyte cells (HaCaT) after
UVA irradiation in the presence or absence of MK-4 and MKH derivatives. Intracellular ROS generation
was determined using the cell permeable probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA), which
rapidly reacts with hydroxyl radicals. Cells without drug treatment or UVA irradiation were used as
the control. ROS generation and cell viability are shown in Figures 5 and 6, respectively.

None of the compounds increased intracellular ROS levels in the absence of UVA (Figure 5).
Following UVA irradiation, the intracellular ROS level in the MK-4 treated group was elevated in a
dose-dependent manner, whereas no significant changes in intracellular ROS levels were observed in
the MKH-DMG and MKH-SUC treated groups (Figure 5).

None of the compounds affected cell viability in the absence of UVA irradiation (Figure 6). After UVA
irradiation, cells were re-incubated for 24 h and analyzed for cell viability. The viability of MK-4-treated
cells was decreased dose-dependently (Figure 6), while the viability of cells treated with MKH-DMG
or MKH-SUC was unaffected (Figure 6). Increased intracellular ROS and decreased cell viability were
only observed in cells treated with MK-4 and irradiated with UVA, suggesting that the phototoxicity of
MK-4 was a result of ROS formation. Because DCFH-DA mainly reacts with highly reactive ROS such as
hydroxyl radicals and peroxynitrate, cell toxicity may be caused by ROS and/or induced H2O2.
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Based on these results, it appears that MKH derivatives would be useful for skin application
without producing singlet oxygen related skin surface toxicity and ROS related cytotoxicity induced
by photo irradiation.

2.3. MKH Delivery into HaCaT Cells Using MK-4 and MKH-Ester Derivatives

The potential of MKH derivatives and MK-4 as dermal delivery systems of MKH were assessed
by measuring intracellular MKH levels. However, accurate measurement of MKH is difficult because
MKH is readily oxidized to MK-4. In γ-glutamyl carboxylation of vitamin K dependent protein
(VKDP), MKH acts as a cofactor of γ-glutamyl carboxylase (GGCX) and is stoichiometrically converted
to menaquinone-4 epoxide (MKO). Thus, MKO levels in HaCaT cells can reflect the amount of MKH
delivered into the cell and subsequently converted in the carboxylation of VKDP. In addition, MK-4
level in cells after MKH prodrugs treatment indicates the oxidative product of MKH.

In this study, the intracellular concentration of MKO and MK-4 in HaCaT cells over time after
treatment with MK-4, MKH-DMG, or MKH-SUC (5 µM) was determined by LC-MS/MS (Figure 7).

The time course of intracellular MKO depends on the cellular uptake rate of prodrugs and on
the conversion rate to MKH in cells. Intracellular delivery of MKH after MK-4 administration was
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dependent on the reductive activation of MK-4 to MKH. The ratio of AUCMKO/AUCMK-4 shown in
Table 3 suggests the difference of delivery processes between MKH prodrug and MK-4. These ratios
after MKH prodrugs administration were clearly higher than those obtained after MK-4 administration,
indicating that these esters are hydrolyzed to MKH and effectively converted to MKO in HaCaT cells.
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Figure 7. MKO and MK-4 levels in HaCaT cells after treatment with MK-4 or MKH derivatives. HaCaT
cells were treated with (A) MK-4, (B) MKH-DMG, or (C) MKH-SUC (5µM). The intracellular concentrations
of �: MKO, and #: MK-4 were determined by LC-MS/MS. Data represent mean ± SD (n = 3).

After MK-4 treatment, MKO and MK-4 levels immediately increased and reached a plateau after
12 to 24 h. Following MKH-DMG and MKH-SUC treatment, MKO levels were significantly increased,
but the increase in MKO levels with MKH-SUC was faster than that with MKH-DMG. The areas under
the concentration vs time curves over 72 h for MKO (AUCMKO (0–72 h)) and MK-4 (AUCMK-4 (0–72 h)) were
calculated using the trapezoidal method and are shown in Table 3. The AUCMKO (0–72 h) for MKH-DMG
and MKH-SUC was 1.023- and 1.641-fold that of MK-4, respectively. These results indicate that
MKH-DMG and MKH-SUC can act as MKH prodrugs and effectively deliver MKH to keratinocytes.

Table 3. The area under curve over 72 h (AUCMKO (0–72 h)) of MKO and (AUCMK-4 (0–72 h)) of MK-4
concentrations and the AUC ratio of MKO to MK-4 (AUCMKO/AUCMK-4) over time in HaCaT cells
treated with MK-4 or MKH derivatives.

Compound a AUCMKO (0–72 h)
(nmol·h/mg of Protein)

AUCMK-4 (0–72 h)
(nmol·h/mg of Protein) AUCMKO/AUCMK-4

MK-4 10.543 ± 0.795 5.628 ± 0.698 1.873 ± 0.272
MKH-DMG 10.786 ± 1.696 1.878 ± 0.088 5.743 ± 0.942
MKH-SUC 17.304 ± 1.068 2.316 ± 0.095 7.471 ± 0.554

a Cells were treated with medium containing 5 µM MK-4, MKH-DMG, and MKH-SUC. Data represent mean ± SD
(n = 3).
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To confirm whether MKH prodrugs could successfully deliver MKH to dermal cells under sunlight,
the intracellular level of MKO in HaCaT cells was determined following administration of MK-4
and MKH derivatives in the presence or absence of artificial sunlight irradiation. The intracellular
MKO level after administration of MK-4 and irradiation with artificial sunlight was seriously reduced
compared to that following MK-4 administration in shade (Figure 8). MKO levels were increased after
administration of MKH-DMG and MKH-SUC in sunlight, but these were approximately 60% that of the
cells treated with their respective compounds in shading conditions. These results clearly indicate that
the MKH prodrugs (MKH-DMG and MKH-SUC) could deliver MKH into keratinocytes even under
sunlight irradiation, but MK-4 could not. It is also possible that MK-4 chromenol, the photodegradation
product of MK-4, could not reconvert to MK-4 or MKH in keratinocytes.
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Data represent mean ± SD (n = 3).

3. Discussion

The relative irradiance of artificial sunlight used in this study at wavelengths of 300 to 800 nm is
approximately equal to that of natural sunlight. Thus, the high photostability of MKH derivatives
compared with the quinone form of MK-4 suggests that MKH derivatives may be useful for skin
application without photodegradation. A study of the vitamin K1 photoreaction by Hangarter et al.
showed that charge transfer from the β,γ-double bond of the isoprenyl side chain to the quinone
moiety initiates intramolecular proton transfer from the side chain, yielding the 1,3-quinone methide
diradical in polar solvents and subsequently forms 1,2-quinone methide, which forms vitamin K1

chromenol [12]. The formation of MK-4 chromenol in ethanol following irradiation of MK-4 suggests
that it is formed by the same mechanism. The bis-ester of MKH was hydrolyzed to MKH monoester
by irradiation, which may also be explained by the formation of 1,3-quinone methide in a polar solvent
that could then intramolecularly transfer from the side chain to the quinone moiety. MKH-DMG and
MKH-SUC hydrolyses were accelerated only at 279 nm, confirming the hydrolyses of MKH-bis-ester
to monoester in sunlight.

MK-4 degraded following a reaction rate-light wavelength relationship, in which exposure to
shorter wavelengths resulted in faster degradation rates. However, Teraoka et al. showed that the
curve of photodegradation rate of MK-4 against wavelength followed a bell bottom shape and that
the fastest rate occurred at 430 nm [10]. In their study, MK-4 was solubilized in rapeseed oil, which
shows large absorptivity at <300 nm. Thus, it is likely that irradiation energy at <300 nm was absorbed
by rapeseed oil, resulting in reduced exposure of MK-4 to irradiation energy and producing the bell
bottom profile.
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Our results indicate that UVA irradiation of MK-4 accelerates singlet oxygen generation in aqueous
solution, and increases intracellular ROS generation and cell toxicity in the HaCaT keratinocyte cell line.
These results may be related to 1,3-quinone methide diradical formation by UVA irradiation of MK-4.
Contrastingly, MKH derivatives avoided ROS formation and phototoxicity under UVA irradiation.
Therefore, MKH derivatives would be candidates for effective, non-phototoxic use in skin application.

In order to act as an MKH prodrug, MKH derivatives must be converted to the parent drug in
dermal cells after skin application. Our results clearly show that MKH derivatives and MK-4 increase
intracellular MKO levels in the keratinocyte cell line we used, indicating that they could be used to
deliver MKH into keratinocytes, where it then acts as a cofactor for GGCX. We previously showed that
MKH-DMG and MKH-SUC reconvert to MKH in a reaction catalyzed by carboxyl esterase [17], which
is present in dermal cells [19–21], so accelerated intracellular reconversion to a parent drug is possible.
Although UVA-irradiated MK-4 did not increase intracellular MKO, UVA-irradiated MKH derivatives
were able to.

MKH delivery with MKH-SUC into HaCaT cells is faster than that with MKH-DMG. A similar
result was obtained while using hepatocellular carcinoma (HCC) cells in a previous study—the uptake
and reconversion rates of MKH-SUC in HCC cells were faster than those of MKH-DMG [17]. Therefore,
it can be presumed that the rapid and increased MKH delivery with MKH-SUC in HaCaT cells is due
to the rapid uptake and fast reconversion rates.

In conclusion, MKH-DMG and MKH-SUC could act as MKH prodrugs for skin application
without photoinstability and phototoxicity. This ideal strategy is a safer and more efficient way to
deliver MKH than using the quinone form MK-4. Therefore, MKH prodrugs have the potential to be
used for skin diseases which require the activity of vitamin K dependent proteins for treatment, even
under direct sunlight irradiation. Further studies that can reflect the actual skin environment using
human origin skin models such as 3-dimensional skin models or flesh skin tissue samples are needed.

4. Materials and Methods

4.1. Chemicals

MK-4 was purchased from Seebio Biotech, Inc. (Shanghai, China). Menaquinone-4 epoxide (MKO)
was kindly provided by Eisai Co., Ltd. (Tokyo, Japan). Menahydroquinone-4 1,4-bis-N,N-dimethylglycinate
hydrochloride (MKH-DMG) and menahydroquinone-4 1,4-bis-hemisuccinate (MKH-SUC) were
synthesized in our laboratory using previously reported methods [17]. Other chemicals were purchased
from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).

4.2. Cell Culture

Human epidermal keratinocyte cell line HaCaT was obtained from CLS Cell Lines Service
GmbH (Eppelheim, Germany). Cells were maintained in DMEM (high glucose, CLS) with 10% FBS
(Life Technologies, Carlsbad, CA, USA) and 1% penicillin/streptomycin (Life Technologies) at 37 ◦C
under an atmosphere of 5% CO2.

4.3. Photostability

Solutions of MK-4 and MKH derivatives in ethanol (1 µM) were irradiated with artificial sunlight
(SOLAX 100 W XC-100 B, Seric Ltd., Tokyo, Japan) at 12,000 lx in quartz cells. Illuminance was
measured using a digital luminometer (LX-1108, Mother Tool). Irradiation samples (1 µM in ethanol)
were irradiated with artificial sunlight at 12,000 lx, and with monochromatic light (279, 341, 373,
404, and 435 nm) using a multi-wavelength irradiation spectrometer (MM 3, Bunkoukeiki Co., Ltd.,
Tokyo, Japan). Irradiation intensity was measured using an irradiation energy measurement power
meter (MM 3, Bunkoukeiki Co., Ltd.). Concentrations of MK-4, MK-4 chromenol, MKH-DMG,
MKH-mono-NN-dimethyl glycinate (MKH-mono-DMG), MKH-SUC, and MKH-mono-succinate
(MKH-mono-SUC) in each solution were analyzed by LC-MS/MS as described below (Section 4.9).
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4.4. Singlet Oxygen Generation Assay

MK-4 and MKH derivatives were dissolved in a phosphate buffer (NaPB, pH 7.4) containing
0.2% polyoxyethylene hydrogenated castor oil 40 (HCO 40, obtained as a gift sample from Nikko
Chemicals Co., Ltd., Osaka, Japan), 2% dimethyl sulfoxide, and 0.1% glycerol. The solutions were
treated according to the singlet oxygen assay method (The Japanese Center for the Validation of
Alternative Methods, JaCVAM) [22] and irradiated with UVA light from a CL-1000L UV Crosslinker
(UVP, Upland, CA, USA). Absorbance was measured using an Infinite M200 PRO (Tecan Life Sciences,
Zurich, Switzerland).

4.5. Intracellular ROS Generation Assay

Intracellular ROS generation was measured using 2′,7′-dichlorofluorescein diacetate (DCFH-DA;
Invitrogen, Carlsbad, CA, USA) as a fluorescent probe. HaCaT cells were seeded at 1.0 × 105 cells/well
in 96-well plates and cultured overnight. Thereafter, cells were washed with PBS and incubated with
10 µM DCFH-DA solution in PBS at 37 ◦C for 1 h. Following incubation, test compound solutions in
PBS described above were added to each well and re-incubated for 1 h. After incubation, cells were
irradiated with UVA at an irradiation intensity of 15 J/cm2 and the fluorescence intensity (Ex: 485 nm,
Em: 530 nm) was measured using an Infinite M200 PRO (Tecan Life Sciences).

4.6. Cell Viability Assay

HaCaT cells were seeded at 1.0× 105 cells/well in 96-well plates and cultured overnight. Thereafter,
cells were washed with PBS, and test compound solutions in PBS described above were added to
each well and re-incubated for 1 h. After incubation, cells were irradiated with UVA at an irradiation
intensity of 15 J/cm2. After irradiation, cells were washed twice with PBS and replaced in culture
medium. After 24 h incubation, cell viability was measured using a CellTiter-Glo® Luminescent Cell
Viability Assay (Promega, Madison, WI, USA).

4.7. Determination of Intracellular MKO Levels after Treatment With MK-4 and MKH Derivatives

HaCaT cells were seeded at 5.0 × 104 cells/well in 24-well plates and allowed to attach for 48 h.
Cells were cultured in medium containing 5 µM MK-4, MKH-DMG, or MKH-SUC, then medium was
removed and cells were washed twice with PBS. Cells were collected in 500 µL of PBS and sonicated.
Cell homogenates were combined with an equal volume of methanol and three times volume of
n-hexane, vortexed for 2 min, and centrifuged at 1750× g for 10 min. The organic layer was evaporated
under N2 gas. The residue was reconstituted with 20 µL of methanol, and subjected to LC-MS/MS,
as described below. The protein concentration of the cell homogenate was determined using a BCA
protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA).

4.8. Determination of Intracellular MKO Levels After Treatment With Sunlight-Irradiated MK-4 and
MKH Derivatives

Solutions of 200 µM MK-4, MKH-DMG, or MKH-SUC in ethanol were irradiated with artificial
sunlight for 3 h at 12,000 lx in quartz cells. After irradiation, ethanol was evaporated under N2 gas.
Residues were re-dissolved in a volume of medium equal to the evaporated ethanol, diluted 40-fold,
and added to the cells for up to 48 h. Measurement of intracellular MKO was carried out using the
same method as described above (Section 4.7).
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4.9. LC-MS/MS

LC-MS/MS was performed using an LCMS-8050 Liquid Chromatograph Mass Spectrometer
(Shimadzu, Kyoto, Japan) and Shimadzu HPLC System (system controller (CBM-20A), pump
(LD-20AD), degasser (DGU-20As), UV detector (SPD-20A), and auto injector (SIL-20AC HT)).
Separations were performed on a CAPCELL PAK C18 UG120 (3 µm, 2.0 mm × 100 mm,
Shiseido Co., Ltd., Tokyo, Japan) using a mobile phase of 10 mmol/L ammonium acetate and 0.1%
acetic acid in methanol and water (97:3) at a flow rate of 0.4 mL/min. Column temperature was
maintained at 40 ◦C. The mass spectrometer was equipped with an electrospray ionization and was
run in positive ion mode. Identification and quantitation were based on MS/MS-multiple reaction
monitoring mode using transition ions as follows: m/z 445→ 187 for the [M+H]+ MK-4 adduct, m/z
445→ 187 for the [M + H]+ chromenol adduct, 619→ 58 for the [M + H]+ MKH-DMG adduct, m/z
532→ 58 for the [M + H]+ MKH-mono-DMG adduct, m/z 664→ 187 for the [M + H]+ MKH-SUC
adduct, m/z 564→ 187 for the [M + H]+ MKH-mono-SUC adduct, and m/z 461→ 81 for the [M + H]+

MKO adduct. Retention times were: MK-4, 3.3 min; MK-4 chromenol, 2.0 min; MKH-DMG, 1.7 min;
MKH-mono-DMG, 1.6 min; MKH-SUC, 1.1 min; MKH-mono-SUC, 1.2 min; and MKO, 2.5 min.

4.10. Statistical Analysis

Statistical significance was determined using Dunnett’s test. p < 0.05 was considered statistically
significant. Data were analyzed using GraphPad Prism 6 (GraphPad Software).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/10/2548/s1.
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Abbreviations

MKH menahydroquinone-4
MK-4 menaquinone-4
MKC menaquinone-4 chromenol
MKH-DMG menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride

MKH-mono-DMG
menahydroquinone-4 1-mono N,N-dimethylglycinate hydrochloride
menahydroquinone-4 4-mono N,N-dimethylglycinate hydrochloride

MKH-SUC menahydroquinone-4 1,4-bis-hemisuccinate

MKH-mono-SUC
menahydroquinone-4 1-mono hemisuccinate
menahydroquinone-4 4-mono hemisuccinate

MKO menaquinone-4 epoxide
GGCX γ-glutamyl carboxylase
VKORC1 vitamin K epoxide reductase complex subunit 1
VKORC1L1 vitamin K epoxide reductase complex subunit 1 like 1
ROS reactive oxygen species
DCFH-DA 2′,7′-dichlorofluorescein diacetate
AUC area under the concentration versus time curve
MRM MS/MS-multiple reaction monitoring mode
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