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Abstract: Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential
for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic
cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature
of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation,
differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining
Mg2+ within optimal levels according to the biological context, such as cell types, developmental
stages, extracellular environments, and pathophysiological conditions, is crucial for development,
normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and
neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and demyelination. In
the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies
caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal
development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits
neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate
for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of
intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in
the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.

Keywords: magnesium; neuron; differentiation; neural network maturation; synaptogenesis;
intracellular signal; neurodegenerative disease

1. Introduction

Magnesium (Mg) is the second-most abundant cation following potassium in mammalian cells,
and it is essential for numerous cellular processes, including enzymatic reactions, ion channel functions,
metabolic cycles, and cellular signaling, as well as the stability of biomolecules, such as RNA, DNA,
and proteins [1–3]. Mg plays a special role in biochemistry because of its smallest ionic radius, highest
charge density, and largest hydrated radius, and it coordinates six oxygen atoms in its first coordination
shell [3,4]. Mg2+ links together two phosphate groups in a macromolecule, which is responsible for
the folding of biomolecules, such as enzymes and DNA/RNA. The inorganic chemistry of Mg plays
a key role in the first chemical processes, which lead to the origin of life, i.e., ribozymes, and the
early evolution of life [5–7]. Because of the essential roles of Mg2+, fundamental requirements of
Mg2+ for biological processes seem to pose constraints on the evolution of cells and organisms. This
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fundamental nature of Mg2+ in life leads to the versatility and universality of the roles of Mg2+ in living
systems. The homeostasis of intracellular Mg2+ is physiologically linked to cell growth, differentiation,
energy metabolism, and cell death via the control of enzymatic activities, channel openings, DNA/RNA
stability, and cellular stress [1–3]. Hence, it is crucial to regulate the Mg2+ concentration ([Mg2+])
within optimal levels according to the cell type and environment not only for normal functions and
development but also prevention of diseases. In fact, disorder of Mg2+ homeostasis is involved in
cancer, diabetes, and neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s
disease (AD), and demyelination [1–3,8,9]. The significance of intracellular Mg2+ is universal and
fundamental at the molecular level, but its multiple and complex functions lead to its cell-type-specific
roles. Previous studies suggested that, especially in the nervous system, Mg2+ plays specific roles in
development, brain functions, and diseases [2,3,10]. Because of the contradictory observations, e.g.,
Mg2+ is trophic or toxic, an activator or an inhibitor, increased or decreased in the pathology of several
diseases, the roles of intracellular Mg2+ and its regulatory system are controversial. In this review, the
aim is to summarize the findings regarding the roles of intracellular Mg2+ and its regulatory system
for determining cell phenotypes and fates in the nervous system and to provide an overview of the
comprehensive roles of Mg2+ in neuro(patho)physiology.

2. Magnesium Homeostasis in the Brain

2.1. Magnesium Homeostasis in the Nervous System

Mg2+ from daily intake is absorbed in the intestine, and it is reabsorbed by the proximal tubule
(10–20%) and the thick ascending limb of Henle’s loop (50–70%) [3]. In the entire body, the majority of
Mg2+ is accumulated in the bone, muscle, and soft tissues (Figure 1). The serum [Mg2+] ranges between
0.5 and 1.05 mM [11,12], the values of which reflect only 1% of the total content of Mg2+ in the body of
a healthy person [3]. Even under severely Mg2+-depleted conditions, up to 80% of dietary Mg2+ can be
absorbed [13], and most of Mg2+ in whole body exchanges at a very slow rate with biological half-time
of 1000 hours [14]. Even in such conditions, the [Mg2+] in the serum is maintained within the normal
range [3]. Extracellular fluid (ECF) in the central nervous system (CNS) is separated from the blood
circulation by the blood–brain barrier (BBB). The BBB comprises endothelial cells of brain capillaries and
allows passage of nutrients and electrolytes for the maintenance of ECF homeostasis. Because neuronal
and glial cells are closely located with a distance of 20 to 50 nm and the volume of extracellular space is
quite small in brain unlike the other organs [15–17], concentrations of the ECF components is greatly
fluctuating. Thus, the BBB actively transport several molecules for the ECF homeostasis [17]. The
[Mg2+] in ECF is maintained within a greater level compared with that of plasma or cerebrospinal fluid
(CSF) [18]. The gap provides evidences for the active transport of Mg2+ in BBB. The in vitro BBB model
of human brain endothelial cells, several functionally active Mg2+ transporters are expressed, such as
transient receptor potential melastatin 7 (TRPM7) and MagT1 [19]. However, little has been revealed
about the mechanism of Mg2+ transport in BBB. As most of the researches about Mg2+ absorption and
excretion have focused on the small intestine and kidney [3,17], further investigation is required on
how similar and different such organs are to CNS. In addition, the gap-junction-mediated cytosolic
[Mg2+] ([Mg2+]cyto) regulates the circadian rhythm of BBB permeability in Drosophila, indicating that
the intracellular [Mg2+] of BBB affects the neuronal environment in the brain [20]. The cerebrospinal
fluid (CSF) fills and surrounds the brain and the spinal cord and exists at about 100 to 150 mL in the
normal adult human body [21]. CSF functions as a mechanical barrier, and it is produced by the dialysis
of blood and active transport of molecules, such as nutrients, hormones, metal ions and metabolites
across the ependymal cells in the choroid plexus at a rate of 0.2 to 0.7 mL per minute [22]. The [Mg2+]
of CSF is greater than that of blood [23,24], indicating that Mg2+ is actively transported from the
blood into CSF [17]. The [Mg2+] of ventricular CSF is higher and more sensitive to changes in [Mg2+]
of plasma than that of lumber CSF in cow [25]. The alteration of [Mg2+] of CSF correlates with the
extracellular [Mg2+] around neurons, which affects neural activities. Thus, the [Mg2+] of CSF is closely



Int. J. Mol. Sci. 2019, 20, 3439 3 of 26

related to various brain functions [26,27]. In particular, the [Mg2+] of CSF and cognitive functions
have been reported to exhibit a positive correlation [28–32]. In addition, the intracellular [Mg2+] of
erythrocytes significantly correlates with the [Mg2+] of CSF in the hippocampus, and further with
the hippocampal synapse density and recognition and memory performance [33,34], suggesting that
[Mg2+]cyto of erythrocytes is a good index of recognition and memory. These facts revealed that Mg2+

homeostasis in the human body is a key factor in brain functions, especially synaptic connectivity.
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2.2. Mg2+ Transport in Neurons 

Figure 1. Magnesium homeostasis in whole body and brain. (A) Magnesium metabolism of the human
body. (B) Choroid plexus and blood–brain barrier in the human brain. (C) The enlarged image of the
boxed region in panel B, i.e., choroid plexus. The enlarged image of the boxed region in the panel B,
i.e., blood–brain barrier (BBB). The gradient of [Mg2+] between blood and cerebrospinal fluid (CSF).
(D) The structure of BBB at cellular levels and the comparison of [Mg2+] between blood, extracellular
fluid (ECF) and CSF.

2.2. Mg2+ Transport in Neurons

Mg2+ is the most abundant divalent cation in cells, and the total [Mg2+] ranges between 17
and 20 mM in mammalian cells [1,2]. The gaps between the [Mg2+]cyto and extracellular free Mg2+

concentration ([Mg2+]ex) are maintained within less than twofold (10,000- and 20,000-fold for Ca2+

and Zn2+, respectively) [1,35–37]. As the resting membrane potential of neurons is about −70 mV, if
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[Mg2+]cyto is at the electrochemical equilibrium, then its resting concentration should be 50 mM [37].
Yet, even under the Mg2+-mobilized condition, only a slight change in [Mg2+]cyto is observed, within
about twofold [38–40]. Against the electrochemical gradient, cells exhibit several mechanisms to
physiologically maintain intracellular [Mg2+] within a narrow range under resting or stimulated
conditions [1,3,37]. Intracellular Mg2+ is regulated through a balance of influx, efflux, and the amount
of stored intracellular Mg2+ [1,3,37], and it is fully exchanged with plasma Mg2+ within 3 to 4 hours [12].
The energy required for the transport of Mg2+ is several times greater than that required for the
transport of other cations [41] because Mg2+ binds water molecules more tightly than other cations
due to its highest charge density. As Mg2+ exhibits the largest hydrated radius (0.428 nm) and the
smallest ionic radius (0.072 nm), the volume change between hydrated and ionic Mg2+ is almost
400-fold (Na+ and Ca2+: ∼25-fold or K+: 4-fold) [42,43]. Thus, any protein transporting Mg2+ must
be capable of initially interacting with the large cation [42]. Furthermore, assuming that Mg2+ is
transported in its ionic form similar to other cations, dehydrated Mg2+ passes through quite a small
pore. Together, Mg2+ transporting molecules must contain both physically large initial binding sites
and small pores. Because of these unique characteristics of Mg2+, the structure and mechanism of
Mg2+ transporters have not been completely revealed. Although several Mg2+-transporting proteins
are identified in mammalian cells [1,3,37,44,45], the association of these Mg2+-transporting systems
with the neuro(patho)physiology has not been investigated much.

2.3. Mg2+ Distribution of Cells

Nuclei, mitochondria, and endoplasmic or sarcoplasmic reticulum (ER/SR) compartmentalize
intracellular Mg2+ with total concentrations ranging between 15 and 18 mM [1,37]. In the lumen of
these organelles, only a small fraction of Mg2+ is free, and almost all of the Mg2+ is complexed with
negatively charged biomolecules in each compartment because of its positive charge [2,3,37] (Figure 2).

2.3.1. Cytosol

In the cytosol, Mg2+ is complexed to a broad spectrum of biomolecules, such as phosphonucleotides,
phosphometabolites, and Mg2+-binding proteins [1,37]. In particular, adenosine 5′-triphosphate
(ATP) is the major intracellular pool for Mg2+ because of its abundance (on the order of millimolar
concentrations) and high binding affinity (Kd of ~78 µM) [1,37,46]. The Mg2+ buffering contributes
to the maintenance of free [Mg2+]cyto within a narrow range. In such intracellular environments,
some biological stimuli induce slight but significant changes in [Mg2+]cyto [38,47–49]. Even when the
changes in intracellular [Mg2+] is apparently slight, the contents and distributions of Mg-complexed
biomolecules may change dramatically under the conditions in which Mg2+-buffering molecules are
abundant. Thus, a slight fluctuation of intracellular [Mg2+] can impact on cellular processes more
than expected.

2.3.2. Nuclei

Nuclear [Mg2+] ([Mg2+]nuc) considerably varies depending on the physiological conditions [50].
In nuclei, chromatin, nucleic acids, and free nucleotides require counterions for the neutralization of
their negative charges [1,2,37]. K+ and Mg2+ are strong candidate cations for the neutralization of
charges because of the low intracellular concentrations of Na+ and Ca2+. Furthermore, Mg2+ wins in
the competition of K+ for binding to the negatively charged molecules, such as DNA in the nucleus,
because it has more positive charges and a higher hydration energy [51]. For stabilizing the condensed
state of DNA, a high concentration of counterions is required (1 to 2 M for distances between the
DNA helix axes of 2 to 4 nm) [52]. Thus, in the nucleus, Mg2+ is localized at a spatially heterogeneous
distribution. Recently, the genetically encoded fluorescent-protein-based Mg2+ sensor, which is named
as Magnesium Ratiometric Indicator for Optical Imaging (MARIO), revealed that, after the breakdown
of a nuclear envelope, [Mg2+]nuc increases and peaks during the metaphase, and it gradually decreases
during cytokinesis. The condensation of chromosomes by Mg2+ is required for cell mitosis [40,53]. In
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yeast, the deficit of Mg2+ intake interferes with the interphase microtubule organization and mitotic
spindle formation [54]. In addition, some tumor cells contain higher levels of Mg2+ in the nucleus
compared with normal cells [50,55,56]. As Mg2+ is known to affect cell proliferation over several
decades [57,58], nuclear Mg2+ apparently plays an important role in cell division. In addition, Mg2+ is
involved in genome regulation [59]. As Mg2+ affects the solubility of chromatin, and the chromatin
surrounding the DNA affects gene expression, the Mg2+-fluctuation-dependent change in chromatin
folding presumably affects genome regulation [60].

2.3.3. Mitochondria

Mitochondria constitute a major cellular Mg2+ pool and contribute to the homeostatic regulation
of intracellular Mg2+ [48,61–63]. Several physiological and pathological stimuli activate the release of
mitochondrial Mg2+ into the cytosol, inducing a rapid, large decrease in the [Mg2+] in the mitochondrial
matrix ([Mg2+]mito). Thus, mitochondria are a key player in the regulation of intracellular Mg2+

homeostasis [38,47–49,62]. As the [Mg2+]mito is typically 0.8 to 1.2 mM [1,37,64,65], mitochondrial
Mg2+ predominantly combines with adenine phosphonucleotides and Mg2+-binding proteins. In
mammalian cells, the mitochondrial Mg2+ influx channel mitochondrial RNA splicing 2 (Mrs2) [48,66]
and mitochondrial Mg2+ exporter SLC41A3 [67] are identified. Although the disruption of the
mitochondrial membrane potential (∆Ψm) triggers the release of Mg2+ from the mitochondria into
the cytoplasm [47,49,61], the molecular mechanism for the release of mitochondrial Mg2+ has not
been revealed.

Mitochondrial Mg2+ affects several mitochondrial functions: (1) mitochondrial energy metabolism,
(2) apoptotic process, (3) mitochondrial Ca2+ homeostasis, and (4) mitochondrial DNA functions.

Mitochondrial Energy Metabolism

Mg2+ is required for a wide range of biochemical processes in mitochondrial energy metabolism.
Mitochondrial Mg2+ homeostasis demonstrates the potential to regulate the rate of energy production
according to energy demand. Activities of 2-oxoglutarate dehydrogenase (OGDH), which is the
rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, and several other enzymes are stimulated
by Mg2+ [63,68]. In addition, Mg2+ contributes to the transport of ATP from the mitochondria to the
cytoplasm, which is mediated by an ATP-Mg/Pi carrier [69]. The accumulation of ATP in mitochondria
inhibits several enzymatic processes in the TCA cycle [70] and activities of the electron transport
chain [71] in a negative feedback manner. The decrease of [Mg2+]mito by the Mrs2 knockdown affects
the metabolome, especially reactions involved in the TCA cycle [48].

Apoptotic Process

Changes in [Mg2+]cyto are observed in several apoptotic cells [49,62,72]. For instance, anoxia
induces the increase of [Mg2+]cyto via TRPM7 channels in hippocampal neurons [73]. Apoptotic stimuli
triggers the release of Mg2+ from mitochondria in various cells, including neurons [47,49,61,62,74].
The upregulation Mrs2 levels suppress apoptosis in gastric cancer cells [75]. The downregulation of
the Mrs2 level causes decreased ∆Ψm and abnormal mitochondrial morphology [48]. Taken together,
the accumulated mitochondrial Mg2+ through the Mrs2 channel exhibits protective effects against
cellular stress. The activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP),
which contributes to the protective effects of an ischemic precondition [76,77], triggers the release of
mitochondrial Mg2+ [47]. N-methyl-4-phenylpyridinium iodide (MPP+) is an active metabolite of PD
inducer 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [78]. In MPP+-induced mitochondrial
stress in the PD model, the cytosolic Mg2+ level after mobilization from the mitochondria and
extracellular medium is correlated with the cell viability [39]. These studies revealed that stored
and released Mg2+ in mitochondria attenuates the neurodegeneration. This is explained by the fact
that Mg2+ inhibits the opening of the permeability transition pore (PTP), leading to the release of
cytochrome c and consequently apoptosis [79,80]. On the other hand, the elevated [Mg2+]mito [81] and
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decreased [Mg2+]cyto [82] are observed in some models of the induction of apoptosis. Mg2+ stimulates
the release of cytochrome c independently of the PTP [83,84]. These opposite observations in cellular
apoptotic processes suggest the missing mechanism, and further work is required to associate the
apoptosis process to the Mg2+ homeostasis.

Mitochondrial Ca2+ Homeostasis

Mitochondrial Ca2+ uptake plays various roles in vital signaling processes, such as bioenergetics,
cell death, and sequestration of cytosolic Ca2+ transients [85]. Extramitochondrial Mg2+ suppresses the
mitochondrial uptake of Ca2+ via the inhibition of the Ca2+ uniporter [85–88]. Thus, the intracellular
homeostasis of Mg2+ affects Ca2+-signal-mediated mitochondrial functions, such as bioenergetics
and apoptosis.

Mitochondrial DNA Functions

Mammalian mitochondria contain their own DNA (mtDNA), which encodes the essential
components of the oxidative phosphorylation (OXPHOS) and RNA elements. The Mg2+ requirements
for the DNA/RNA structure and protein synthesis lead to the possibility that mitochondrial Mg2+ affects
mitochondrial DNA (mtDNA) functions, as well as processes of protein synthesis in mitochondria
(described in detail in Chapter 5.3).

2.3.4. Endo(sarco)plasmic Reticulum

ER/SR accumulates Mg2+ (its total [Mg2+] is estimated to be between 14 and 18 mM), and Mg2+

binds to ribonuclear proteins and phospholipids [37]. The concentration of Ca2+ ([Ca2+]) is near 100 nM
in the cytosol, while [Ca2+] in the ER ranges between 100 and 800 µM [89]. As high levels of Ca2+ in
the ER/SR interfere with accurate measurements using fluorescent probes with a low selectivity for
Mg2+, [Mg2+] in ER/SR has not been reliably determined. ER plays central roles in Ca2+ signaling
in cells, including neurons [90,91]. Ca2+ is released from the intracellular Ca2+ storage in the ER/SR
via inositol-1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR). Mg2+ functions as
an intracellular inhibitor of IP3R [92] and RyR [93–95]. As IP3R or RyR-mediated Ca2+ signaling
plays several roles in neuronal processes including neuronal development and plasticity [90,91,96],
the interaction of Mg2+ with Ca2+ signaling can significantly affect neuro(patho)physiology [95]. The
decrease of [Mg2+]cyto by caffeine as a RyR activator through an as yet unidentified mechanism in
myocytes [97] suggested the possibility that SR/ER is involved in intracellular Mg2+ signals. The
accurate determination of [Mg2+] in the ER/SR without Ca2+ interference has been eagerly awaited.

2.3.5. Ribosome

The ribosome is a complex molecular machine that serves as the site of protein synthesis, i.e.,
translation. Ribosomes comprise ribosomal RNA (rRNA) molecules and ribosomal proteins. A single
70S ribosome of Escherichia coli comprises more than 170 Mg2+ atoms [98], meaning that an entire pool
of 70,000 ribosomes chelates at least 12 mM Mg2+ in a single cell [99,100]. Since Mg2+ plays crucial
roles in the structural stability and/or catalytic activity of the ribosome, which cannot be replaced by
the other cations [101–104], [Mg2+]cyto is closely associated with its ribosome content [105,106]. Since
the majority of the ribosomes are typically translating at the maximum capacity, the overall rate of
protein synthesis is often determined by the rate of ribosome synthesis [100]. In brief, [Mg2+]cyto is
highly correlated with the rate of protein synthesis [107]. Furthermore, in ribosomes, Mg2+ deficits
cause the loss of peptidyl transferase activity and subsequent ribosome disassembly [108] and lead to
the reduction of translation [109]. Studies with prokaryotic cells reveal that low [Mg2+]cyto promotes
protein expressions for Mg2+ uptake and ATP reduction, consequently making Mg2+ available for
translation to satisfy the cellular demands of Mg2+ [110–113]. The homeostatic systems of intracellular
[Mg2+] are suggested to be evolutionarily conserved in eukaryotic cells [112]. In mammalian cells,
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the mechanistic target of rapamycin (mTOR) signaling regulates several growth-related processes,
including ribosome biogenesis [114]. Intracellular Mg2+ physiologically enhances mTOR signaling
activities [38,115]. Thus, Mg2+ apparently regulates protein synthesis through the effect on ribosomal
functions via the mTOR pathway [115,116]. In neurons, ribosomes perform protein synthesis, and their
functions are essential for dendritic growth and maintenance [117,118]. Therefore, deficits of protein
synthesis in ribosome disturb neurodevelopment via the reduction of neuronal connectivity [117]. The
deficits of protein synthesis related to various neurodegenerative diseases, including AD [119,120] and
PD [121–123]. Hence, [Mg2+]cyto affects the formation of a neural network via ribosome biogenesis.
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Figure 2. Intracellular Mg2+ distribution and machinery for Mg2+ regulation: The intracellular Mg2+

content is regulated by the balance of influx, efflux, and the intracellularly stored amount. Major
storages for intracellular Mg2+ are the nuclei, mitochondria, ERs, and the ribosome. Cytosolic Mg2+ is
bound to phosphometabolites, such as ATP. NIPA1, NIPA2, NIPA3, NIPA4, MagT1, TRPM6, TRPM7
and SLC41A2 contributes the uptake of extracellular Mg2+. Na+/Mg2+ and H+/Mg2+ exchangers
contribute the Mg2+ efflux. Some studies support that SLC41A1, CNNM2 and CNNM4 functions as Mg2+

exchangers. MMgT1/2 and HIP14/14L is localized at golgi apparatus, and Mrs2 and SLC41A3 is localized
at mitochondria. Abbreviations: ER—endoplasmic reticulum; ATP—adenosine 5’-triphosphate;
TRPM6—transient receptor potential melastatin 6; TRPM7—transient receptor potential melastatin 7;
CNNM2 or ACDP2—cyclin M2; CNNM4—cyclin M4.



Int. J. Mol. Sci. 2019, 20, 3439 8 of 26

3. Physiological Roles of Cellular Mg2+

In living cells, negative charges of biomolecules are in excess of the positive ones. Thus, inorganic
metal ions, such as K+, Na+, Ca2+, and Mg2+, exceed the number of anions [52]. Although Ca2+

is a better competitor for binding to negative charges of biomolecules, the intracellular Ca2+ level
is maintained at low levels under normal and resting conditions [35,36]. Hence, Mg2+ is the main
candidate as a counterion for neutralizing negatively charged biomolecules, e.g., RNA/DNA, reactive
oxygen species (ROS), and ATP, because of its abundance and multivalence [3,4]. The properties of
Mg2+ for interacting with numerous biomolecules render versatile roles, e.g., a modulator of enzymatic
activities, cell protection against cellular stress, channel regulation, and DNA/RNA stabilization
(Figure 3). In addition, the interaction of Mg2+ with various biomolecules serves as an intracellular
buffer and a storage system for maintaining the homeostasis of intracellular molecules. Hence, it is not
surprising that dysregulation of Mg2+ homeostasis is tightly connected with several disease conditions,
such as neurodegenerative disease, diabetes mellitus, and metabolic syndrome [2,3].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 12 of 26 

 

 
Figure 3. Overview of cell physiology of Mg2+. The intracellular Mg2+ plays versatile roles in neurons. 
Abbreviations: PI3K—phosphatidylinositol-3 kinase; mTOR—mechanistic target of rapamycin; 
JNK—c-Jun NH2-terminal kinase; ERK—extracellular signal-regulated kinase; CREB—cAMP 
response element binding; ROS—reactive oxygen species; NMDA—N-methyl-D-aspartate;  
AD—Alzheimer’s disease; PD—Parkinson’s disease; ATP—adenosine 5’-triphosphate;  
PTP—permeability transition pore; RyR—ryanodine receptor; IP3R—inositol-1,4,5-trisphosphate 
receptor; OXPHOS—oxidative phosphorylation; mtDNA—mitochondrial DNA. 

5. Neuropathology of Mg2+ Homeostasis 

5.1. Parkinson’s Disease  

PD is a neurodegenerative disease characterized by clinical symptoms, including tremors and 
rigidity. As almost 85 to 90% of the patients are sporadic, and 10 to 15% are familial, PD is believed 
to be caused by genetic and environmental factors [190]. PD pathologically shows the selective loss 
of dopaminergic neurons and the formation of Lewy bodies in the substantia nigra of the brain 
[190,191]. In cellular pathology, dopamine metabolism, mitochondrial oxidative stress, impaired 
protein degradation systems, and neuroinflammation are widely believed to be attributed to the 
selective death of dopaminergic neurons [191,192]. The brains of PD patients exhibit low 
concentrations of Mg in CSF [193]. Epidemiological studies revealed that the high incidence of PD is 
attributed to nutritional deficiencies of Mg2+ [194–196]. Continuous low Mg intake over generations 
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Abbreviations: PI3K—phosphatidylinositol-3 kinase; mTOR—mechanistic target of rapamycin;
JNK—c-Jun NH2-terminal kinase; ERK—extracellular signal-regulated kinase; CREB—cAMP response
element binding; ROS—reactive oxygen species; NMDA—N-methyl-D-aspartate; AD—Alzheimer’s
disease; PD—Parkinson’s disease; ATP—adenosine 5’-triphosphate; PTP—permeability transition
pore; RyR—ryanodine receptor; IP3R—inositol-1,4,5-trisphosphate receptor; OXPHOS—oxidative
phosphorylation; mtDNA—mitochondrial DNA.
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3.1. Biochemical Reactions in Cells

Mg2+ affects more than 600 enzymatic reactions, including energy metabolism, protein synthesis,
and signal transduction [2,3,37,124]. In particular, the dependence of Mg2+ in cellular energy production
has been documented over several decades. The requirement of Mg2+ in various enzymatic activities
of glycolysis has been discussed in the textbook of biochemistry (pp. 228, [125]). All chemical reactions
are governed by the laws of thermodynamics, that is, the Gibbs free-energy change (∆G). The ∆G for the
ATP hydrolysis varies from −28 to −34 kJ/mol, depending on the [Mg2+], because positively charged
Mg2+ stabilizes ATP (Chapter 3 in [126], [127]). This fact implies that fluctuations of intracellular [Mg2+]
affect all ATP-related biochemical reactions in cells; intracellular Mg2+ can function as a comprehensive
regulator. Furthermore, intracellular Mg2+ competes not only with Ca2+ but also with protons or
amines (–NH2+). Protons (H+) are typically present at concentrations of less than 10−7 M at pH 7 and
bind to phosphate groups with a pKa of 6.5. Mg2+ is removed from ATP when the pH decreases to
6.0 [51], leading to significant effects on Mg2+-dependent reactions:

Mg · ATP + H+� H · ATP + Mg2+

Each intracellular organelle has a characteristic concentration of protons ([H+]), indicating that
Mg2+ impacts cellular biochemical reactions in an organelle-specific manner. Indeed, intracellular
[Mg2+] rhythms dynamically tune cellular biochemistry in response to the metabolic demands
throughout the daily cycle [128,129].

3.2. Intracellular Signaling

The free energies for the binding of ATP to protein kinase in the presence of Mg2+ are less than
those in the absence of Mg2+ [130]. Mg2+ potentially enhances reactions of all protein kinases, that is,
intracellular signal transduction. The function of intracellular Mg2+ as the second messenger has been
controversial over decades [131,132]. In living cells, the electrochemical gradient of Mg2+ across the
plasma membrane serves as a reservoir for signal generation. When Mg2+-permeable channels open in
response to biological cues, Mg2+ influx should be initiated. In fact, although some biological stimuli
induce intracellular Mg2+ mobilization [37,39,47,49,73], the regulatory mechanism of Mg2+ channels has
not been revealed yet. The concentrations of Ca2+ and other cations fluctuate within several orders of
magnitudes (from 10 nM to 100 µM in the case of Ca2+) in response to cellular events [35,36]. In contrast,
intracellular [Mg2+] is maintained within the narrow and sub-millimolar ranges, which is considerably
greater than that in the case of [Ca2+] [36]. Hence, Mg2+ is believed to function physiologically not as a
biological switch but as a modulator. In 2011, the role of Mg2+ as the second messenger in immune
cells was demonstrated by its three fundamental features as a second messenger: (1) Its levels increase
rapidly in response to a biological stimulus. (2) It alters the rate of one or more cellular processes.
(3) It exerts cell-type specific roles because it affects different complements of enzymes in a cell-type
dependent manner [35,133]. This study revealed that the coupling of the Mg2+ influx with the activation
of the cell-surface receptor is required for healthy functions of its downstream cellular responses.
However, whether Mg2+ amplifies extracellular biological information has not been revealed. In
developing neurons, gamma-aminobutyric acid (GABA)-induced Mg2+ mobilization enhances cAMP
response element binding (CREB) and mTOR activities in a [Mg2+]cyto-dependent manner within the
physiological dynamic range [38]. CREB signaling is essential in the several transcriptional events and
the control of neuronal plasticity [134,135]. mTOR functions as an intracellular energy balance and
metabolism regulator that controls protein synthesis, cell growth, and differentiation. Intracellular Mg2+

mobilization simultaneously activates CREB and mTOR signaling, and such signaling cooperatively
enhances the maturation of neural networks. Notably, the [Mg2+]cyto regulation of mTOR activities
exhibits sigmoidal curves, indicating that Mg2+ functions as a cooperative signal amplifier [38,136]. In
the case of the Ca2+ signal, the conformational changes of a Ca2+-binding protein, such as calmodulin,
are evolutionarily conserved and play central roles in the switch-like regulation of biochemical
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reactions. Yet, with respect to Mg2+ signals, such a protein has not been identified. After all, the
answer to the question of whether Mg2+ is a second messenger or not depends on the definition
of the “second messenger.” At least, Mg2+ integrates and coordinates extracellular information and
affects various cellular processes in probably all types of cells. [Mg2+]-dependent properties of such
intracellular signaling are apparently more primitive and fundamental than are other intracellular
signals considering the involvement of Mg2+ in the early emergence of life.

3.3. ROS Toxicity

Oxygen atoms function as electron acceptors in several metabolic processes. The majority of
the oxygen consumed by biological systems is reduced to water, and it is converted to ROS. In this
process, intermediate substances, such as hydroxy radicals (·OH) or superoxide anions (O2−), are toxic
to the living body [137,138]. Free radical production increases in Mg2+-deficient animals [63,139,140].
Since O2− may react with Mg2+ via an electron-transfer reaction, leading to the production of
magnesium–oxygen species [4], Mg2+ suppresses the production of ROS in the various tissues,
including the brain [39,140–142]. Hence, Mg2+ is considered to protect the living body from radicals
because of its physicochemical properties.

3.4. Channel Regulation

Mg2+ regulates several ion channels [143]. Especially, in neurons, extracellular Mg2+ contributes
to the activity control of one of the glutamate receptors, N-methyl-D-aspartate (NMDA) receptor,
which plays crucial roles in neuronal functions [144,145]. In neurons at the resting membrane potential
(−70 mV), Mg2+ blocks the NMDA receptor. When the membrane potential is increased to −30 mV via
another glutamate receptor, AMPA receptor, activation and cation influx, Mg2+ block is relaxed, and
the NMDA receptor is activated. With the decrease in extracellular [Mg2+], the membrane potential of
neurons is weakly depolarized because of the relaxation of the Mg2+ block of the NMDA receptor,
leading to hyperexcitability. As the NMDA receptor is involved in excitatory neurotransmission,
neuroplasticity, and neuroexcitotoxicity, it plays an important role in developmental plasticity [146,147],
learning and memory [32], and circadian clock rhythm [148].

3.5. DNA Protection and Genome Stability

Mg2+ is considerably required to maintain genomic stability. Mg2+ contributes to the maintenance
of genome stability via two mechanisms: Its role as a cofactor in the DNA-repair-mechanism-related
enzyme and as a competitive inhibitor of the DNA-damaging factor due to the binding of Mg2+ to
DNA [59]. The positive charges of Mg2+ interact with the negative charges of the phosphate group
of DNA, and it plays key roles in stabilizing the secondary and tertiary structures of DNA [149].
Mg(H2O)6

2+, in which six water molecules are coordinated with Mg2+, forms a hydrogen bond with
DNA. In the coordinated state, the denaturing agent cannot attack this site in DNA. Thus, intracellular
Mg2+ protects the DNA from ROS [4]. In addition to stabilizing the DNA and chromatin structure,
Mg2+ is an essential cofactor in almost all enzymatic processes involved in DNA [59]. The genetic
information of DNA is replicated with high fidelity. Mg2+ plays a key role in DNA replication and
repair [150]. DNA templates are copied by enzymatic processes involving DNA polymerases. In these
processes, Mg2+ is required for replication with high fidelity [59,151]. DNA is continuously damaged
by environmental and endogenous mutagens [152]. To maintain low mutation frequencies, cells have
DNA repair systems, which require optimal [Mg2+] in multiple steps. Mg2+ contributes to the accurate
transfer of genome information and resultant translation of functional protein.
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4. Effects of Mg2+ on the Cellular Fate and Phenotype

4.1. Formation of Neural Networks and Synaptic Activities

Mg2+ is crucial for the growth and differentiation at the cellular and tissue levels [10]. In
developing neurons, the neurotransmitter-induced increase in [Mg2+]cyto mobilized from mitochondria
stimulates mTOR activities in a [Mg2+]-dependent manner and facilitates the maturation of neural
networks [38]. Typically, mTOR plays a central role in the regulation of the cellular metabolic state and
protein synthesis in response to the high demand for growth and proliferation. In neurogenesis, the
mTOR activation leads to dendritic arborization via the regulation of protein synthesis [153].

Another key player for Mg2+ mobilization in neuronal developments is the TRPM7 channel. The
TRPM7 channel is composed of a non-selective divalent cation channel and protein kinase domain,
which is called “chanzyme”. It is ubiquitously expressed and plays key roles in intracellular Mg2+

homeostasis [55,154–159], and the TRPM7 channel is regulated by intracellular signals and also its
kinase domain [160–162]. Although TRPM7 is essential for early embryonic development [10,163–165],
the contribution of Mg2+ influx through TRPM7 on the embryonic development remains controversial
because TRPM7 acts as both channel and enzyme [10,164]. Several studies support the roles of
kinase, which is responsible for the requirement of TRPM7 during embryogenesis [163,164,166].
The depletion of TRPM7 leads to disruption of the embryonic developments without affecting the
uptake of Mg2+ in thymocytes [164]. These studies suggest a possibility that the contribution of
TRPM7 in Mg2+ homeostasis is low in vivo or that disturbed Mg2+ homeostasis is compensated by
other Mg2+ channels. Actually, cells possess several Mg2+ transporting systems [37,167], and Mg2+

homeostasis is robustly maintained through the compensation mechanism in vertebrates. In fact, the
expressions of several Mg2+ transporters are simultaneously and dynamically changed in response to
the cellular environments [168]. The properties of TRPM7 as the channel and kinase and compensatory
maintenance of Mg2+ homeostasis causes the difficulties for revealing the roles of Mg2+ in animal
developments. Recently, some groups have shown that inactivation of the TRPM7 channel in living
mice results in impaired Mg2+ transport, supporting the notion that the TRPM7 channel indeed
can function as important Mg2+ channel in vivo [165,169]. Moreover, careful analysis using TRPM7
mutants lacking kinase domain support that TRPM7-mediated Mg2+ influx is essential for embryonic
developments in vertebrate [10,170].

TRPM7 is highly expressed in the tips of the growth cone [171]. The TRPM7-mediated Mg2+

influx in fibroblasts is required for lamellipodia formation, cell polarization, and directed cell
migration [172]. In lymphocytes, the TRPM7-mediated Mg2+ influx is apparently associated with
phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling [173,174]. Neurite outgrowth is dependent
on the dynamic changes of the cytoskeleton within the growth cone, and it is energy-consuming
and spatiotemporally controlled process. Thus, the entry of TRPM7-dependent Mg2+ presumably
enhances the activation of mTOR to meet the energy demand for the neuronal network organization.
In contrast, the TRPM7-mediated Ca2+ influx causes the generation of ROS and suppresses the
polarization of hippocampal neurons. Physiological ROS production is required for the polymerization
of the cytoskeleton [175]. ROS physiologically regulates cytoskeletal changes via the modification
of cytoskeletal and cytoskeleton-regulated molecules for the appropriate formation of the neural
network [176]. These facts suggest that the TRPM7 channel is crucial for the growth cone pathfinding
via the prevention of the axonal overgrowth and connection with unwanted targets. In addition,
TRPM7 responds to the membrane stretch and fluid shear force [177,178]. It seems the opposite roles of
TRPM7-mediated Mg2+ and Ca2+ influxes cooperatively regulate the proper growth cone pathfinding
in response to the extracellular mechanical stimuli.

In nervous systems, chemical synapse and electrical synapse functionally connect neuronal
cells for the formation of neural networks. Electrical synapses are physically connected by channel
proteins, forming gap junctions. [Mg2+]cyto controls the strength of the electrical gap junctions [179,180].
Mathematical simulations revealed [Mg2+]cyto-dependent long-term plasticity through the regulation of
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electrical gap junctions [181]. Furthermore, chemical-synapse-mediated neural activities physiologically
trigger Mg2+ influx in neurons [182]. The action-potential-triggered Mg2+ signal apparently coordinates
chemical and electrical synaptic activities and contributes to synaptic plasticity and formation of
neural network.

4.2. Neural Cell Fate Determination

Magnesium-L-threonate (MgT), which elevates the levels of Mg in the CSF of the brain, increases
the numbers of neural stem cells (NSCs) in the hippocampus [29,183]. Mg2+ promotes the differentiation
of NSCs to neurons instead of glial cells in vivo, while it promotes the differentiation to glial cells, not
to neurons, in vitro [184,185]. In the rat brain, the Mg levels of all regions decline after postnatal day
5 [186]. Consistently, during the development of the mammalian nervous system, NSCs differentiate
into neurons and glia in that sequence [187]. In addition, the activation of NMDA receptors increases
the rate of oligodendrocyte differentiation via PKC activation [188]. In early development, changes in
[Mg2+] around NSCs affect differentiation to oligodendrocytes via the Mg2+ modulation of NMDA
receptor activities. Furthermore, TRPM7 channels may play a critical role in the proliferation and
migration of astrocytes via the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal
kinase (JNK) signaling pathways [189]. Mg2+ influx is required for ERK activation in developing
neuronal cells [38]. Therefore, TRPM7-mediated Mg2+ influx plays crucial roles in the proliferation
and differentiation of neuronal cells.

5. Neuropathology of Mg2+ Homeostasis

5.1. Parkinson’s Disease

PD is a neurodegenerative disease characterized by clinical symptoms, including tremors and
rigidity. As almost 85 to 90% of the patients are sporadic, and 10 to 15% are familial, PD is believed
to be caused by genetic and environmental factors [190]. PD pathologically shows the selective
loss of dopaminergic neurons and the formation of Lewy bodies in the substantia nigra of the
brain [190,191]. In cellular pathology, dopamine metabolism, mitochondrial oxidative stress, impaired
protein degradation systems, and neuroinflammation are widely believed to be attributed to the selective
death of dopaminergic neurons [191,192]. The brains of PD patients exhibit low concentrations of Mg
in CSF [193]. Epidemiological studies revealed that the high incidence of PD is attributed to nutritional
deficiencies of Mg2+ [194–196]. Continuous low Mg intake over generations damages mitochondria, ER,
ribosomes, and nuclear DNA, as well as induces the loss of the dopaminergic neurons in the substantia
nigra [8]. In some familial PD patients, a mutation in Mg2+-transporting proteins, e.g., TRPM7 [197,198]
and SLC41A1 [199,200], has been reported. During the development of zebrafish, TRPM7 is essential
for the production or release of dopamine in dopaminergic neurons [201]. Dietary Mg2+-deficit mice are
susceptible to the toxicity of MPTP, which is a chemical inducer of PD [202]. The administration of Mg2+

inhibits the MPP+ neurotoxicity to dopaminergic neurons [203]. In the PD model of pheochromocytoma
(PC12) cells, MPP+ induces the release of Mg2+ from mitochondria and the influx of Mg2+ across the
cell membrane [39]. The suppression of Mg2+ influx decreases the viability of MPP+-exposed cells,
and cell viability is highly correlated with [Mg2+]cyto [39]. Moreover, the MPP+-induced inhibition
of mitochondria itself altered the expression levels of cellular Mg2+-transporting proteins [168]. A
6-hydroxydopamine (6-OHDA)-induced PD animal model revealed lower levels of the SLC41A1
expression [204] and Mg2+ [205] compared with control rats.

α-Synuclein is a presynaptic neuronal protein that is pathologically linked to PD [191,192].
The aggregation of α-synuclein is considered to exert deleterious effects on the mitochondrial
function [192,206]. Mg2+ at physiological levels directly inhibits the aggregation of α-synuclein,
which is strongly promoted by other metal ions [207,208], suggesting that the interaction of Mg2+

and α-synuclein suppresses aggregation, and hence, neurotoxicity [209]. In addition, Mg2+ may
inhibit the aggregation of α-synuclein by an indirect mechanism. Autophagy is a mechanism that
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transports misfolded protein aggregation and damaged organelles to the lysosome for degradation.
The activation of autophagy promotes the clearance of cytoplasmic aggregated protein, including
α-synuclein [210]. Thus, the impairment of basal autophagy causes abnormal accumulation and protein
aggregation [211,212], and consequently, pathological features of PD in dopaminergic neurons [213].
mTOR signaling negatively modulates autophagy [214] and balances anabolism and catabolism in
response to environmental conditions [215]. Thus, mTOR signaling affects the pathology of PD [216].
Although it is still controversial whether mTOR activity is neuroprotective or neurotoxic, the regulation
of the mTOR signal is tightly connected to PD pathology via autophagy regulation [217]. Since
intracellular Mg2+ is a regulator of mTOR signaling [38,116,128], the dependence of mTOR signaling
on Mg2+ provides one explanation for the relationship between Mg2+ and the PD pathology. Such
Mg2+ roles are expected to contribute to the protection of dopaminergic neurons in the substantia nigra
from degeneration in concert with the other physiological roles of Mg2+, such as the suppression of
ROS activities and the regulation of energy metabolism (described above).

5.2. Alzheimer’s Disease and Cognitive Functions

AD is the most common form of dementia in the population over 65 years old. AD is characterized
by pathological features, such as hyperphosphorylated tau and extracellular senile plaques [218,219].
Senile plaques primarily comprise amyloidβ (Aβ), and the accumulation of Aβ leads to the degeneration
of neurons and resultant brain atrophy. Compared with healthy people, AD patients exhibit lower
[Mg2+] in the CSF [198,220] and brain [220–222]. AD patients with lower [Mg2+] in the serum are likely to
show more severe symptoms [223]. Mg2+ deficiency causes emotional memory dysfunction [224,225].
Mg2+ administration improves learning and memory in dementia patients [222] and in healthy
animals [30,31,226] and promotes the recovery of cognitive function after brain injury [227,228]. In
pathology, Aβ is sequentially cleaved from amyloid β precursor protein (APP) by β-secretase and
γ-secretase. In contrast, α-secretase then cleaves APP into the C terminal fragment α (CTFα) and
soluble APPα (sAPPα), which is neurotrophic. Since CTFα and sAPPα are elevated under high
extracellular [Mg2+] conditions, the accumulation of the C terminal fragment β (CTFβ) and Aβ

occur under low extracellular [Mg2+] conditions [229]. The elevation of extracellular [Mg2+] prevents
the Aβ-induced reduction of the synaptic NMDA receptors via the suppression of the calcineurin
overactivation in hippocampal slices [29]. MgT treatment reduces soluble APPβ and CTFβ, leading to
Aβ aggregation and neuronal toxicity, which in turn prevent cognitive deficits and synaptic loss in the
AD model of transgenic mice [29]. Extracellular Mg2+ in BBB reduces the influx of Aβ from blood to
ECF and promote clearance of Aβ [19]. Furthermore, the treatment of MgSO4 attenuates impairments
in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic
proteins via the inhibition of glycogen synthase kinase-3β (GSK-3β) and activation of the PI3K/Akt
signaling in sporadic AD model rats [230]. The inflammation is triggered by Aβ oligomers at the early
stage. MgT decreases the TNF-α expression, which is a key mediator of inflammation, in glial cells
and the expression of presenilin enhancer 2 and nicastrin, which are potential promoters of the Aβ

synthesis, in neurons via a PI3K/Akt and nuclear factor-kappa B (NF-κB)-dependent mechanism [231].
Taken together, Mg2+ influx can suppress the proinflammatory mechanisms and protect neuronal
functions in AD pathology.

5.3. Demyelination

In demyelination mutant (dmy) rats, the loss-of-function mutation of mitochondrial Mg2+ uptake
gene, Mrs2, is identified. In dmy rats, an increased number of mitochondria and abnormal content of
metabolites are observed [232,233]. These observations revealed an association between mitochondrial
Mg2+ homeostasis and demyelination. Myelin increases the conduction velocity of the action potential
and energy efficiency. Although the mechanisms of axonal pathology and demyelination are not yet
completely understood, the mitochondrial dysfunction is considered to play a central role [234,235].
The dysregulation of mitochondrial Mg2+ homeostasis disrupts the ATP production via the shift
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of mitochondrial energy metabolism and morphology. The Mrs2 knockdown sensitizes cellular
tolerance against cellular stress [48]. In addition, Mg2+-exposed oligodendrocytes exhibit more
resistance to a hypoxic-ischemic injury [236]. In dmy rats, metabolic abnormality appears to lead
to the downregulation of aspartoacylase, which cleaves the acetate moiety for use in the syntheses
of fatty acids and steroids for myelination [237]. This report is consistent with the observation by
metabolomics that decreased Mrs2 expression leads to the abnormal metabolism of fatty acids [48]. In
myelinating oligodendrocytes, double-strand breaks of mtDNA cause mitochondrial dysfunctions,
consequently triggering demyelination and irreversible neurological deficit [238]. Mitochondrial Mg2+

affects mtDNA function and processes of mitochondrial central dogma independent of the exterior of
the mitochondria. mtDNA lacks histones responsible for the formation of nucleosomes, and its absence
causes the high rate of mtDNA mutagenesis (∼10-fold greater than in nuclear DNA) [239–241]. Thus,
the roles of Mg2+ in DNA stabilization in mitochondria seem to be more dominant than that in the
nucleus. Because the interaction of Mg2+ with DNA also contributes to the DNA/RNA stabilities [59],
a low [Mg2+]mito level should increase the risk of mtDNA damage. In addition, according to the
endosymbiosis theory, mitochondria are endosymbiotic bacteria [242,243]. In bacteria, Mg2+ plays a
key role in the regulation of protein synthesis [100]. Thus, mitochondrial Mg2+ may regulate protein
synthesis in mitochondria. In fact, the separated regulation of mitochondrial and cytosolic protein
synthesis in the process of the central dogma plays a central role in adaptation in the cellular nutrient
environment [244].

6. Conclusions and Perspectives

Mg2+ is a versatile divalent cation because of its unique physicochemical properties. In the
brain, the extracellular and intracellular Mg2+ levels dynamically change according to the biological
context. Mg2+ plays crucial roles in cell proliferation, differentiation, survival, and neural network
formation via the regulation of cellular metabolism, intracellular signaling, channel opening, protein
synthesis, and ROS toxicity. Typically, the mobilization of intracellular Mg2+ stimulates catabolism
and protein synthesis, consequently activating the cellular processes that determine the fate and
phenotype. Although Mg2+ usually protects neuronal cells against cellular stress, excess levels of Mg2+

are sometimes deleterious to healthy neuronal functions. Therefore, the appropriate regulation of
cellular Mg2+ homeostasis is essential for neuronal functions in the brain, and the dysregulation of
Mg2+ homeostasis potentially causes and aggravates neurodegenerative diseases, such as Parkinson’s
diseases, Alzheimer’s disease, and demyelination. The recovery of healthy Mg2+ homeostasis through
chemotherapy targeting Mg2+-transporting system can improve cellular functions under pathological
conditions. In summary, the regulation of Mg2+ homeostasis can be a candidate for a therapeutic target
in neurodegenerative diseases. However, the roles of Mg2+ and its regulatory mechanisms have not
been investigated much. Thus, further study is crucial for developing future therapies and deepening
the understanding of its neuro(patho)physiology.
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[Ca2+] Ca2+ concentration
[H+] H+ concentration
[Mg2+] Mg2+ concentration
[Mg2+]cyto cytosolic free Mg2+ concentration
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[Mg2+]ex extracellular free Mg2+ concentration
[Mg2+]mito free [Mg2+] in the mitochondrial matrix
[Mg2+]nuc nuclear free [Mg2+]
ACDP2 cyclin M2
AD Alzheimer’s disease
APP Aβ precursor protein
APPβ β-amyloid precursor protein β

ATP adenosine 5’-triphosphate
Aβ amyloid β

BBB blood–brain barrier
CNNM2 cyclin M2
CNS central nervous system
CREB cAMP response element binding
CSF cerebrospinal fluid
CTFα C terminal fragment α
CTFβ C terminal fragment β
ECF extracellular cellular fluid
ERK extracellular signal-regulated kinase
GABA gamma-aminobutyric acid
GSK-3β glycogen synthase kinase-3β
IP3R inositol-1,4,5-trisphosphate receptor
JNK c-Jun N-terminal kinase
LTP long-term potentiation
Mg magnesium
Mg2+ magnesium ion
MgT magnesium-L-threonate
mitoKATP mitochondrial ATP-sensitive potassium channel
MPP+ N-methyl-4-phenylpyridinium iodide
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
Mrs2 mitochondrial RNA splicing 2
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin
NF-κB nuclear factor-kappa B
NMDA N-methyl-D-aspartate
NSCs neural stem cells
OGDH 2-oxoglutarate dehydrogenase
OXPHOS oxidative phosphorylation
PC12 cell pheochromocytoma cell
PD Parkinson’s disease
PI3K phosphatidylinositol-3 kinase
PKC protein kinase C
PTP permeability transition pore
ROS reactive oxygen species
RyR ryanodine receptor
sAPPα soluble APPα
TCA tricarboxylic acid
TRPM6 transient receptor potential melastatin 6
TRPM7 transient receptor potential melastatin 7
∆G Gibbs free energy change
∆Ψm mitochondrial membrane potential
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