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Abstract: Cognitive impairment and dementia are recognized as major threats to public health. Many
studies have shown the important role played by challenges to the cerebral vasculature and the
neurovascular unit. To investigate the structural and functional characteristics of the brain, MRI
has proven an invaluable tool for visualizing the internal organs of patients and analyzing the
parameters related to neuronal activation and blood flow in vivo. Different strategies of imaging can
be combined to obtain various parameters: (i) measures of cortical and subcortical structures (cortical
thickness, subcortical structures volume); (ii) evaluation of microstructural characteristics of the
white matter (fractional anisotropy, mean diffusivity); (iii) neuronal activation and synchronicity to
identify functional networks across different regions (functional connectivity between specific regions,
graph measures of specific nodes); and (iv) structure of the cerebral vasculature and its efficacy in
irrorating the brain (main vessel diameter, cerebral perfusion). The high amount of data obtainable
from multi-modal sources calls for methods of advanced analysis, like machine-learning algorithms
that allow the discrimination of the most informative features, to comprehensively characterize the
cerebrovascular network into specific and sensitive biomarkers. By using the same techniques of
human imaging in pre-clinical research, we can also investigate the mechanisms underlying the
pathophysiological alterations identified in patients by imaging, with the chance of looking for
molecular mechanisms to recover the pathology or hamper its progression.

Keywords: cerebrovascular diseases; dementia; vascular cognitive impairment; brain magnetic
resonance imaging

1. Background

As life expectancy has increased, a progressive burden on the healthcare system is imposed by
the treatment and caregiving of cognitively impaired and demented patients. To face this emergency,
the World Health Organization (WHO) has declared all non-communicable diseases a threat to the
world population [1]. The estimates state that 35.6 million people are currently affected by dementia
and a 3-fold increase will be registered by 2050 [1]. Recent studies have demonstrated that while
neurodegenerative processes underlie many cases of dementia like Alzheimer’s disease, in a large
number of cases, concomitant vascular pathology has been identified [2,3]. To support the pivotal role
of the vasculature in cognitive impairment, many studies have investigated the pathophysiology of
the “neurovascular unit”. This definition encloses all of the functional cell-cell interactions necessary
to develop and maintain the vasculature in the brain and ensure the energy supply to neurons.
A malfunction of this domain can originate from vascular pathologies, but inevitably reflects on neural
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functioning. While the most accepted vascular cognitive impairment (VCI) definition states that VCI
is “a syndrome with evidence of clinical stroke or subclinical vascular brain injury and cognitive
impairment affecting at least one cognitive domain” [4], damage or loss of adequate functioning of the
neurovascular unit can nonetheless affect cognition. Hence, the need for a new way to explore the
brain and its vasculature to identify characteristic patterns of alterations that can predict the onset of
cognitive impairment and cast light on its pathophysiological origin.

To date, the best available tool to explore the human brain is magnetic resonance imaging (MRI).
Originating around fifty years ago, this technology leverages the property of hydrogen nuclei, which
when stimulated by radiofrequency pulses, resonate with the magnetic field where they are immersed,
allowing the analysis of different tissues. By reading the signals emitted during the resonance, we can
obtain the time needed for a particular tissue to return to a steady state on the longitudinal component
or on the transverse one, which is the T1 relaxation time and T2 relaxation time, respectively. The
images are obtained by weighting one of the two components, emphasizing the contrasts between
tissues with different T1 or T2 relaxation times. During the past decades, MRI techniques have evolved
from methods that allow images of internal tissues of the patients to be obtained to techniques capable
of providing functional insights of the biological systems under examination.

The support of various MRI techniques can be a fundamental addition to clinical practice to
specifically characterize and diagnose different forms of cognitive impairment originating from vascular
pathologies. On this note, a modern and quantitative approach can be instrumental to extrapolate
effective biomarkers for clinical and modern computer-driven analyses.

2. Structural MRI to Quantify Morphological Alterations

The first applications of brain MRI were developed to understand and analyze the morphological
alterations induced by various pathologies impacting on white and grey matter [5,6]. The first approach
aimed to obtain a segmentation of the brain and a parcellation of the cortical areas by hand or by using
specialized software [7,8]. The data obtained from these elaborations were used to characterize the
neurodegenerative processes and related to the affected physical areas with the associated cognitive
functions [9].

Another strategy that allows for the investigation of differences in gray matter distribution and
density is voxel-based morphometry (VBM) [10]. This technique eliminates the intrinsic variability
of brain dimensions in morphological analysis by co-registering the images in a common space for
all of the subjects in a study, and then, after mathematical operations such as smoothing and image
normalization, a voxel-wise statistical comparison of the gray matter is performed to highlight the
differences between different groups in the study [11].

While atrophy or deformation of gray matter integrity are visualizable and measurable through
macrostructural evaluations, white matter lesions are often injuries at the microstructural level, thus
not measurable in macroscopic morphology. The development of new techniques specific for white
matter injury evaluation has paved the way for the analysis and identification of one of the most
important markers of cerebrovascular damage in the brain: the white matter hyperintensities (WMH).
The T2-FLAIR sequence (T2-Fluid Attenuated Inversion Recovery) [12] is useful to highlight regions of
T2 prolongation in the white matter, corresponding to regions of increased water content with respect
to normal white matter. In this kind of sequence, areas of hyperintensity represent a region where the
white matter is undergoing a process of demyelination or axonal loss. In general, these alterations
are the main evidence of small vessel disease (SVD) progression, even though they can correspond to
different pathological states [13].

Characterization of WMH was first qualitative, with a grading system based on the appearance
and position of the identifiable lesions [14], then, with the progress of computer-aided diagnosis
(CADXx) systems and improvements in the computer vision field, we can now absolutely quantify the
volume of white matter lesions [15,16]. This improvement is fundamental to defining the absolute and
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quantitative biomarkers that could help in better evaluating and predicting the onset of VCI in the
population at risk.

Another structural hallmark of SVD is the alteration of the Virchow—Robin or perivascular spaces
(PVS) [17]. The multifaceted role of the PVS in maintaining the Blood Brain Barrier (BBB) equilibrium
and brain homeostasis makes the study of its alterations of utmost importance to identify markers of
damage associated with cerebrovascular pathologies [18]. Similarly to WMH, it is possible to evaluate
the PVS alterations both with a semi-quantitative grading system [19] or with quantitative automatic
methods [20,21]. The latter category produces quantitative measures, which can contribute to an
estimate of the global cerebrovascular risk, together with other brain measurements.

3. Diffusion Imaging to Evaluate White Matter Integrity

Diffusion weighted imaging (DWI) is a MRI technique that locally modulates the static magnetic
field. This allows us to evaluate the intensity of the spontaneous diffusion of water along that direction.
To obtain a comprehensive model of the Brownian motion of the water in the different tissues of the
brain, we can combine multiple independent directions of the magnetic field in subsequent scans [22].
By concatenating the resulting various images, we can obtain a four-dimensional image, where
three dimensions represent the spatial information and the fourth dimension represents the different
orientation of the magnetic field in each scan. The use of more than six directions of magnetic field
lets us apply a tensorial model to each voxel of the image to characterize the preferential direction in
which the water diffuses [23]. This imaging technique, diffusion tensor imaging (DTI), is a powerful
technique that can be used to obtain a parametric representation of the microstructural organization
of structures like the myelinated axonal fibers composing the white matter. The main parameters
obtained from DTI are fractional anisotropy (FA) and mean diffusivity (MD), axial diffusivity (AxD),
and radial diffusivity (RD). The first represents the rate of directionality of water diffusion in a single
voxel along the favored direction (i.e., along the axon direction in a voxel of white matter), and the
second represents the mean intensity of diffusion in a voxel, often correlated with the water content of
that voxel [24]. The last pair of parameters express the intensity of diffusion along the favored direction
of diffusion (AxD) and along the orthogonal plane to it (RD), respectively.

Once a complete modeling of water diffusion in the brain has been obtained, it is possible to
segment regions where the diffusion direction is coherent, and then reconstruct the connections between
different brain areas in this way [25]. This technique, referred to as tractography, allows microstructural
information of different brain areas to be obtained, selecting them only on the basis of spatial location,
but also in relation to the anatomical connections [26].

With the evolution of MRI scanners, DTI has been perfected to have increased spatial and angular
resolution, allowing better discrimination of fibers in smaller regions and reconstructing them with
higher precision by fitting the model to scans obtained by modulating the field at different intensities
(Multi-Shell DTT) [27]. The evolution of imaging sequences has been followed by progression in the
analytical models applied to the resulting data to better characterize the connections, which takes
into account the limits of the imaging modality such as the impossibility to visualize two different
directions of diffusion guided by crossing white matter fibers in a single voxel. Modern computational
probabilistic diffusion models and probabilistic fiber tracking let us infer these connections from the
data and provide us with a comprehensive representation of the different physical connections in the
brain [28,29].

The investigative power provided by the use of DTI in assessing the status of white matter
microstructure is a powerful tool in the hand of clinicians to understand the impact of vascular
challenges on the brain characterizing the pathophysiological process underlying the injury. Briefly,
a decrease in FA can usually be considered an index of white matter fascicle disorganization due to
demyelination or axonal degradation. On the other hand, MD is a less specific indicator that is often
associated with the damage of neuronal membranes [24]. One of the most common approaches used
to analyze DTI is the use of tract-based spatial statistics (TBSS) [30], which acquires a group of images
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to a common space, projects the mean FA or MD values to the skeletonized profile of the white matter,
and then computes cross-subject voxelwise statistics to assess the differences in some regions between
various conditions. By using this method, it became possible to assess differences in the spatial location
of signs of damage that discriminate between vascular dementia (VaD) and pure AD [31].

Implementing fiber-tracking approaches allows a per-patient segmentation and extraction of the
values of diffusivity [32-34]. As an example, this approach makes it possible to link the increased risk
in all-cause mortality and stroke with alterations of FA and MD, independently from other white matter
damage such as WMH volume [33,35]. In a similar way, it is possible to relate the damage derived
from specific clinical conditions like hypertension with FA alterations in specific tracts associated
with the decline of performance in cognitive domains driven by those tracts [34]. Other approaches
have tried to further increase the sensitivity of DTI to tackle rare diseases such as cerebral autosomal
dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic
condition causing a spontaneous form of SVD evidenced by leukoaraiosis. After the identification of
the tracts, their skeletonization has been useful to avoid signal interferences from cerebrospinal fluid
and increase the sensitivity of the newly obtained DTI parameters (PSMD, peak width of skeletonized
mean diffusivity). PSMD alterations have been associated with CADASIL or sporadic SVD, but not to
AD [36].

DTI processing lacks a well-established gold-standard that can be adopted in the process of a
clinical trial, thus confining this technique to independent research projects or methodological research.
This limitation comes mainly from the availability of dozens of diffusion models to reconstruct the
data, algorithms to track the fibers, and software to carry out the computation. One of the aims
of the radiological and computational neuroimaging community should be to compare different
combinations of operations to create a set of tools to be proposed as a gold-standard to extract diffusion
parameters and fiber bundles reconstructions, from the perspective of being usable as biomarkers for
clinical practice.

4. Functional MRI to Highlight Networks of Neurons

Functional MRI is an imaging technique that exploits the neurovascular mechanism called
“functional hyperemia” whereby ongoing brain regional activation recruits increased blood oxygenation
in that specific region [37]. The most common implementation of fMRI is a T2*-weighted sequence of
images with a weighting approximatively equal to the tissues T2* relaxation time and with a scan time
lower than 5 s to correctly sample the hemodynamic response function (HRF).

Thus, the analysis of blood oxygen level-dependent (BOLD) signals allows for the indirect
measurement of regions of brain activation. The first applications of this technique were implemented
to actively map brain areas activated in response to various stimuli to associate regions of neural activity
to specific functions such as motor control or visual stimuli processing [38,39]. An evolution of this
analytic paradigm has been obtained with the breakthrough discovery of regions with synchronized
activity, independent from the stimulus provided to the patient under examination, i.e., in a resting
state condition (rs-fMRI) [40,41]. By exploiting this strategy, a consistent pattern of synchronized
activation in healthy subjects has been shown. These patterns, called functional networks, have
been associated with the cerebral function driven by those synchronized regions. A pivotal study by
Yeo et al. [42] analyzed the resting state fMRI sequences of 1000 healthy adults to obtain a parcellation
of the gray matter. By clustering the voxels obtained according to the similarity of their BOLD signal
over time, i.e., their functional connectivity, they represented either seven (coarse resolution) or 17
(fine resolution) functional networks.

Rs-fMRI image datasets are usually made of a high number of volumes acquired in succession,
show low contrast between different brain tissues, and generally do not provide much information to
the visual inspection. Many different approaches have been tested to analyze this kind of data, resulting
in dozens of algorithms, parameters that can be extracted, and different approaches to obtain results
from the sequences. This approach has generated a situation similar to DTI analysis, where no clear
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golden standard exists. Similarly, the analytical principles are driven by the solutions implemented in
the major neuroimaging software suites, which have been adopted by international consortiums [43].

The first approaches tried to leverage the a priori knowledge of radiologists and relied on the
identification of regions of interest (ROIs), which are the seed for searching areas of analogous activity.
This technique, referred to as seed-based functional connectivity analysis, was used in the very first
paper that identified and formalized the concept of a functional network [40]. With the evolution
of mathematical models available to tackle high dimensional problems such as rs-fMRI and the
improvement of computational capabilities, there has been a paradigm shift from imposing initial
conditions (i.e., seed ROIs) to the data to extracting patterns by leveraging techniques that infer spatial
and temporal organization of the brain activity directly from the raw timeseries. The main example
of this approach is the independent component analysis, a blind signal separation that assumes
that the signal acquired is the result of various spatio-temporal processes statistically independent
between each other [44]. By extracting all of the different independent signals, we can reconstruct the
various timecourses of specific brain regions, grouping them into maps representative of their spatial
distribution. Another approach to the analysis of rs-fMRI datasets originated from Graph Theory,
a mathematical set of tools that represent a system as a combination of nodes and edges. The nodes
denote the data from our system, while the edges resemble the interactions established between two
connected nodes. In the rs-fMRI, we can represent the different regions of the cortex as the nodes of
our graph, and the similarity between their timecourses (the functional connectivity) as the edges
between themselves. Once the network has been built, it is possible to extract different mathematical
measurements such as the average path length of the graph to describe the connectivity inside the
brain [45,46].

AD research was one of the first fields where the use of fMRI has brought major advancements
to the understanding of the pathophysiological processes underlying the ensuing cognitive decline.
A consistent body of work demonstrated that AD alters the functional connectivity in the default mode
network (DMN), a network that contributes to the default function of the brain and is deactivated
during cognitively active tasks [47]. After these first investigations, with the increase of available data
and improvements in data quality, many projects have also focused on different functional networks
and different degrees of cognitive impairment as well as considering mild cognitive impairment (MCI)
as an intermediate condition [48,49], thus showing a widespread alteration of functional connectivity in
AD patients. Other reports in the literature have focused their interest on functional network properties
by performing graph theoretical analysis, evidencing different graph connection properties in patients
stratified by the presence of white matter lesions and VaD [50,51].

In a very similar way to DTI, one of the biggest shortcomings of rs-fMRI is the absence of a gold
standard acquisition and analysis pipeline. Since it is a technique that measures neuronal activity
by reading the effects of neurovascular coupling, it would be of fundamental importance to better
explain the pathophysiological alterations underlying the cognitive decline induced by cerebrovascular
diseases. The identification of a set of metrics that allows for the evaluation of alterations in the
functional connectivity in an objective and standardized way, should be an absolute priority to define a
functional biomarker which can be, at the same time, sensible and specific for a large set of pathologies
grouped under the definition of VaD and VCI.

5. Magnetic Resonance Angiography and Arterial Spin Labeling for Imaging of the
Cerebrovascular Tree, from Large Vessels to Microcirculation

The emerging role of neurovascular coupling in the regulation of cognitive function and brain
homeostasis [52] has shown the importance of also taking into account the vascular contribution
in pathologies classically attributed to neuronal dysfunction (i.e., AD). In VCI and dementia, it is
even more valuable to assess the alterations of the cerebrovascular tree. MRI lets us characterize and
evaluate the integrity of both large vessels and small vessels through different techniques.
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Magnetic resonance angiography (MRA) is the technique of choice to study large vessels of
the cerebrovascular tree [53]. The most diffused MRA sequence implemented to do this exploits
the Time-of-Flight (TOF) effect, which is the variation of signal intensity in the presence of flow
between two regions with different magnetizations [54,55]. The technique consists of saturating the
magnetization of a region to nullify the signal of stationary tissues and highlight the signal originating
by blood flowing from slices with no magnetic saturation. In this way, we can achieve a complete
angiography of a desired region without injecting contrast agents into the patient, thus minimizing
risks and undesirable side-effects.

The clinical use of MRA has been mainly introduced for the identification of aneurysms, nonetheless
it can also be effective for the diagnosis and monitoring of pathologies such as Moyamoya disease,
where a massive alteration of the cerebrovascular tree can be identified by a contrast-free angiography
technique. While Moyamoya disease does not imply a canonical form of VCI, several studies have
associated it with similar conditions of cognitive dysfunction [56-58], suggesting that large vessel
diseases can also be a risk factor for cognitive decline and VaD.

If angiography can be a powerful tool to investigate the roots of the cerebrovascular tree, with
this kind of technique, it is impossible to directly inspect the cerebral capillaries and understand their
function in regulating cerebral hemodynamics. To this aim, specific sequences can evaluate the degree
of tissue perfusion in a quantitative way [59]. Arterial spin labeling (ASL) and subsequent variants
(pseudo-continuous, continuous, pulsed ASL) allow for this property to be evaluated: the principle is
to obtain a steady state image that can be used as the control image, then one or more images after the
magnetic tagging of the blood [60]. The blood circulating through tissues alters the T1 relaxation time
and by applying specific mathematical models, it becomes possible to obtain an absolute quantification
of perfusion. Like angiography, the main strength of ASL techniques is the absence of radioactive or
kidney-toxic contrasts, making these approaches ideal candidates to obtain perfusion measurements in
healthy populations or in studies that include one or more follow up analyses.

The principal use of the ASL perfusion technique is to image perfusion of brain tissue to (i) analyze
ischemia or vascular malformations that alter the global perfusion, (ii) evaluate the hypervascularization
of tumoral tissues in high risk populations, and (iii) evaluate the entity of traumatic brain injury to
predict the prognosis of the patients. In addition, recent studies have used ASL to search for patterns of
alterations in cerebral perfusion and their link with neurodegenerative diseases and dementia [61,62].

The combined analytical potential given by MRA and ASL to assess structure and function can be
an invaluable support in the characterization and design of imaging biomarkers that quantitatively
characterize the integrity and function of the cerebrovascular tree in a direct way.

6. New Analysis Techniques to Leverage Multimodal Big Data: Machine Learning Applied to
Neuroimaging

The technological evolution in the field of computing has made it possible for the rise of a new
branch of research that has narrowed the distance between computer science and biomedicine [63].
The first exchange between the fields started with the need for a system that could help radiologists in
analyzing high volumes of data originating from the mass screenings of the population. An example
of this issue is the diagnosis and risk assessment of breast cancer [64,65], or the identification of
melanomas [66]. CADx systems were developed and implemented in clinical routine to lessen the
workload for radiologists and dermatologists with a pre-evaluation of the data generated by the
screenings and highlight region of interests to be analyzed by clinicians.

Machine learning (ML) is a branch of computer science that develops systems capable of learning
from data to classify them into different classes. Classification can be implemented with two different
approaches: supervised or unsupervised classification. The former leverages a set of input data
described by various features and assigned to a set of classes, then trains an analytical model to
correctly classify the highest number of input samples to the correct classes [67]. The latter does not
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have any information on the class assigned to the input data, and instead tries to develop an analytical
model to extract patterns, which is useful to group similar data in different clusters [68].

The development of CADx systems and their introduction in clinical practice has been possible
thanks to innovations in research. These systems take the patient data as input and apply a trained
analytical model to give as output an area of interest for the radiologist or a risk assessment to better
guide the clinician in the diagnostic process, depending on the specific problem. CADx, or in general
ML algorithms, can implement different strategies of classification, each one better suited for specific
classes of problems. As an example, the most common classifier algorithms are decision trees [69],
support-vector machines (SVM) [70], random forests [71], and deep neural networks [72].

At the beginning of the new century, the technological push in data management systems, imaging
platforms, and technology paved the way to the sprouting of collective efforts to gather data and
elaborate them in a new perspective, not only from a clinician point of view, but in a way that could
be tackled by automated systems to generate knowledge. Projects like the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [73], Human Connectome Project (HCP) [74], and Human Brain
Project (HBP) [75] have created databases of thousands of subjects available for the analysis that
have been acquired with cutting edge technology and state-of-art protocols to ensure data quality
and reproducibility.

These neuroimaging initiatives are often paired with efforts to standardize the analysis pipeline
and data extraction to achieve quantitative measurements of the brain that are suitable for advanced
analysis with ML algorithms. One of the greatest breakthroughs originating from this approach
has been the fine parcellation of the brain cortex, leveraging information of function, architecture,
topography, and connectivity [43]. In the field of dementias, great efforts have been made toward the
prediction and risk assessment of AD and transition from MCI to AD [76-79].

7. MRI in the Clinical Practice: toward Better Healthcare through Imaging Insights

The use of MRI in the context of vascular dementia and AD diagnosis has increased over the
years with improvements in technical and image processing. Nonetheless, very few efforts have been
directed toward a comprehensive characterization of the complex system of neurovascular functioning
and cross talk between the cerebral vasculature and tissues. Even in AD, only greater efforts by
consortiums like ADNI have produced multimodal data directed at achieving a global understanding
of the pathology, thus directly impacting on patient management. The consortium produced has
more than 1700 scientific publications, which have greatly advanced the understanding of the basis
of AD and empowered clinicians with tools to aid them in the management and staging of high-risk
patients [77,80,81] and with systems that can predict the transition from MCI to AD. Other initiatives
applied to VCI have sprouted more recently, which have placed great effort into mapping the white
matter lesions and the symptoms associated with their position and extent [82], with a particular
attention on the data harmonization between different centers of the consortium and the unification of
image processing protocols to grant reliable and repeatable results across different technical setups.

8. Novel Imaging Strategies in Experimental Models: A Translational Approach from Bench
to Bedside

The technological advances in electronics and miniaturization of the early nineties paved the
way to affordable and industrialized MRI scanners for small animals. In preclinical MRI, the biggest
challenge was the need for increased resolution to discriminate the smaller details of the rodent
anatomy. To do this, it was necessary to increase the magnetic field and to push the gradient system
and control the electronics at the limits of technological capabilities. Toward this aim, MRI scanners
with a typical static magnetic field between 7 and 11.7 Tesla were developed, therefore combining high
performance gradients with a smaller bore (between 16 and 40 cm), hence resulting in micrometric
resolutions often with a high signal-to-noise ratio. It is worth noting that this increase in resolution and
signal-to-noise ratio comes at a cost: the relaxation times of organic tissues in a 3 Tesla magnetic field
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are different from the relaxation times of the same tissues subjected to higher fields, like 7 Tesla [83].
This has forced researchers to set up a customized set of image contrasts to maximize the information
that can be obtained from murine imaging, thus implementing all of the techniques discussed in the
previous paragraphs.

The application of MRI to murine models of cognitive decline has proven to be a powerful tool to
investigate the magnetic properties of various regions of the mouse brain in vivo, giving the chance to
parallel the MRI findings to histological properties of analyzed regions. This kind of approach allows
following anatomical variations such as the longitudinal analysis of brain atrophy as well as leveraging
automated or semi-automated segmentation pipelines [84,85]. Despite the small dimensions and the
substantial difference when compared to human white matter, DTI has also been used extensively to
investigate the connections established between different areas of the brain. These studies have led to
a complete tractographical mapping of the connections in the mouse brain [86] and to the assessment
of detrimental effects on fiber structure and density in models of cognitive decline [87].

While the application of task-based fMRI is unfeasible in animal models, rs-fMRI has been
implemented and used to investigate areas of synchronized activation in the anesthetized animal [88],
providing insights complementary to the ones obtained by mapping physical connections and not
achievable with ex vivo histological techniques. The implementation of this technique in mice is a
technical challenge due to the complexity of the signals analyzed. In addition, different combinations of
anesthesia and breathing conditions can also substantially affect the findings and need to be considered
when discussing the obtained results (for a comprehensive review on mouse functional networks
and animal handling, see [89,90]). As a tool for predicting pathological alterations, murine models
of AD-like cognitive decline have been investigated with rs-fMRI, demonstrating the correlation
between an increase of brain functional connectivity and the onset of tau pathology [91], suggesting
that rs-fMRI can be an effective strategy to highlight the functional dysregulation correlated with
cognitive decline [92].

In the study of murine models of cognitive decline, the evaluation of cerebral blood volume,
cerebral blood flow, and perfusion has always been of great interest. While technologies like intracranial
laser doppler for small animals have been available for decades, MRI has brought perfusion analysis
to a completely new horizon. The imaging protocols let us investigate the integrity of the BBB,
one of the main targets of molecular investigation aimed at clarifying the vascular contribution to
cognitive decline, in the whole murine brain by adding fundamental spatial information to clearly
identify the boundaries of altered microcirculation. Techniques that evaluate perfusion, cerebral blood
volume, and BBB permeability [87,93] can be paired with genetic or experimental models of cognitive
impairment and to mechanistic experiments to elucidate the pathophysiological processes involved in
vascular and neurodegenerative diseases.

The use of MRI in preclinical research is an invaluable tool for adding both temporal or spatial
dimension of analysis (i.e., longitudinal structural assessments or spatial blood flow measurements) to
the functional study of the brain, giving insights about the topological organization of the functional
networks. Moreover, a crucial aspect is the possibility of exploring, at a histological and mechanistic
level, the damage or markers evidenced by MRIL In human studies, the only possibility is to perform
autoptic studies or bioptic tissues (i.e., in tumor biopsies), thus limiting the possibility of understanding
the mechanisms underlying the diagnostic image.

9. Conclusions and Perspective

The tight entwinement between neurons and the cerebrovascular tree suggests that cognitive
impairment and neurological disorders can be often of mixed etiology. Thus, VCI and VaD need to be
thoroughly characterized for their structural, microstructural, functional, and vascular pathological
phenomenology. MRI can be a potent tool to investigate these characteristics together, with the aim
of better discriminating the vascular component in cognitive impairments of mixed etiology and
identifying a set of multi-modal metrics that can better describe the detrimental effects on cognitive
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functions of altered vascular function (Table 1). The possibility of translating these metrics into a
pre-clinical setting is of utmost importance. In fact, once we have identified the biomarkers of interest
in an experimental model of cognitive decline, we can explore the underlying pathophysiological
processes with tools unavailable in a clinical setting.

One last important perspective in the development of imaging techniques and biomarkers is
to take into account the ongoing revolution in the collaboration between artificial intelligence and
medical science. To obtain the maximum information from the data collected, it is fundamentally
important to design imaging protocols and pipeline analysis suitable for advanced ML approaches,
which are capable of generating knowledge by extracting patterns and features that are otherwise
non intelligible. It is worth noting that these systems do not have the aim of replacing the clinician,
but have the fundamental role of extracting more information from data that is otherwise non readily
available, and supporting the clinician work through all decisional stages.

Table 1. Summary of main MRI techniques and their application to cerebrovascular diseases. In the left
column, there is a brief description of the potential application of the imaging technique; in the right
column, there is a brief description of the methodology.

Structural Imaging

Through brain
segmentation and cortex =~ Usually performed through
parcellation, we can dedicated software, it can leverage
Brain Segmentation and  measure the morphology = multi-modal inputs. Different 78]
Cortex Parcellation of different brain strategies of segmentation can be !
structures as well as the implemented, from multi-atlas to
extension and thickness  deep learning.
of different cortex areas.
VBM is a technique to To perform VBV, it is necessary to
Voxel-Based perform group analyses  co-register all scans in the exam to
Morphomet regarding the shape and = a common atlas in a standard [10,11]
P Y density of the brain space, then voxel-wise statistical
cortex analysis is performed.
Diffusion Tensor Imaging
. . After a first step of co-registration
T?E(S);;a t:i)ci‘lm;l;ﬁ t(s)es and skeletonization of the white
Tract Based Spatial P 1L grotp ana’ty matter, diffusion measures are
. regarding the diffusion . [30]
Statistics . . projected on the WM skeleton,
parameters in the white . - .
then voxel-wise statistical analysis
matter. .
is performed.
Fiber tracking let us After the dlffu'smn model fitting,
we can track fibers either from a
reconstruct the . . .
. seed point or with a whole brain
connections from the approach. After fiber
Fiber Tracking model of diffusion, PP ) [28,29]

reconstruction we can extract
diffusion measures along the
fibers or map the connection
between different brain areas.

tracking regions of
coherent directions of
diffusion.
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Table 1. Cont.
Functional MRI
Seed based connectivity 5, e the chosen ROI is traced on
leverages a priori the scan, regions of high
Seed Based knowledge of the an, 1eg .8
. . s . . functional connectivity can be [40]
Connectivity clinicians to investigate . .
. . extracted by signal timecourse
connections with a ROI .
. similarity.
of choice.
ICA extracts various independent
components representing the
ICA extracts different functional connectivity in the
functional networks brain, both at the single subject or
Independent . . .
Component Analvsis expressing high group analysis level. Once the [44]
P y timecourse similarity networks of interest have been
from a fMRI scan highlighted, it is possible confront
the FC between different groups of
patients.
Once the brain connectivity is
Functional networks are  represented as a matrix of
built by representing the ~ connections, it is possible to
Graph Analysis brain as a collection of extract various mathematical [45,46]
nodes corresponding to  measures that represent both the
different areas. synchronicity and the paths of
connections in the brains
Cerebrovascular Imaging
TOF Angiography lets us ~ With the great advantage of
image the contrast-free angiography, we can
Time-of-Flight cerebrovascular tree to image and then reconstruct the [54,55]
Angiography evaluate injuries or major vessels irrorating the brain, !
defects of segment them, and evaluate their
microcirculation. size and shape.
Leveraging magnetic tagging, it is
ASL is a technique to possible to quantitatively measure
. . . investigate brain the brain perfusion obtaining the
Arterial Spin Labeling [60]

perfusion without the
use of any contrast.

volume of flowing blood per kg of
tissue per minute in each voxel of
the image
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