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Abstract: Oral administration is the preferred and predominant route of choice for medication. As
such, drug absorption is one of critical drug metabolism and pharmacokinetics (DM/PK) parameters
that should be taken into consideration in the process of drug discovery and development. The cell-free
in vitro parallel artificial membrane permeability assay (PAMPA) has been adopted as the primary
screening to assess the passive diffusion of compounds in the practical applications. A classical
quantitative structure–activity relationship (QSAR) model and a machine learning (ML)-based QSAR
model were derived using the partial least square (PLS) scheme and hierarchical support vector
regression (HSVR) scheme to elucidate the underlying passive diffusion mechanism and to predict the
PAMPA effective permeability, respectively, in this study. It was observed that HSVR executed better
than PLS as manifested by the predictions of the samples in the training set, test set, and outlier set as
well as various statistical assessments. When applied to the mock test, which was designated to mimic
real challenges, HSVR also showed better predictive performance. PLS, conversely, cannot cover
some mechanistically interpretable relationships between descriptors and permeability. Accordingly,
the synergy of predictive HSVR and interpretable PLS models can be greatly useful in facilitating
drug discovery and development by predicting passive diffusion.

Keywords: parallel artificial membrane permeability assay (PAMPA); in silico; two-QSAR; hierarchical
support vector regression; partial least square; effective permeability coefficient (Pe)

1. Introduction

The oral route is the simplest and most convenient means for administrating drugs [1]. As
such, oral administration is the most prevalent route of drug administration that can be manifested
by Figure 1, which displays the administration routes and the corresponding ratios for 629 unique
compounds approved by US FDA in 2018 based on the analysis of FDA data (https://www.accessdata.
fda.gov/scripts/cder/daf/index.cfm). Accordingly, absorption is one of critical factors in absorption,
distribution, metabolism and excretion, and toxicity (ADME/Tox) profiling in the process of drug
discovery and development [2]. More importantly, poor absorption can make a partial contribution to
clinical failures [3]. For instance, it has been observed that curcumin, which is an active ingredient
extracted from the root of Curcuma longa, has the potential to treat Alzheimer’s disease, cancer, and
diabetes as observed [4]. However, its practical applications have been severely hampered by its poor
absorption [5,6].
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Figure 1. Administration routes and the corresponding ratios for those unique drugs 
approved by the FDA in 2018. 

To exert the efficacy, an orally administered drug first needs to be dissolved in the stomach 
fluids and then absorbed by the digestive system. Drug absorption primarily takes place in the small 
intestine, in which drugs can penetrate the epithelial cell layer of the small intestine in order to enter 
the circulatory system and thus be transported to the intended molecular target [7]. Accordingly, 
drug absorption is an extremely complex process that can be dominated by drug formulation and a 
number of physicochemical and physiological factors. The former includes solubility, stability, 
hydrophobicity, ionization state, and pKa, and the latter is the function of gastrointestinal (GI) pH, 
the gastric emptying and intestinal transit times, diameter, length, and surface area, for instance [8]. 

It is of necessity and great importance to evaluate drug absorption in the early stage of drug 
discovery to avoid failures in late-stage drug development and to reduce attrition rate [9]. In fact, a 
variety of in vivo, ex vivo, and in vitro assay systems have been devised to predict the small intestine 
absorption [10], of which cell-based assays Madin-Darby Canine Kidney (MDCK) cells and human 
colon adenocarcinoma derived cell line (Caco-2) and cell-free parallel artificial membrane 
permeability assay (PAMPA) [11] have been widely adopted to screen for permeability [12] and 
their good predictivity has been demonstrated [13]. The differences between the cell-based and 
cell-free systems are in that the former can go through carrier-mediated transport, viz. efflux or 
influx active transport, along with the passive route, whereas the latter can only take place through 
passive transcellular permeability [10], which is of pivotal importance since the majority of the 
marketed drugs are absorbed via passive diffusion [2]. Moreover, studies have demonstrated that 
cell-free permeability assay systems can be carried out in a high-throughput fashion, and are reliable, 
faster, and more economical than their cell- and tissue-based counterparts [14]. It has been 
demonstrated that PAMPA can modestly correlate with Caco-2 for some compounds [15]. The drug 
discovery paradigm, actually, has shifted to adopt PAMPA as the preliminary permeability 
screening to evaluate the passive diffusion and the cell-based assay as the secondary screening to 
characterize the mechanism of drug transport [16]. 

The PAMPA system principally is comprised of (a) a donor compartment, which includes the 
aqueous test compound and buffer, (b) an acceptor compartment, which contains buffer without test 
compound initially, and (c) an artificial membrane, which is constructed by phospholipid mixtures 
to separate the donor apartment from the acceptor compartment, and a porous hydrophobic filter, 
which is designated to support and stabilize the membrane, as illustrated by Figure 1 of 
Diukendjieva et al. [17]. One of the advantageous characteristics of PAMPA is its diverse 
applications since various membrane constructs can be adopted by PAMPA to mimic different 
physiological conditions [18] as compared with its cell-based counterparts. For instance, PAMPA 
can be used as a surrogate for the blood-brain barrier penetration (BBB-PAMPA) when porcine brain 
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To exert the efficacy, an orally administered drug first needs to be dissolved in the stomach
fluids and then absorbed by the digestive system. Drug absorption primarily takes place in the small
intestine, in which drugs can penetrate the epithelial cell layer of the small intestine in order to enter
the circulatory system and thus be transported to the intended molecular target [7]. Accordingly, drug
absorption is an extremely complex process that can be dominated by drug formulation and a number
of physicochemical and physiological factors. The former includes solubility, stability, hydrophobicity,
ionization state, and pKa, and the latter is the function of gastrointestinal (GI) pH, the gastric emptying
and intestinal transit times, diameter, length, and surface area, for instance [8].

It is of necessity and great importance to evaluate drug absorption in the early stage of drug
discovery to avoid failures in late-stage drug development and to reduce attrition rate [9]. In fact, a
variety of in vivo, ex vivo, and in vitro assay systems have been devised to predict the small intestine
absorption [10], of which cell-based assays Madin-Darby Canine Kidney (MDCK) cells and human colon
adenocarcinoma derived cell line (Caco-2) and cell-free parallel artificial membrane permeability assay
(PAMPA) [11] have been widely adopted to screen for permeability [12] and their good predictivity has
been demonstrated [13]. The differences between the cell-based and cell-free systems are in that the
former can go through carrier-mediated transport, viz. efflux or influx active transport, along with the
passive route, whereas the latter can only take place through passive transcellular permeability [10],
which is of pivotal importance since the majority of the marketed drugs are absorbed via passive
diffusion [2]. Moreover, studies have demonstrated that cell-free permeability assay systems can be
carried out in a high-throughput fashion, and are reliable, faster, and more economical than their cell-
and tissue-based counterparts [14]. It has been demonstrated that PAMPA can modestly correlate with
Caco-2 for some compounds [15]. The drug discovery paradigm, actually, has shifted to adopt PAMPA
as the preliminary permeability screening to evaluate the passive diffusion and the cell-based assay as
the secondary screening to characterize the mechanism of drug transport [16].

The PAMPA system principally is comprised of (a) a donor compartment, which includes the
aqueous test compound and buffer, (b) an acceptor compartment, which contains buffer without test
compound initially, and (c) an artificial membrane, which is constructed by phospholipid mixtures to
separate the donor apartment from the acceptor compartment, and a porous hydrophobic filter, which
is designated to support and stabilize the membrane, as illustrated by Figure 1 of Diukendjieva et
al. [17]. One of the advantageous characteristics of PAMPA is its diverse applications since various
membrane constructs can be adopted by PAMPA to mimic different physiological conditions [18] as
compared with its cell-based counterparts. For instance, PAMPA can be used as a surrogate for the
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blood-brain barrier penetration (BBB-PAMPA) when porcine brain lipid extract is employed [19] or skin
permeability (Skin-PAMPA) when the mixture of certramide, cholesterol, and stearic acid is used [20].

During the PAMPA transport process, solute molecules will travel from the bulk aqueous solution
in the donor compartment through an unstirred water layer (UWL) or aqueous boundary layer
(ABL), which is a liquid layer adjacent to the surface of the cell membrane [21], diffuse through the
membrane, and enter into the UWL and the bulk aqueous solution in the acceptor compartment as
illustrated by Figure 1 of Nielsen et al. [22]. As such, solute molecules will sequentially experience
three environments, namely hydrophilic (bulk solution and UWL), hydrophobic (membrane), and
hydrophilic (UWL and bulk solution) in the process of diffusion from the donor compartment into the
acceptor compartment.

Furthermore, different measurements can lead to different PAMPA permeability coefficients,
namely percentage flux (%F) or percentage transported solute (%T), which gauges the portion of
the test compound in the acceptor compartment. The intrinsic permeability coefficient (Po), which
is determined by the largest membrane permeability coefficient of an ionizable compound in its
uncharged form of the compound that could be obtained. UWL permeability (PU or PUWL), which
corresponds to the maximum permeability coefficient of a compound in both compartments in presence
of the UWL. The membrane permeability coefficient (Pm) is the membrane permeability coefficient of
the solute for D→A or A→D flux, and the apparent permeability coefficient (Pa or Papp) is measured
by the ratio between the flux and solute concentration in the donor compartment. The effective
permeability coefficient (Pe) is essentially identical to Pa when the amount of solute trapped in the
membrane and/or A→D flux is not corrected or Pm when the system is infinitely stirred with zero
UWL thickness [23,24].

In comparison to in vitro and in vivo assays, in silico technologies can substantially facilitate drug
discovery and development due to their robustness, throughput, and cost-efficiency [25]. Their most
unique and advantageous characteristics are their ability to apply to virtual compounds, which are not
yet synthesized [26]. As such, in silico approaches play an increasing role in ADME/Tox profiling [27].
In fact, numerous qualitative structure–activity relationship (QSAR) models have been developed to
predict PAMPA permeability [7,23,28–47].

However, PAMPA permeability depends on a number of factors such as assay pH, stirring, filter
porosity, UWL thickness, buffer solution, co-solvent, and system temperature in addition to the content
of membrane [22,48–53]. Those factors contribute to the inhomogeneity in assay data unless the exact
protocols are carried out [7], creating paramount hurdles to develop a good quantitative in silico model
using the data collected from the public domain since a sound predictive model can only be built when
data with the best integrity are used [54].

Most of proposed predictive models were developed by linear regression schemes such as linear
partial least square (PLS) or multiple linear regression (MLR) that can explain the linear relationship
between selected descriptor and biological activity [54]. However, the bilinear relationship between
logarithm of the n-octanol–water distribution coefficient at pH 7.4 (log D) and PAMPA permeability
was observed by Kansy et al. [55], suggesting that linear models cannot properly interpret the complex
nonlinearity. Machine learning (ML) schemes, conversely, are designated to resolve the nonlinearity
between input and output as manifested by the fact that ML-based models normally execute better
than their linear counterparts [56]. The relationship between input and output, conversely, is difficult
to be elucidated by ML approaches since they are usually regarded as a “black box” [54]. The conflict
between interpretability and predictivity can be resolved by the two-QSAR approach [57], in which the
predictive ML-based model is developed by the hierarchical support vector regression (HSVR) [58]
scheme and the interpretable linear model is built by PLS. Herein, the objective of this study was to
predict the PAMPA effective permeability to facilitate drug discovery by using the two-QSAR scheme.
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2. Results

2.1. Data Partition

The Kennard–Stone (KS) algorithm was adopted to assign 146 and 36 molecules into the training
set and test set, respectively, with a ca. 4:1 ratio. Figure 2 displays the projection of all molecules
included in this study in chemical space, spanned by the first three principal components (PCs), which
rendered 96.7% of the variance in the original data. It can be observed that both data sets exhibited high
degrees of similarity in the chemical space. Furthermore, the high levels of biological and chemical
similarity between both sets can also be observed from Figure S1, which displays the histograms of log
Pe, molecular weight (MW), log P, log D, polar surface area (PSA), fractional polar surface area (FPSA),
and dipole moment (µ) in density form for the training and test samples. Thus, it can be asserted that
there was no substantial bias in data partition.
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Figure 2. Molecule distribution for the molecules selected for this study in the training set (solid
square), test set (open circle), and outlier set (grey triangle) in the chemical space spanned by three
principal components.

Those designated outliers are completely placed outside the perimeter of the training set in the
chemical space as illustrated in Figure 2, suggesting that they were very dissimilar from those training
samples [59]. Additionally, the log P and log D distribution patterns (Figure S1) also confirm their
dissimilarity. In fact, the distinctions between outliers and the others can be manifested by the fact that
the outliers contained more than 26 carbon atoms and more than 34 hydrogen atoms as compared with
the other molecules. As such, those outliers are distant from the model applicability domain (AD) and
they can be used as a good means to gauge the robustness of a predictive model.

2.2. HSVR

Of all generated SVR models based on a variety of descriptor combinations and runtime parameters,
two SVR models, symbolized by SVR A and SVR B, were compiled to construct the SVR ensemble,
which, in turn, was subjected to regression by another SVR to produce the HSVR model. The optimal
runtime parameters of SVR A, SVR B, and HSVR, are listed in Table S1.

Both SVR A and SVR B adopted different combinations of descriptors (Table 1), suggesting that
they are local models per se as compared with HSVR, which is a global model per se. Accordingly,
HSVR generally generated the medium deviations as compared with its counterparts in the ensemble
(Table S2). Furthermore, it can be found from Figures 3 and 4, which display the scatter plots of
observed vs. predicted log Pe values in the training set and test set, respectively, that the distances
between the predictions by HSVR and regression line were between those yielded by both SVR models
in general.
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Table 1. Descriptor selected as the input of support vector regression (SVR) models in the ensemble
and their descriptions.

Descriptor SVR A SVR B Description

log P x †
Logarithm of the
n-octanol–water

partition coefficient

log D x x

Logarithm of the
n-octanol–water

distribution coefficient at
pH 7.4

PSA x Polar surface area

FPSA x

The ratio of total
partially positively
charged molecular
surface area to total

molecular surface area

µ x Dipole moment for the
molecule

† Selected.
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Int. J. Mol. Sci. 2019, 20, 3170 6 of 24

Int. J. Mol. Sci. 2019, 20, x 5 of 23 

 

distances between the predictions by HSVR and regression line were between those yielded by both 
SVR models in general. 

Table 1. Descriptor selected as the input of support vector regression (SVR) models in the ensemble 
and their descriptions. 

Descriptor SVR A SVR B Description 
log P  x Logarithm of the n-octanol–water partition coefficient 
log D x x Logarithm of the n-octanol–water distribution coefficient at pH 7.4 
PSA  x Polar surface area 

FPSA x  The ratio of total partially positively charged molecular surface area to total molecular surface area 
μ x  Dipole moment for the molecule 

† Selected    

 

Figure 3. Observed log of the effective permeability coefficient (Pe) vs. the log Pe predicted by 
SVR A (solid circle), SVR B (solid diamond), hierarchical support vector regression (HSVR; 
green square), and partial least square (PLS; red triangle) for the molecules in the training set. 
The green and red solid lines, dashed lines, and dotted lines correspond to the HSVR and 
PLS regressions of the data, 95% confidence intervals for the HSVR and PLS regressions, 
and 95% confidence intervals for the prediction, respectively. 

 
Figure 4. Observed log Pe vs. the log Pe predicted by SVR A (solid circle), SVR B (solid diamond),
HSVR (green square), and PLS (red triangle) for the molecules in the test set. The green and red
solid lines, dashed lines, and dotted lines correspond to the HSVR and PLS regressions of the data,
95% confidence intervals for the HSVR and PLS regressions, and 95% confidence intervals for the
prediction, respectively.

HSVR, nevertheless, produced the smallest residuals in some cases. The predictions of acyclovir
(compound 21) by SVR A, SVR B, and HSVR, for instance, gave rise to absolute residuals of 0.38, 0.25,
and 0.00, respectively. Statistically, HSVR executed better than both SVR models in the ensemble in
the training set and test set as indicated by those parameters listed in Tables 2 and 3. For instance,
HSVR yielded the largest correlation coefficient r2, 10-fold cross-validation correlation coefficient (q2

CV),
and q2 (0.88, 0.80, and 0.79) the smallest differences between r2 and q2

CV (0.08) and between r2 and q2

(0.09), and the smallest maximum residual (∆Max) and root mean square error (RMSE) in both data sets,
suggesting that HSVR is highly predictive and well trained. In addition, SVR A, SVR B, and HSVR
yielded the

〈
r2

s

〉
values of 0.06, 0.06, and 0.03, respectively (Table 2) when subjected to the Y-scrambling

test. Thus, it can be asserted that there is little chance correlation in those SVR models because of their
nearly zero values of

〈
r2

s

〉
[60].

Table 2. Statistic evaluations, namely correlation coefficient (r2), maximum residual (∆Max),
mean absolute error (MAE), standard deviation (s), root mean square error (RMSE), and 10-fold
cross-validation correlation coefficient (q2

CV ) evaluated by SVR A, SVR B, HSVR, and PLS in the
training set.

SVR A SVR B HSVR PLS

r2 0.84 0.79 0.88 0.61
∆Max 1.48 1.60 1.56 1.90
MAE 0.38 0.39 0.24 0.58

s 0.26 0.33 0.31 0.38
RMSE 0.46 0.51 0.39 0.70

q2
CV 0.57 0.14 0.80 0.76〈
r2

s

〉
0.06 0.06 0.03 0.06
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Table 3. Statistic evaluations, correlation coefficients q2, q2
F1, q2

F2, and q2
F3, concordance correlation

coefficient (CCC), maximal absolute residual (∆Max), mean absolute error (MAE), standard deviation
(s), and RMSE evaluated by SVR A, SVR B, HSVR, and PLS in the test set.

SVR A SVR B HSVR PLS

q2 0.72 0.70 0.79 0.61
q2

F1 0.70 0.70 0.79 0.60
q2

F2 0.70 0.70 0.79 0.60
q2

F3 0.68 0.68 0.86 0.58
CCC 0.80 0.82 0.88 0.74
∆Max 1.58 1.75 1.52 1.77
MAE 0.53 0.51 0.42 0.61

s 0.35 0.37 0.32 1.40
RMSE 0.63 0.57 0.52 0.73

Table 4 lists the static parameters evaluated by the derived models and Figure 5 displays the
scatter plots of observed vs. predicted log Pe values in the outlier set. HSVR even showed more
noticeable predominance as indicated by those statistical evaluations when applied to the molecules in
the outlier set. For instance, SVR A, SVR B, and HSVR yielded the RMSE values of 0.56, 0.79, and 0.44,
respectively. The better performance of HSVR in the outlier set can be plausibly attributed to the fact
that HSVR has a broad applicability domain as compared with its counterparts in the ensemble and
HSVR is more robust, which is of crucial significance to a predictive model [61].

Table 4. Statistic evaluations, correlation coefficients q2, q2
F1, q2

F2, and q2
F3, concordance correlation

coefficient (CCC), maximal absolute residual (∆Max), mean absolute error (MAE), standard deviation
(s), and RMSE evaluated by SVR A, SVR B, HSVR, and PLS in the outlier set.

SVR A SVR B HSVR PLS

q2 0.68 0.69 0.76 0.54
q2

F1 0.78 0.56 0.86 0.76
q2

F2 0.52 0.04 0.70 0.49
q2

F3 0.75 0.50 0.84 0.74
CCC 0.69 0.48 0.85 0.63
∆Max 0.87 1.09 0.98 0.99
MAE 0.51 0.72 0.32 0.42

s 0.25 0.34 0.33 0.41
RMSE 0.56 0.79 0.44 0.57
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2.3. PLS

The linear PLS model (Equation (1)) was constructed by collectively combining those descriptors
adopted by the SVR models in the SVR ensemble (Table 1). Table S2 lists the prediction results of the
molecules in the training set, test set, and outlier set, and Tables 2–4 summarize the corresponding
statistical evaluations, respectively.

log Pe = 0.238253× log P + 0.228889× log D− 0.215243× PSA
−0.24652× FPSA− 0.157312× µ− 6.13473

. (1)

The PLS model gave rise to an r2 value of 0.61, which is lower than those produced by SVR A, SVR B,
and HSVR, denoting its mediocre performance in the training set. It can be observed from Figure 3
that most of the points predicted by PLS generally had the largest distances from the regression line
as compared with SVR A, SVR B, and HSVR, consequently it produced the largest ∆Max (1.90), mean
absolute error (MAE; 0.58), standard deviation (s; 0.38), and RMSE (0.70) (Table 2). However, PLS
generated a q2

CV of 0.76, which is not only larger than its r2 but much better than the ones produced
by SVR A and SVE B, suggesting that PLS was well-trained as compared with both SVR models in
the ensemble. Similar to its SVR counterparts, PLS also presents no result of chance correlation as
manifested by its

〈
r2

s

〉
(0.06).

PLS was the worst predictive model in the test set as manifested by its largest ∆Max (1.77), MAE
(0.61), s (1.40), and RMSE (0.73) (Table 3). However, PLS yielded a q2 value of 0.61, which was the
same as its r2 counterpart in the training set, also suggesting that PLS was well-trained since it would
have otherwise produced a substantial difference. In addition, the fact that PLS showed similar
performance in the training set and test set indicates that there was no bias in data partition chemically
and biologically since it would otherwise have given rise to substantial performance difference.

When applied to the outliers, PLS produced a q2 value of 0.54, which was smaller than those
calculated by the SVR models (Table 4). However, it is of interest to note that PLS gave rise to a ∆Max

of 0.99, which was larger than the one produced by SVR A (0.87) and smaller than the one calculated
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by SVR B (1.09). Other statistical parameters also suggest that PLS executed better than either one of
SVR models in the ensemble and worse than the other. However, HSVR still functioned better than
PLS in every aspect.

2.4. Predictive Evaluations

It can be discovered from Figure 6, which displays the scatter plots of the residuals vs. the log Pe

values predicted by HSVR and PLS for all molecules (i.e., training samples, test samples, and outliers)
that the residuals produced by both models were approximately evenly dispersed on both sides of
x-axis. As such, both HSVR and PLS unanimously gave rise to the average errors of 0.00 (Table S2),
suggesting that little systematic errors were associated with both models. However, PLS generally
yielded larger absolute residuals than HSVR as manifested by their mean absolute errors (0.28 vs. 0.58).
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The derived HSVR and PLS models were further evaluated by combining the most stringent
validation requirements collectively suggested by Golbraikh et al. [62], Ojha et al. [63], Roy et al. [64],
and Chirico and Gramatica [65] in the training set, test set, and outlier set (Equations (15)–(21). The
results are tabulated in Table 5, from which it can be found that HSVR not only generated large
statistical assessments but also fulfilled all validation requirements as compared with PLS, which only
met the requirements of Equations (17) and (18) in three datasets. PLS even gave rise to a negative
r′2o (–0.46) in the outlier set. Accordingly, it can be asserted that HSVR outperformed PLS in every
statistical aspect.
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Table 5. Validation verification of HSVR and PLS based on prediction performance of the molecules in
the training set, test set, and outlier set.

Training Set Test Set Outlier Set

HSVR PLS HSVR PLS HSVR PLS
r2

o 0.88 0.61 0.79 0.61 0.76 0.51
k 1.00 1.02 1.00 1.02 0.96 0.98

r′2o 0.88 0.38 0.71 0.35 0.74 –0.46
r2

m 0.83 0.23 0.76 0.61 0.69 0.45
r′2m 0.84 0.60 0.57 0.30 0.64 0.00〈
r2

m

〉
0.83 0.42 0.67 0.45 0.67 0.23

∆r2
m 0.01 0.29 0.19 0.30 0.05 0.45

Equation
(15) X X X

Equation
(16) X X X

Equation
(17) X X X X X X

Equation
(18) X X X X X X

Equation
(19) X X X

Equation
(20) X X X

Equation
(21) X X X

2.5. Mock Test

To mimic real world challenges, the developed HSVR and PLS models were further tested by a
number of drugs measured by Huque et al. [47], of which 14 were also adopted in this study, providing
a good way to calibrate the challenging system. Nevertheless, Huque et al. measured the Po values
using the filter costed with 2% dioleoylphosphatidylcholine (DOPC) in contrast to the compounds
selected in this study, whose Pe values were assayed using the filter coated with 1% lecithin, indicating
the fact that those drugs assayed by Huque et al. are not eligible as the second external set or test
set due to the fact those validation criteria (vide supra) cannot be applied to these compounds. The
subsequent correlation between both measured systems (i.e., log Po vs. log Pe) was initially established
and inspected based on those common 14 molecules and the resulted scattered plot is displayed in
Figure 7. It can be observed that both systems were modestly correlated with each other well with an r
value of 0.78, suggesting that it is plausible to challenge the derived HSVR and PLS models with those
novel compounds assayed by Huque et al.
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Figure 8 illustrates the tested results of eight novel drugs. It can be observed that the r values
between experimental log Po and predicted log Pe were 0.71 and 0.72 obtained from HSVR and PLS,
respectively, seemingly suggesting that both HSVR and PLS can almost reproduce the experimental
observations. Nevertheless, the slope produced in the calibration system was 1.53 (Figure 7), whereas
HSVR and PLS produced the slopes of 1.52 and 1.00, respectively, in the mock test. More importantly,
the p values produced by HSVR and PLS were <0.05 and 1.00, respectively. Thus, it can be asserted
that HSVR performed better than PLS in the mock test.
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3. Discussion

PAMPA permeability takes place through a series of processes when solute molecules travel from
the donor compartment into the acceptor compartment, which are governed by a number of factors
such as solute–solute, solute–solvent, and solute–membrane interactions. Physico-chemically, the
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environment inside the membrane is non-polar and hydrophobic, whereas that outside the membrane
is polar and hydrophilic per se [66]. Accordingly, hydrophobicity, which can be represented by log P
and log D [67], play a significant role in PAMPA permeability that can be manifested by the fact that
most of published models have adopted either descriptors.

In fact, both log P and log D were also included in this study (Table 1) and PLS derived in
this investigation also gave positive coefficients to both descriptors (Equation (1)) suggesting that
PAMPA permeability increases with both descriptors that is consistent with most of published models.
Nevertheless, it can be argued that both HSVR and PLS can be possibly yielded by chance correlation
since both descriptors can represent hydrophobicity. The correlation coefficient (r) between log P
and log D was merely 0.66 for all compounds selected in this study, suggesting that the probability
of spurious correlations was actually small [68]. More importantly, there is some subtle difference
between log P and log D since the former reflects only the intrinsic hydrophilicity of neutral molecules
whereas the latter takes into account not only the ionization effect of ionizable compounds but the
actual hydrophilicity [69]. This indicates that it is of necessity to adopt both hydrophobic descriptors
to render hydrophobicity for different scenarios when there are diverse samples in the collection.

It has been observed by Verma et al. that PAMPA permeability initially increases with the increase
of log P to a certain value and then decreases afterwards [32]. Moreover, Akamatsu et al. observed
that log P can be positively or negatively correlated with PAMPA permeability when permeability
values are relatively low and high, respectively [23]. Similar nonlinear relationship between log D
and PAMPA permeability has also been observed as shown by Figure 7 of Kansy et al. [55]. The
discrepancy between linear and non-linear relationships can be realized by the fact that the more
hydrophobic solutes are, the easier solutes can approach to the hydrophobic membrane when the
solutes are entering the membrane zone, leading to a positively linear relationship. However, the more
hydrophobic solutes will experience stronger interactions between solutes and the membrane as well
as stronger repelling forces exerted by solvent molecules in the acceptor compartment when the solutes
escape the membrane, producing an inverse relationship between hydrophobicity and permeability.
Thus, too hydrophilic compounds cannot easily cross the cell membrane because of hydrophobic
nature of membrane, whereas too hydrophobic ones can easily stay trapped in the cell membrane [16].
Accordingly, hydrophobicity plays a perplexing role in passive diffusion. More complexity can be
introduced when taking into account the hydrophobicity of functional groups within a solute molecule
since it has been suggested that solutes with both hydrophobic and hydrophilic moieties will go
through a more complicated pathway than those that do not have [70].

The descriptors PSA and µ were adopted by SVR B and SVR A, respectively (Table 1) and
given by negative coefficients by PLS (Equation (1)), suggesting that both PSA and µ can reduce the
passive diffusion. Such observations are actually consistent with the results obtained by Iyer et al. [71]
qualitatively. The selection of both descriptors can be justified by the fact that both descriptors represent
the molecular polarity [72]. A greater PSA, dipole, and polarity can produce stronger interactions
between solute and solute molecules and between solute and solvent molecules. As such, it will require
more desolvation energy when the more polar solutes enter the lipophilic phase of membrane from
the donor compartment, making them energetically less favorable and less permeable consequently.
Conversely, larger solvation energy will be released once the more polar solutes escape the membrane
and re-enter the bulk solution in the donor compartment. Accordingly, the nonlinear relationship
between polarity and passive diffusion can be expected and the performance of the linear PLS model
was worse than that of the ML-based HSVR model. It should be also noted that both PSA and µ were
enumerated by the more sophisticated density functional theory (DFT) method and atomic charge
calculation algorithm in addition to the consideration of solvent effects in this study. Those factors
could profoundly affect both descriptors.

Thus, it can be asserted that those descriptors mentioned above were designated to render various
parts of the complex passive diffusion—from the initial desolvation in the donor compartment to the
final solvation in the acceptor compartment. The corresponding coefficients given by the PLS model
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can actually reflect the contributions of those selected descriptors prior to the entrance of solute into
the membrane. Their contributions go into the opposite direction once solute buds from membrane
into the acceptor compartment, viz. attraction becoming repelling and vice versa, producing enormous
prediction errors by PLS consequently. HSVR, conversely, can properly describe such a complex
process. As such, HSVR performed better than PLS in every aspect.

It is seemingly unusual to note that the descriptor FPSA was selected by SVR A and yet has
hitherto not been adopted by any published model. However, FPSA was modestly correlated with PSA
with an r value of 0.79 for all molecules included in this study. As such, it is plausible to replace PSA
by FPSA that is consistent with the observation, in which the replacement did not result in substantial
change in model performance [73]. It can be argued that the probability of spurious correlations can be
increased by the inclusion of FPSA due to the modest association between FPSA and PSA [68] that,
actually, is not applicable in this study since FPSA and PSA were separately adopted by SVR A and
SVR B. In another word, neither of descriptors was simultaneously employed by the same SVR model.
More importantly, the empirical observation has indicated that SVR A and SVR B with the selections of
FPSA and PSA, respectively unanimously showed better performance than those with the selections of
PSA only, FPSA only, as well as FPSA by SVR B and PSA by SVR A (data not shown). This presumably
was due to the fact that the selected descriptors were not completely orthogonal to one another, viz.
not completely independent, leading to the descriptor–descriptor interaction as we defined, in which
the synergy among some descriptors can improve the model performance, especially for the ML-based
nonlinear models.

The PLS model gave a negative coefficient to FPSA (Table 1), which was similar to the PSA
coefficient. As such, it is plausible to expect FPSA played a similar role in PAMPA permeability as
PSA did. This is illustrated by Figure 9, which displays the 3D plot of log Pe, FPSA, and log P. It can
be found that log Pe initially decreased with increased FPSA to a certain value and then increased
afterwards, whereas log P behaved otherwise. In addition, the nonlinear relationship between log Pe

and log P as mentioned above can also be observed.
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Various criteria have been proposed to distinguish highly permeable compounds from poorly
permeable ones. For instance, it has been observed by Kelder et al. that administrate drugs with PSA >

120 Å2 were poorly absorbed, whereas those with PSA < 60 Å2 were well absorbed [74]. Hou et al. have
suggested a looser threshold (PSA > 140 Å2) to identify the poorly permeable compounds. Compounds
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collected in this study were classified as having high and low permeability if their log Pe values were
≥−6.0 and <−6.0, respectively, as suggested by Diukendjieva et al. [44] to verify the observation made
by Kelder et al. The analysis of collected compounds indicated that 100% of compounds were poorly
permeable and 75% of compounds were well permeable when their PSA values were >120 Å2 and <60
Å2, respectively, which is completely consistent with the observation made by Kelder et al. Only 92%
of compounds were poorly permeable when the threshold of PSA was set to >110 Å2, suggesting that
the threshold PSA > 120 Å2 is efficiently enough to characterize the poorly permeable compounds.

In addition, Zhu et al. have postulated that compounds with 0.0 < log P < 5.0 or −0.5 < log D <

4.5 are most likely to be absorbed [75]. Only 52% and 56% of compounds selected in this investigation
showed to be well permeable, respectively, when applied to both criteria. The accuracy was dropped
to 50% when both criteria were combined. Nevertheless, the accuracy was increased to 74% when
the thresholds were set to be PSA < 60 Å2 and 0.0 < log P < 5.0, 81% when PSA < 60 Å2 and −0.5 <

log D < 4.5, and 81% when PSA < 60 Å2, 0.0 < log P < 5.0, and −0.5 < log D < 4.5, after combining
those criteria proposed by Zhu et al. and Kelder et al. It can be observed that the combination of PSA
and log D factors can identify more permeable compounds than either one of them. Nevertheless, the
log P factor makes no difference that can be plausibly attributed to the different natures of log P and
log D in rendering hydrophobicity (vide supra). The selection of PSA and log D as the identification
characteristics is actually consistent with the observation made by Flaten et al. [76].

It has been suggested that different permeability models should be developed for different ion
classes [41]. Moreover, it has been identified that neutral compounds can more easily cross the
hydrophobic membrane as compared with the other ion classes [2]. Thus, all molecules selected in this
study were subjected to ion class analysis. It can be observed from Figure 10, which displays the box
plot of the log Pe minimum, maximum, mean, median, the 25th percentile, and the 75th percentile
for each ion class, that log Pe values of neutral compounds are statistically higher than the other ion
classes, suggesting that neutral compounds show higher PAMPA effective permeability. When taking
into account the criteria of PSA and log D, 85% of neutral compounds were well permeable, which
is slightly higher than the analysis only based on both factors (81%). Thus, it can be concluded that
neutral compounds with PSA < 60 Å2 and −0.5 < log D < 4.5 are most likely to be permeable, whereas
compounds with PSA > 120 Å2 will have greater probability of being poorly permeable.
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Figure 10. Box plot of log Pe values for different ion classes, where the boxes represent the distribution
of log Pe from the 25th to the 75th percentile, the black and red lines depict the median and mean
values, the whiskers denote the minimum and maximum values, and the asterisk indicates significant
difference between neutral and the others (p < 0.05).

4. Materials and Methods

4.1. Data Compilation

Only good quality sample data can be used to construct a sound predictive model [54]. A
comprehensive literature search was executed to retrieve PAMPA permeability parameters from a
variety of sources to maximize the structural diversity. However, PAMPA permeability is sensitive to
the assay conditions (vide supra). To warrant data consistency and to minimize the variations in assay
conditions among different data sources [34,38–42,51,55,75,77–80], only those molecules assayed by
Oja and Maran [39,41,42] were selected in this study since they generated the largest quantity of data. If
there were two or more available efflux ratio data for a given compound and in close range, the average
values were then taken in order to warrant better consistency. Further data were cautiously curated
by inspecting molecular structures to remove those molecules without definite stereochemistry. All
molecules enrolled in this investigation, SMILES strings, CAS registry numbers, their corresponding
logarithm Pe values, and references to the literature are listed in Table S2.

4.2. Molecular Descriptors

All of the molecules included in this investigation were subjected to full geometry optimization
using the density functional theory (DFT) B3LYP method with the basis set 6-31G(d,p) by the Gaussian
09 package (Gaussian, Wallingford, CT) in the n-dodecane solvent system using the polarizable
continuum model (PCM) [81,82] to mimic the experimental conditions. These real minima on the
potential energy surface of those optimized geometries were confirmed by force calculations when no
imaginary frequency was obtained. Additionally, atomic charges were also calculated by the molecular
electrostatic potential-based method of Merz and Kollman [83] and the highest occupied molecular
orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), dipole (µ), and absolute
maximum component dipole moment (µmax) were also retrieved from the optimization calculations.

The Discovery Studio package (BIOVIA, San Diego, CA, USA) and E-Dragon (available at
the web site http://www.vcclab.org/lab/edragon/) were also utilized to calculate more than 200 1D-,

http://www.vcclab.org/lab/edragon/


Int. J. Mol. Sci. 2019, 20, 3170 16 of 24

2D-, 3D-molecular descriptors of those optimized molecules. These descriptors can be classified
as electronic descriptors, spatial descriptors, structural descriptors, thermodynamic descriptors,
topological descriptors, and E-state indices. The logarithm of the n-octanol–water distribution
coefficient at pH 7.4, viz. log D, and pKa were computed by Chemicalize (available at the Web site
https://chemicalize.com/).

Furthermore, the cross-sectional area (CSA) was also calculated using the method modified by
Muehlbacher et al. [84] because of its implication in membrane permeability [85]. Molecules were
further categorized into four classes, namely zwitterion, base, acid, and neutral by their pKa values.
Specifically, zwitterions are those whose largest pKa values are larger than 7 and the smallest pKa are
smaller than 7. The largest and smallest pKa values of acids and bases are smaller and larger than 7,
respectively. Neutrals only have one pKa value.

Data screening was initially performed by removing those descriptors missing for at least one
sample or displaying little or no discrimination against all samples. Furthermore, the probability
of spurious correlations was reduced by constructing the Spearman’s matrix between calculated
descriptors, followed by removing those descriptors with intercorrelation values of r2 > 0.80 as
postulated by Topliss and Edwards [68]. However, the tighter threshold of r2 = 0.64 was set in this
study to further ensure the quality of developed models.

It is normal to observe that some descriptors with broader ranges outweigh those with narrower
ranges due to substantial variations in magnitudes. Nevertheless, such a problem can be exonerated
when the non-descriptive descriptors, viz. real variable descriptors, are normalized by centering and
scaling into a more consistent range:

χi j =
(
xi j −

〈
x j

〉)
/

 n∑
i=1

(
xi j −

〈
x j

〉)2
/(n− 1)

1/2

, (2)

where xi j and χi j stand for the original and normalized jth descriptors of the ith compound, respectively;〈
x j

〉
represents the mean value of the original jth descriptor; and n is the number of samples.
Descriptor selection plays a predominant role in determining the performance of predictive

models [86]. More training samples with more diverse structures will demand more descriptors [54],
whereas it is highly possible to develop an over-trained model once there are too many selected
descriptors [87]. The descriptor selection was initiated by genetic function approximation (GFA) using
the QSAR module of Discovery Studio because of its effectiveness and efficiency [88], followed by the
recursive feature elimination (RFE) method, in which the model development was repeatedly carried
out by all but one of descriptors. The descriptors were then ranked according to their contributions to
the predictive performance; and the descriptor with least contribution was rejected [89].

4.3. Data Partition

The collected molecules were divided into the training and test sets with an approximate 4:1 ratio
as suggested [90] to develop and to verify the predictive models, respectively, using the Kennard–Stone
(KS) algorithm [91] implemented in MATLAB (The Mathworks, Natick, MA, USA). In addition, the data
distribution was cautiously inspected to ensure the high levels of biological and chemical similarity in
both data sets since it has been suggested that a sound model can be derived only based on chemically
and biologically similar training samples and test samples [92].

4.4. Partial Least Square

Partial least square, which can process data with collinearity among descriptors, is a generalization
of regression. The advantageous characteristic of PLS, accordingly, is that PLS can handle data where the
number of descriptors is larger than that of observations [93]. The developed PLS model is commonly
subjected to cross-validation for testing its complexity to minimize the chance correlations [94]. The PLS
model development was executed by the Partial Least Square module in the Discovery Studio package.

https://chemicalize.com/
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4.5. Hierarchical Support Vector Regression

Support vector machine (SVM) proposed by Vapnik et al. [95] was initially designed for
classification and then implemented for regression by nonlinearly mapping the input data into
a higher-dimension space, in which a linear regression is performed [96]. SVM regression or
SVR takes into account not only the training error but the model complexity, whereas traditional
regression algorithms build predictive models by minimizing the training error. Thus, SVM shows
better performance than traditional regression methods that can be attributed to its advantageous
characteristics, namely dimensional independence, limited number of freedom, excellent generalization
capability, global optimum, and easy implementation [97].

The novel hierarchical support vector regression (HSVR) scheme, which was originally proposed
by Leong et al. was derived from SVM [58]. One of the most unique and advantageous characteristics
of HSVR is its ability to simultaneously take into consideration the characteristics of a global model,
viz. broader coverage of applicability domain (AD), and a local model, viz. higher level of predictivity,
that are seemingly contractionary to each other [98]. More significantly, it has been demonstrated that
HSVR outperformed artificial neural network (ANN), genetic algorithm (GA), and SVM [99].

The detail of HSVR has been described elsewhere [58] and the HSVR architecture can be illustrated
by Figure 1 of Leong et al. [58]. Concisely, a number of SVR models were built by the LIBSVM
package (software available at http://www.csie.ntu.edu.tw/~{}cjlin/libsvm) using various descriptor
combinations and each SVR model symbolized a local model. The model development and verification
were carried out using the modules svm-train and svm-predict, respectively, implemented in LIBSVM.
The regression modes, namely ε-SVR and γ-SVR, were used. Of various available kernel functions,
radial basis function (RBF) was adopted because of its simplicity and better performance when
compared with the others [100]. The runtime parameters, namely regression modes ε-SVR and ν-SVR,
the associated ε and ν, cost C, and the kernel width γ, were automatically scanned by the systemic grid
search algorithm using an in-house Perl script, in which all parameters were parallelly alternated.

Initially, two SVR models were adopted to build an SVR ensemble (SVRE), which, in turn, was
further subjected to regression by another SVR to yield the final HSVR model. The two-member
SVREs were continuously constructed until the HSVR model performed well. The three- or even
four-member ensembles, otherwise, were developed by adding one or more SVR models, respectively, if
all two-member ensembles failed to execute well. The descriptor selection and ensemble assembly were
primarily ruled by the principle of Occam’s razor [101] by selecting the least numbers of descriptors
and SVR models.

4.6. Predictive Evaluation

The predictivity of a produced model was assessed by several statistic parameters. The coefficients
r2 and q2 in the training set and external set, respectively, for the linear least square regression were
computed by the following equation

r2, q2 = 1−
n∑

i=1

(ŷi − yi)
2/

n∑
i=1

(yi −
〈
ŷ
〉
)2, (3)

where ŷi and yi are the predicted and observed values, respectively; and
〈
ŷ
〉

and n represent the
average predicted value and the number of samples in the data set, respectively.

Furthermore, the residual ∆i, which is the difference between yi and ŷi, was computed:

∆i = yi − ŷi. (4)

http://www.csie.ntu.edu.tw/~{}cjlin/libsvm
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The root means square error (RMSE) and the mean absolute error (MAE) for n samples in the data
set were calculated:

RMSE =

 n∑
i=1

∆2
i /n

1/2

(5)

MAE =
1
n

n∑
i=1

|∆i|. (6)

Furthermore, various modified versions of r2 proposed by Ojha et al. [63] were also calculated

r2
m = r2

(
1−

√∣∣∣r2 − r2
o

∣∣∣), (7)

r′2m = r2
(
1−

√∣∣∣r2 − r′2o
∣∣∣), (8)〈

r2
m

〉
=

(
r2

m + r′2m
)
/2, (9)

∆r2
m =

∣∣∣r2
m − r′2m

∣∣∣, (10)

where the correlation coefficient r2
o and the slope of the regression line k were derived from the

regression line (predicted vs. observed values) through the origin, whereas r′2o was computed from the
regression line (observed vs. predicted values) through the origin.

The generated model was further subjected to 10-fold cross-validation using the function provided
by the programs instead of the commonly used leave-one-out because of its better performance [102],
yielding the correlation coefficient of 10-fold cross validation q2

CV. In addition to internal cross-validation,
the derived models were also internally validated by the Y-scrambling test [54], which was carried out
by randomly permuting the log Pe values, viz. Y values, to refit the previously built models while the
descriptors were remained unaltered, giving rise to the correlation coefficient r2

s . Finally, the average
correlation coefficient

〈
r2

s

〉
was produced after 25 times of scrambling as proposed [60].

Furthermore, QSARINS [103,104] was used to calculate the correlation coefficients q2
F1, q2

F2, and
q2

F3 and concordance correlation coefficient (CCC) for the external data set [105].

q2
F1 = 1−

nEXT∑
i=1

(yi − ŷi)
2/

nEXT∑
i=1

(yi −
〈
yTR

〉
)2, (11)

q2
F2 = 1−

nEXT∑
i=1

(yi − ŷi)
2/

nEXT∑
i=1

(yi −
〈
yEXT

〉
)2, (12)

q2
F3 = 1−

nEXT∑
i=1

(yi − ŷi)
2/nEXT

/
nTR∑

i=1

(yi −
〈
yTR

〉
)2/nTR

, (13)

CCC =

2
nEXT∑
i=1

(yi −
〈
yEXT

〉
)(ŷi −

〈
ŷEXT

〉
)

nEXT∑
i=1

(yi −
〈
yEXT

〉
)2 + (ŷi −

〈
ŷEXT

〉
)2 + nEXT(

〈
yEXT

〉
−

〈
ŷEXT

〉
)2

, (14)

where nTR and nEXT represent the numbers of samples in the training set and external set, respectively;〈
ŷTR

〉
is the average predicted value in the training set; and

〈
yEXT

〉
and

〈
ŷEXT

〉
stand for the average

observed and predicted values in the external set, respectively.
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More importantly, a model can be regarded as predictive if it can meet the most stringent criteria
collectively suggested by Golbraikh et al. [62], Ojha et al. [63], Roy et al. [64], and Chirico and
Gramatica [65].

r2, q2
CV, q2, q2

Fn ≥ 0.70, (15)∣∣∣r2
− q2

CV

∣∣∣ < 0.10, (16)(
r2
− r2

o

)
/r2 < 0.10 and 0.85 ≤ k ≤ 1.15, (17)∣∣∣r2

o − r′2o
∣∣∣ < 0.30, (18)

r2
m ≥ 0.65, (19)〈

r2
m

〉
≥ 0.65 and ∆r2

m < 0.20, (20)

CCC ≥ 0.85, (21)

where r in Equations (17)–(20) stand for the parameters r and q in the training set and external set,
respectively; and qFn in Equation (15) represents qF1, qF2, and qF3.

5. Conclusions

PAMPA is often used as a surrogate for preliminary assessment of drug absorption, which plays a
critical role in drug bioavailability. The two-QSAR approach was employed in this investigation by
integrating hierarchical support vector regression and partial least square to predict PAMPA effective
permeability. The derived HSVR model showed excellent performance in the training set, test set, and
even outlier set, whereas the PLS model modestly executed in those three data sets. The accuracy
and predictivity of HSVR were confirmed by various statistical assessments and validation criteria.
When mock tested by a group of molecules to mimic real challenges, the derived HSVR not only
showed excellent performance but executed better than PLS. The outstanding persistent performance,
generalization capacity, and robustness of HSVR can be attributed to its unique architecture that can
simultaneously possess the advantageous characteristics of a local model and a global model, viz.
broader applicability domain and higher predictivity, respectively. The linear PLS model, conversely,
disclosed the interpretable relationships between some selected descriptors and permeability that is
not possible by “black box” approaches. In addition, the characteristics associated with good and
poor permeability were elaborated in detail. Thus, it can be asserted that this two-QSAR approach
by using predictive HSVR and interpretable PLS in a synergistic fashion can be used to predict
the PAMPA effective permeability and to render the relationships between selected descriptors and
passive diffusion, respectively. This can be employed to facilitate drug discovery and development by
predicting the passive diffusion of hit and lead compounds. In addition, this study has paved the way to
understand the transport-mediated permeability and to establish quantitative structure–bioavailability
relationship (QSBR) models in the future.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/
3170/s1. Table S1. Optimal runtime parameters for the SVR models; Table S2. Selected compounds for this study,
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