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Abstract: Molecular mechanisms governing cell fate decision events in bone marrow mesenchymal
stromal cells (MSC) are still poorly understood. Herein, we investigated the homeobox gene Prep1 as
a candidate regulatory molecule, by adopting Prep1 hypomorphic mice as a model to investigate the
effects of Prep1 downregulation, using in vitro and in vivo assays, including the innovative single
cell RNA sequencing technology. Taken together, our findings indicate that low levels of Prep1 are
associated to enhanced adipogenesis and a concomitant reduced osteogenesis in the bone marrow,
suggesting Prep1 as a potential regulator of the adipo-osteogenic differentiation of mesenchymal
stromal cells. Furthermore, our data suggest that in vivo decreased Prep1 gene dosage favors a
pro-adipogenic phenotype and induces a “browning” effect in all fat tissues.

Keywords: mesenchymal stromal cells (MSC); adipogenesis; osteogenesis; homeobox gene; murine
models; single cell RNA sequencing; in vivo imaging

1. Introduction

Prep1 is a key developmental regulator, as its complete in vivo inactivation is embryonic lethal
at the epiblast stage [1]. However, hypomorphic Prep1i/i embryos, that express ~2% of normal Prep1
mRNA, have a milder phenotype, with frequent embryonic lethality at E17.5 [2]. The few Prep1i/i mice
that reach adulthood exhibit impairment in T and B cells differentiation, although the mechanisms are
still unclear [3], and develop B- and T- cell tumors [4]. Foetal liver Prep1i/i hematopoietic stem cells
(HSCs) are rapidly exhausted, but still able to inefficiently repopulate irradiated hosts [5]. However,
no phenotype is observed in mice in which Prep1 null deletion is studied in adult HSCs [6,7], hinting
that also mesenchymal stromal cells may contribute to hematopoietic phenotypes. Therefore, we
studied bone marrow (BM) mesenchymal stromal cells in Prep1i/i mice, where the level of Prep1 is
drastically reduced.
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Mesenchymal stem cells (MSCs), also called mesenchymal stromal cells, have attracted great
interest for their biological properties as potentially powerful tools in the field of regenerative
medicine [8–10]. MSCs are multipotent clonogenic cells that can give rise, both in vivo and in vitro, to
cells of different mesenchymal tissues such as bone, cartilage and fat [11]. Furthermore, MSCs and their
differentiated progeny, in particular osteoblasts and adipocytes, are components of the bone marrow
niche, in which the HSCs reside, and contribute to regulating their function [12–14].

We previously provided the first evidence that the transcriptional regulator Prep1 may play a role
in the differentiation of murine MSCs. Indeed, we have recently shown that Prep1 downregulation
in both ex vivo bone marrow-derived MSCs and in the pre-adipocytic cell line 3T3-L1 significantly
increases their adipogenic differentiation ability [15]. Interestingly, undifferentiated Prep1i/i MSCs
showed higher gene expression levels of adipogenic markers, as compared to Prep1+/+ control cells.
Furthermore, following adipogenic induction, Prep1i/i MSCs differentiated much faster than wild
type (wt) MSCs. These observations suggest that Prep1 downregulation itself favours commitment of
MSCs towards adipogenic fate, implying that Prep1 normally acts as an inhibitor for the adipogenic
differentiation program.

In order to better understand the role of Prep1 in the regulation of mesenchymal/stromal tissues
we have herein further investigated the effects of Prep1 downregulation using in vitro assays, in vivo
imaging techniques, and the innovative single cell RNA sequencing (scRNAseq) technology, performed
on freshly isolated cells.

Our results show that downregulation of Prep1 affects both the adipogenic and the osteogenic
cell compartments. Histological analysis of bone marrow cells provide further evidence that reduced
levels of Prep1 induce an increase in the percentage of fat cells. Importantly, scRNAseq analysis
provides initial evidence that Prep1i/i BM cells display defective osteogenesis, as assessed by the great
reduction of a specific transcriptional cluster/subpopulation, identified mainly in wt BM. Accordingly,
in vitro cultured Prep1i/i MSCs show decreased ability to generate mature osteoblasts, upon osteogenic
induction. Moreover, our data show that Prep1 downregulation induces alterations also in in vivo fat
depots, such as decreased size in white and brown adipocytes, and a higher brown adipose tissue
(BAT) radiodensity, as assessed by micro-CT analysis, which might contribute to explain its favourable
metabolic action, as recently revised in Oriente et al. [16].

Taken together, our findings indicate that Prep1 is involved in the regulation of mesenchymal/
stromal tissues, playing an important role in adipogenesis and provide initial evidence that it may be
involved in the osteogenic process as well. Since it is widely accepted that adipogenic and osteogenic
differentiation are mutually exclusive processes, we can speculate that Prep1 may act at the level of the
adipo-osteogenic switch.

2. Results

To confirm our previous data on cultured MSCs, hinting to a role for Prep1 in adipogenesis, we
have further analysed mice carrying the Prep1i/i mutation, and compared them to their wt siblings.

2.1. Histologic Analysis of BM and Fat Tissues

As a first step, we performed histological analysis of freshly explanted bone marrows (femurs),
as well as brown interscapular (BAT) and white adipose tissues (subcutaneous sWAT, and visceral
vWAT). Figure 1 (left panels) shows that wt and hypomorphic BM display a rather different cellular
composition, in that wt BM appears more compact, with a dense cellularity, as compared to its
hypomorphic counterpart. Prep1i/i BM is indeed characterized by a substantial presence of large
adipocytes, as shown at 40× magnification, which are most probably responsible for the looser
morphology observed in the hypomorphic BM.

Histological sections of BAT and WAT (subcutaneous and visceral) derived from normal and
mutant mice (Figure 1, right panels) show that, in all three fat tissues of Prep1i/i mice, adipocytes appear
more numerous but smaller in size.
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Figure 1. Hematoxylin Eosin staining shows differences in adipose depots between wt and Prep1i/i 
mice. HE staining has been performed on (A) bone marrow sections of wt (left panel) and Prep1i/i mice 
(right panel), 10× (upper panel), 20× (middle panel) and 40× (lower panel) magnifications are shown. 
Black raws indicate the presence of adipocytes. HE on (B) different adipose tissues, i.e. Brown 
Adipose Tissue (BAT) (upper panel), subcutaneous White Adipose Tissue (sWAT) (middle panel) and 
visceral White Adipose Tissue (vWAT) (lower panel), 40× magnification is shown. 

2.2. Whole Body Analysis by Micro-CT Imaging Techniques of WT and Prep1i/i Mice 

Therefore, we proceeded to compare the entire body-wide distribution of fat depots by in vivo 
whole-body analysis of wt vs. Prep1i/i mice, adopting micro-CT imaging techniques. Macroscopic 
morphological differences are observed between the hypomorphic and wild type groups, as 
exemplified in Figure 2 and detailed in Table 1. In particular, the weight and total volume of the 
Prep1i/i mice are on average 15% (p = 0.029) and 16% lower (p = 0.026) than their control littermates, 
respectively. This is mainly due to the significant difference in total fat volume, which is 39% lower 
in Prep1i/i vs. wt (p = 0.029). No significant differences are instead observed in volume and density of 
the lean mass component 

Figure 1. Hematoxylin Eosin staining shows differences in adipose depots between wt and Prep1i/i

mice. HE staining has been performed on (A) bone marrow sections of wt (left panel) and Prep1i/i mice
(right panel), 10× (upper panel), 20× (middle panel) and 40× (lower panel) magnifications are shown.
Black raws indicate the presence of adipocytes. HE on (B) different adipose tissues, i.e. Brown Adipose
Tissue (BAT) (upper panel), subcutaneous White Adipose Tissue (sWAT) (middle panel) and visceral
White Adipose Tissue (vWAT) (lower panel), 40×magnification is shown.

2.2. Whole Body Analysis by Micro-CT Imaging Techniques of WT and Prep1i/i Mice

Therefore, we proceeded to compare the entire body-wide distribution of fat depots by in vivo
whole-body analysis of wt vs. Prep1i/i mice, adopting micro-CT imaging techniques. Macroscopic
morphological differences are observed between the hypomorphic and wild type groups, as exemplified
in Figure 2 and detailed in Table 1. In particular, the weight and total volume of the Prep1i/i mice
are on average 15% (p = 0.029) and 16% lower (p = 0.026) than their control littermates, respectively.
This is mainly due to the significant difference in total fat volume, which is 39% lower in Prep1i/i vs.
wt (p = 0.029). No significant differences are instead observed in volume and density of the lean
mass component.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 15 

 

 
Figure 2. Volumetric rendering of the whole body micro-CT reconstructions indicates on average a 
smaller, lighter, shorter and less adipose tissue in hypomorphic mice. A wt mouse (left) and a Prep1i/i 
mouse (right) are represented. In the right panel of each group, the highlighted region represents the 
segmented adipose tissue. 

Table 1. Summary of the in vivo morphometric analysis. Comparison between the two groups for 
each variable are performed by Mann-Whitney non-parametric test. An asterisk (*) after the p-value 
denotes a significant difference between groups. 

 WT (n = 16) Prep1i/i (n = 14) p-Value 

Weight (g)  

mean (sd) 32.232 ± 5.759 27.479 ± 4.022 0.029 (*) 

min 19.89 21.24  

max 40.21 32.78  

Total volume (cm3)  

mean (sd) 31.421 ± 5.794 26.496 ± 4.132 0.026 (*) 

min 19.261 20.065  

max 39.37 32.23  

Total fat volume (cm3)  

mean (sd) 7.641 ± 3.487 4.655 ± 2.367 0.029 (*) 

min 1.948 1.281  

max 14.330 7.724  

Total bone volume (cm3)  

mean (sd) 1.411 ± 0.164 1.386 ± 0.169 1 

min 1.155 1.112  

max 1.728 1.644  

Length (mm)  

mean (sd) 96.511 ± 2.763 94.561 ± 2.505 0.044 (*) 

min 90.26 90.17  

Figure 2. Volumetric rendering of the whole body micro-CT reconstructions indicates on average a
smaller, lighter, shorter and less adipose tissue in hypomorphic mice. A wt mouse (left) and a Prep1i/i

mouse (right) are represented. In the right panel of each group, the highlighted region represents the
segmented adipose tissue.
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Table 1. Summary of the in vivo morphometric analysis. Comparison between the two groups for each
variable are performed by Mann-Whitney non-parametric test. An asterisk (*) after the p-value denotes
a significant difference between groups.

WT (n = 16) Prep1i/i (n = 14) p-Value

Weight (g)
mean (sd) 32.232 ± 5.759 27.479 ± 4.022 0.029 (*)
min 19.89 21.24
max 40.21 32.78

Total volume (cm3)
mean (sd) 31.421 ± 5.794 26.496 ± 4.132 0.026 (*)
min 19.261 20.065
max 39.37 32.23

Total fat volume (cm3)
mean (sd) 7.641 ± 3.487 4.655 ± 2.367 0.029 (*)
min 1.948 1.281
max 14.330 7.724

Total bone volume (cm3)
mean (sd) 1.411 ± 0.164 1.386 ± 0.169 1
min 1.155 1.112
max 1.728 1.644

Length (mm)
mean (sd) 96.511 ± 2.763 94.561 ± 2.505 0.044 (*)
min 90.26 90.17
max 101.80 98.54

% Fat
mean (sd) 21.724 ± 7.614 15.540 ± 6.843 0.021 (*)
min 6.74 5.72
max 35.13 27.42

BAT volume (cm3)
mean (sd) 0.106 ± 0.055 0.088 ± 0.042 0.57
min 0.043 0.045
max 0.229 0.208

Bone radiodensity (HU)
mean (sd) 1461 ± 113 1400 ± 165 0.22
min 1244 1204
max 1661 1661

Fat radiodensity (HU)
mean (sd) −260 ± 29 −248 ± 25 0.41
min −335 −278
max −214 −196

BAT radiodensity (HU)
mean (sd) −180 ± 46 −132 ± 36 0.013 (*)
min −236 −182
max −91 −54

In contrast, important differences are found in interscapular BAT radiodensity (Table 1 and
Figure 3) i.e., −132 ± 36 Hounsfield units (HU) for Prep1i/i vs. −180 ± 46 HU for wt (p = 0.013), indicative
of lower lipid accumulation in BAT of Prep1i/i vs. wt mice [17]. Interscapular BAT volume was instead
similar between groups.
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2.3. Single Cell Transcriptomics of BM Mesenchymal Stromal Cells 

Mesenchymal stromal cells are a highly heterogeneous cell population, for which there are a lack 
of surface and molecular markers that identify specific stromal stem/progenitor subpopulations. 

Figure 3. Hypomorph subjects show a higher density of the interscapular BAT than wt. Transaxial
slices of the micro-CT scans. Figure shows density of interscapular BAT of the wt mouse (left) and
the Prep1i/i mouse (center). The histogram on the right panel shows the distribution of gray level
intensities inside the highlighted BAT Region of Interest (ROI).

2.3. Single Cell Transcriptomics of BM Mesenchymal Stromal Cells

Mesenchymal stromal cells are a highly heterogeneous cell population, for which there are a
lack of surface and molecular markers that identify specific stromal stem/progenitor subpopulations.
Therefore, to characterize differences in the MSC populations of wt and Prep1 hypomorphic mice, we
used state-of-the-art single cell transcriptomics analysis, a useful resource to identify unique cellular
differentiation states/clusters characterized by defined transcriptional states.

The Prep1i/i mice are rare survivors of heterozygous crosses since 75% of the homozygous
embryos die at E17.5 [2]. We used BM cells from one Prep1i/i mouse and its wt sibling, together with
dissociated/digested bone chips and we depleted the haematopoietic and endothelial cell components
by FACS. CD45−/CD31−/Ter119− cells were subsequently subjected to analysis using 10X Genomics
microfluidic systems. cDNA libraries from RNA obtained from the two samples were sequenced and
the raw sequencing data processed, using the Cell Ranger bioinformatics pipeline, and visualized by
Loupe Cell browser. The sequence reads from the two mice were pooled to build a unique database
which amounted to a total of 363,478 reads from 454 cells, with a median number of 2017 genes per cell.
Deconvolution analysis was consistent with a total of eight transcriptional clusters/subpopulations
(Figure 4A), of which one is mainly present in wt (cluster #5), one mostly detected in Prep1i/i (cluster #4)
and one exclusively observed in Prep1i/i BM (cluster #8). The heatmap of the gene expression profile
of the eight clusters (Figure 4B) shows that each cluster is characterized by a unique transcriptional
signature and, therefore, represents specific subpopulations.

To shed some light on the cellular identity of the clusters, we evaluated the expression and/or
co-expression of different signatures known to be associated with adipogenic, osteogenic or stem/early
progenitor cells. First, we annotated our data set by using genes belonging to the Gene Ontology (GO)
White Fat Cell Differentiation (WFCD) category (Table 2). As shown in the t-SNE plot (Figure 5A) and
histograms (Figure 5C), both wt and Prep1i/i clusters #1 and #2 appear positive for WFCD, as well as
clusters #4, and the unique Prep1i/i #8. Percentages of cells present in these clusters are indicated in the
pie charts depicted in Figure 5B.
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Figure 4. Single Cell RNA Sequencing reveals different BM cell composition between wt and
hypomorphic samples. (A) t-SNE plot of single Cell RNA sequencing, performed on wt (upper panel)
and Prep1i/i (lower panel) fresh Bone Marrow Stromal Cells, shows eight distinct transcriptional clusters,
through Loupe Cell Browser visualization. Clusters specific for each sample are highlighted by dotted
squares. (B) The heatmap shows unique molecular signatures displayed by each cluster.

Table 2. Gene signatures characterizing the indicated GO categories, or the LEPR+ Adipo cells.

GO WFCD LEPR+ Adipo GO BFCD Progenitors Osteo

Cebpα Hp Adipoq Mecom PDGFRα Cd200
Ctbp1 Lpl Adrb1 Metrnl Ly6a Col1a1
Ctbp2 Adipoq Adrb2 Mrap Col1a2
Fabp4 Slc1a5 Adrb3 Mtor Alpl
Fgf10 Cd302 Aldh6a1 Napepld Spp1
Ncor2 Gas6 Arl4a Nudt7 Sparc
Per2 Apoe Bnip3 Pex11a Msx2
Pparγ Lepr Cebpα Plac8 Bglap
Prdm16 Cebpβ Pparγ Hox10
Scd1 Dusp10 Pparγc1a Sp7
Sirt1 Ebf2 Prdm16 Runx2
Snai2 Ero1l Ptgs2
Tbl1xr1 Fabp4 Rarres2
Wfdc21 Fndc5 Rgs2
Cebpδ Fto Scd1
Cebpβ Hnrnpu Selenbp1
Adipoq Itga6 Sh2b2
Srebf1 Lama4 Sirt1

Lamb3 Slc2a4
Lep Trpv4
Lrg1 Vstm2a
Mapk14 Zbtb7b
Mb Zfp516

GO, Gene Ontology; WFCD, White Fat Cell Differentiation; LEPR, Leptin Receptor; BFCD, Brown Fat Cell
Differentiation.
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Figure 5. Cluster annotation highlights adipogenic and osteogenic subpopulations. (A) Annotation,
using specific gene lists (GO White Fat Cell Differentiation, LEPR+ Adipo, GO Brown Fat Cell
Differentiation, Progenitors and Osteo), shows the presence of specific cell types in each cluster.
Dotted squares highlights clusters (most uniquely expressed per each genotype). (B) Pie charts depict
percentages of cells present in each cluster. (C) Histograms show the percentage of cells per cluster
which are positive to the indicated annotation. Blue bars indicate wt cells, light blue bars refer to
hypomorphic cells. GO, Gene Ontology; WFCD, White Fat Cell Differentiation; LEPR, Leptin Receptor;
BFCD, Brown Fat Cell Differentiation.

We also used the combination of Leptin Receptor (LEPR) co-expression with that of a selected
group of adipogenesis-associated genes (Table 2), recently exploited by Tikhonova et al. [18] to analyse
single cell transcriptomics of BM cells (LEPR+ Adipo signature). LEPR+ Adipo cells are mostly present
(Figure 5A,C) in clusters #1 in both wt and Prep1i/i BM; at low frequency in clusters #2; in clusters #4;
and in the hypomorphic cluster #8.

A similar analysis, using the Brown Fat Cell Differentiation (BFCD) GO category (Table 2), showed
positive cells within cluster #1, cluster #2 and cluster #4 of both wt and Prep1i/i BM (Figure 5A,C). In
addition, they were expressed in Prep1i/i cluster #8.

Overall, our data highlight that genes associated with the adipogenic lineage are mostly identified
in clusters #1, while, to a lesser extent, in cluster #2, #4, and the Prep1i/i specific #8.

Figure 5 also depicts that cells present in cluster #7 of both wt and mutant BM display a ≥50%
co-expression of Platelet Derived Growth Factor Receptor alpha (PDGFRα) and Stem Cell Antigen 1
(Sca1), markers of mesenchymal stem/early progenitor cells [19].

Finally, using a combination of osteogenic genes (Table 2) we identified cluster #5 as enriched
for cells of osteogenic nature. Indeed, cluster #5 is more highly represented in wt (5%) versus the
hypomorphic (1%) BM (Figure 5B), suggesting that Prep1 down regulation may affect also some
mesenchymal osteogenic-prone subpopulation.
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For some subpopulations (clusters #3 and #6) no gene signature was expressed with sufficient
specificity to directly allow any defined lineage association/inference.

In our annotated clusters, Prep1 was expressed in wt clusters #1, #5 and mainly in #2, whereas
it was virtually undetectable in Prep1i/i BM, as expected [2] (Supplementary Figure S1). Therefore,
although Prep1 is considered a ubiquitously expressed gene [20] its expression is highly variable in
individual cells of the mouse BM.

2.4. Comparative In Vitro Studies on Osteogenic Differentiation of wt and Prep1i/i MSCs

Since our scRNA data hint to an osteogenic population being majorly detectable in wt BMs, we
next compared the ability of wt and Prep1i/i MSCs to differentiate along the osteogenic lineage. Figure 6
shows that hypomorphic MSCs exhibit lower osteogenic differentiation ability, as assessed by Alizarin
red staining, in agreement with our single cell transcriptomics.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 15 
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Figure 6. Alizarin Red O’Staining highlights altered osteogenic ability in culture Prep1i/i cells. Staining
is used to evaluate in culture osteogenic differentiation efficiency. Analysis has been performed on
undifferentiated wt (upper left) and Prep1i/i (lower left) cells as negative controls and on cells at
terminal osteogenic differentiation, wt (upper right) and Prep1i/i (lower right). Red staining labels the
extracellular matrix secreted by mature osteobalsts.

3. Discussion

In recent years we have investigated the role of the homeobox-containing transcription factor
Prep1 in the control of BM development. We first discovered an important effect of Prep1 on the viability
and proliferation of foetal hematopoietic stem cells [5]. Given the critical relevance of the cross-talk
between hematopoietic and stromal cells, we have recently addressed the question of whether Prep1
might also be an important regulator in the mesenchymal stromal system [15]. First, we observed that
Prep1 is inversely expressed during in vitro differentiation of wt MSCs: it is downregulated following
in vitro adipogenic induction [15] and upregulated after osteogenic stimuli (our unpublished results).
Furthermore, as Prep1 complete inactivation is early-embryonic lethal [1], our functional studies in
adult hypomorphic Prep1i/i mutants [2] showed that Prep1i/i MSCs display faster and more efficient
in vitro adipogenic ability after specific stimulation, indicating that hypomorphic MSCs are already
poised towards fat cell differentiation [15]. As our in vitro studies pointed to Prep1 as an important
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regulator of adipogenesis, we have herein verified this hypothesis in the BM, as well as in BAT, and
subcutaneous and visceral WAT.

Indeed our results show that Prep1i/i bone marrow mesenchymal stromal cells display alterations
as compared to their wt counterpart: i) histological analysis shows that reduced Prep1 is associated
with an increased frequency of adipocytes in vivo; ii) single cell RNA sequencing reveals important
differences in the landscape of BM stromal cells between wt and hypomorphic milieus iii) Prep1i/i MSCs,
besides the previously shown increase in adipogenic potential [15], display a diminished capacity to
differentiate in vitro towards the osteogenic lineage.

Moreover, Prep1 deficiency affects the adipose tissues, decreasing the WAT volume and
concomitantly increasing BAT density, as well as inducing changes in the cellular size of the fat depots.

In the present study a novel observation was the histological evidence of bone marrow adiposity, as
characterized by adipocytes with large lipid depots, apparently disrupting the surrounding BM structure
in hypomorphic mice. This result supports and complements the higher adipogenicity of hypomorphic
BM cells we previously reported [15]. Our prior observation was obtained on cell lines and in vitro
cultures of MSCs, which not always reflect the composition of in vivo mesenchymal compartments.
Indeed, whether in vitro data reproduce in vivo characteristics is still a highly controversial issue.
Therefore, our in vivo analyses provide the first evidence that changes in Prep1 gene dosage are related
to alterations in mesenchymal cell populations.

It is still unclear whether BM adipocytes are distinct from white, brown and beige adipocytes,
representing a fourth class of adipocytes, or if they are lineage-related to cells of other fat depots [21].
Moreover, the process of BM adipogenesis is still poorly understood, and cell surface phenotype and
gene signatures of BM adipocyte precursors are not available. Therefore, to compare non-hematopoietic
BM components from wt and Prep1 hypomorphic background we took advantage of the single cell
RNA seq technology, which provides a screenshot into transcriptional landscapes of complex tissues,
such as the mesenchymal system. Our data highlighted commonalities and differences in the bone
marrow mesenchymal milieu of the two genotypes. Overall, deconvolution analysis identified a total
of eight clusters, of which one (#8) is exclusively present in Prep1i/i.

In the following discussion, we do not imply that the clusters identified represent pure cell
populations as they might still be further subdivided once additional cell markers become available.

To interrogate the adipogenic nature of the various clusters we used combined transcriptional
profiles. In particular, we adopted not only the White Fat Cell Differentiation and Brown Fat Cell
Differentiation categories from Gene Ontology, derived from body fat depots, but also recently available
single cell RNAseq data sets from FACS purified normal BM cells (LEPR+ Adipo signature) [18].
Such analyses produced concordant results allowing for the identification of cluster #1 as highly
enriched for the adipogenic signatures, in both genotypes (Figure 5). In addition, our data highlight the
expression of adipogenic genes in clusters #4 and #8 as well. Noteworthy, in wt BM cluster #4 is almost
undetectable, and cluster #8 is missing, indicating that these two subpopulations arise and/or expand
in the absence of physiological Prep1 levels. These data are consistent with our previous observation
showing upregulation of the adipogenic differentiation program in Prep1 downregulated cells.

Positivity of cluster #8 for BFCD category is mostly due to the high levels of expression of
Plac8, which has been reported as key upstream molecule in the brown adipogenic regulatory
network [22]. Conversely, positivity of cluster #4 for WFCD category is mainly determined by the
high expression of Wfdc21 gene that was shown to be among the top upregulated transcripts in
vWAT [23]. Cluster #5, instead, contains cells exhibiting a strong transcriptional signature ascribable
to the osteogenic compartment, including Bglap, Spp1, Col1a1, Sparc and Alpl (Table 2). Remarkably,
such cell subpopulation was almost absent in the hypomorphic BM, which is consistent with the
strongly reduced ability of mutant MSCs to generate osteoblasts in vitro. It is interesting to note
that cells present within this cluster are positive also for CD200, a recently reported biomarker for
periosteal stem cells, which are responsible for bone regeneration [24]. In addition, it is noteworthy
that a recent paper [25], published after our initial submission, in which a different algorithm was
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utilized to calculate cluster abundance, showed that: i) ~12% of the clusters were of osteogenic nature,
well corresponding to the 12.5% of our data and ii) osteogenic clusters contain 3.3% and 3.9% of the
entire stroma dataset, respectively, similarly to our 4.9%.

Cluster #5, mostly unique to wt BM, is dependent on Prep1, since it virtually disappears when
Prep1 is downregulated in the BM milieu. This argues for Prep1 as having essential roles for cluster #5
survival. Its cells may either arise from progenitors that do normally express Prep1, or perhaps their
survival may require Prep1-dependent mediators that are depleted in hypomorphic scenarios.

In addition, our analysis highlighted that cluster #7, although represented by few cells, basically
includes cells that co-express PDGFRα; and Sca1, which trace mesenchymal stem/early progenitor
cells [19,26]. Presence of PDGFRα- and Sca1-positive cells is not affected by the Prep1i/i genotype.

Cluster 2 also exhibits some adipogenic features, but to a much lower extent. Analysis of Prep1
gene expression in wt BM shows that it is mostly expressed in cluster #2 and sporadically in clusters #1
and #5 (Supplementary Figure S1). Prep1 downregulation does not majorly affect cluster #2 size and
composition, however it affects overall cluster distribution: i) osteogenic cluster #5 is virtually missing;
ii) cluster #4 is instead greatly expanded; and the new cluster #8 is detectable only in the hypomorphic
BM (Figure 5B).

Overall, these data indicate that cluster #1 contains cells committed towards the fat cell lineage,
whereas cluster 5 is essentially osteogenic. Moreover, in our view, clusters #2, #4 and #8, which partially
express adipogenic genes, may represent earlier stages of differentiation.

Further studies, using single cell transcriptomics and functional validation assays are needed to
shed light on mesenchymal progenitors gene signatures. Nevertheless, these initial scRNAseq analyses,
mainly focused on identifying subpopulations belonging to the adipogenic and osteogenic lineages,
are consistent and support our in vitro and in vivo observations. In addition, they represent the first
description of single cell transcriptomics applied to study mesenchymal cell compartments in a mutant
mouse model, as compared to its normal counterpart.

Taken together, our findings indicate that Prep1 downregulation in the BM induces an enhanced
adipogenesis and a concomitant reduced osteogenesis, and raise the hypothesis that Prep1 may be
involved in the differentiation of mesenchymal stromal stem/progenitor cells, particularly controlling
the adipo-osteogenic switch. This is in line with the widely accepted view that in the bone marrow
adipogenesis and osteogenesis are alternative fates for mesenchymal stem/progenitor cells, and that
transcription factors promoting one differentiation program concomitantly inhibit the alternative
one [27].

Osteoblasts and adipocytes are essential components of the hematopoietic niche, thus, an altered
adipo-osteo cell ratio may have implications also in the hematopoietic tissue, and at least partially
account for the hematopoietic phenotypes detected in the adult Prep1 mutants.

Since Prep1i/i BM cells appear to be enriched in cells of the adipogenic categories, we addressed
the question of whether diminished Prep1 expression could affect also adipose cells of other fat depots.
Our histological analyses show that adipocytes of both subcutaneous and visceral WAT are smaller,
storing fewer lipids in hypomorphic compared to control mice. In line with this, micro-CT images
show significant, i.e., 39% whole-body fat volume depletion, in hypomorphic mice. These results are
consistent with recent studies on heterozygous Prep1i/+ reporting a 23% reduction in total body lipid
content, and a higher percentage (30%) of small adipocytes in epididymal WAT, as compared to wt,
resulting from the overexpression of adipogenic genes and leading to greater insulin sensitivity [28].
Notably, the proadipogenic transcriptomic profile observed in our hypomorphic BM is in line with
these observations in hypomorphic WAT. We further extended fat characterization, by addressing BAT
(beyond WAT) adiposity. We show that interscapular BAT has 30% greater density in hypomorphic
than control mice. CT-derived tissue density is inversely proportional to the content of triglycerides,
representing a recognized indicator of fat whitening/browning [17]. Thus, higher CT-density in
hypomorphic BAT indicates a lower content of lipids, and greater degree of browning, which is in line
with the smaller cell-size observed histologically. In turn, the degree of browning is a positive predictor
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of metabolic health [29]. In addition, our high-resolution transcriptomics analyses indicate that the total
amount of hypomorphic cells (clusters 1, 2, 4 and 8) positive for BFCD genes is enriched by 4.5-folds,
as compared to their wt counterparts. Overall, our findings in WAT and BAT are in agreement with,
and contribute to explain previous evidence showing a multi-organ metabolic impact of Prep1, with
e.g., higher insulin sensitivity in adipose cells, muscle and liver in Prep1 mutants, offering protection
against type 2 diabetes [29,30].

In conclusion, our results show that absence of physiological levels of Prep1 is associated with
alterations in mesenchymal BM cells, which are enriched in the adipogenic compartment, and defective
in the osteogenic component. Therefore, Prep1 emerges as a potential balancing factor in mesenchymal
cell fate choices. Furthermore, our data suggest that Prep1 deficiency favours a pro-adipogenic
phenotype and induces a “browning” effect in all fat tissues.

4. Materials and Methods

4.1. Histological Analysis of Bone Marrow and Adipose Tissues

4.1.1. Bone Marrow

Femurs were collected in four mice (two hypomorphic, two control mice). They were fixed in
10% formalin for 48 h and then in 70% ethanol for 30 minutes. Samples were rinsed in distilled water
and incubated with decalcifying solution for two hours (DiaPath S.p.A., Microdec, EDTA-Based, Ref.
D0053, Martinengo, Bergamo, Italy). The decalcification process was ended when the bone was easily
penetrated by a needle. Then, femoral bone marrow was processed and included in paraffin using the
Donatello Diapath automatic tissue processor (Martinengo, Bergamo, Italy), sliced (HistoCore Autocut,
Leica BioSystems microtome) with thickness of 2 µm, and stained with hematoxylin and eosin using
the automated Dako CoverStainer (Santa Clara, CA, United States). Each section was documented
at 10×, 20× and 40×magnification, by using the Olympus BX51 microscope and connected with an
Olympus DP70 digital camera and AnalySIS 5.0 imaging system software (Olympus, Tokyo, Japan).

4.1.2. Adipose Tissues

Three different adipose tissues were analysed in this study in three animals per group: interscapular
brown adipose tissue (BAT), subcutaneous white adipose tissue (sWAT) and visceral adipose tissue
(vWAT). Samples were dissected, fixed in 10% formalin for 24 h, dehydrated, embedded in paraffin
(Bio-Optica, Milano, Italy), sliced (Microm HM 330) with 5µm thickness, and stained with haematoxylin
and eosin, according to standard protocols. Each section was documented at ×40 magnification using
an Axioskop optical microscope connected with an AxioCam MRc5 colour-camera and AxioVision
analysis software (Carl Zeiss, Oberkochen, Germany).

4.2. In Vitro Cultures of Mesenchymal Stromal Cells (MSCs)

Mice were sacrificed by cervical dislocation under general anaesthesia before collecting tibias and
femurs. Bones were crushed, bone chips were digested with 1mg/mL Collagenase/Dispase (Roche
10269638001) for 45 minutes at 37 ◦C shaking. Bone marrow cells, cells isolated from bone chips
digestion and bone chips were put in culture, using MesenCult Basal Medium supplemented with
20% Mesenchymal Mouse Stimulatory Supplement (Stem Cell Technologies) and 1% Pen-Strept (Life
Technologies) (Complete Medium). Cells were grown at 37 ◦C in humidified atmosphere at 5% CO2.
Medium was changed every three days and cells were trypsinized at confluence and reseeded at
2 × 104 cells/cm2 (passage 1, p1). All experiments were performed at passage 2 of culture (p2). All
the experimental protocols on mice were conducted in compliance with DL 26/2014: implementation
of European Directive 2010/63 on the protection of animals used for scientific purposes. Animal
studies were conducted in compliance with legislative decree 26/2014: implementation of the European
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directive 2010/63/EU on the protection of animals used for scientitic purposes. The study protocol was
notified to, and approved by the Italian Ministry of Health in 2017 (number 65E5B.N.VPH).

4.3. Osteogenic Differentiation

Cells were seeded at p2 at 2 × 104 cells/cm2 and at 90% confluence the Complete Medium was
replaced with osteogenic induction medium (MesenCult basal medium supplemented with 20%
osteogenic stimulatory supplement (StemCell Technologies, Vancouver, Canada) and 1% Pen-Strept
(Life Technologies, Carlsbad, CA, USA)). Osteogenic differentiation efficiency was evaluated by Alizarin
Red S’ Staining.

4.4. Single Cell RNA Sequencing and Bioinformatics Analysis

MSCs were depleted for CD45, Ter119 by using a magnetic MACS Separator (LS Columns,
Miltenyi Biotec 130-042-401). Cells were first labelled with Biotin anti-mouse CD45.2 (Biolegend
109803), Biotin anti-mouse Ter119 (Biolegend 116204) for 20 minutes on ice, then incubated with
anti-biotin beads (Biolegend 130-090-485) for 20 minutes on ice. Cell suspension was applied onto the
column. Unlabelled cells corresponding to the CD45 and Ter119 negative fraction was collected. After
the depletion, CD45, Ter119 and CD31 negative cells were FACS-purified (CD45.2-APC Biolegend
109814, Ter-119-APC Biolegend 116212, CD31-APC Biolegend 102410). Live cells were gated using
DAPI staining.

FACS-purified cells were used to perform Single Cell RNA sequencing using 10X Genomics
platform. Five hundred cells from each mouse were loaded into one channel of the Chromium system,
and libraries prepared according to manufacturer’s protocol (10X Genomics). Illumina sequencing was
performed by Novaseq (350,000 reads per cells). Cell Ranger version 1.3 (10X Genomics, Pleasanton,
California, United States) was utilized to process raw sequencing data. Sequence reads from the two
mice were pooled to build a unique database which amounted to a total of 363,478 reads from a total of
454 cells, with a median number of 2017 genes per cell. Loupe Cell Browser (Pleasanton, California,
United States) was used in order to visualize further downstream analyses. Resulting figures depict
level of expression for each signature/category calculated as ≥50% of Log2 Feature Max as visualized
on Loupe Cell browser.

4.5. Whole-Body Micro-CT Imaging and Analysis

The body composition of all mice in terms of bone tissue, fat mass and lean mass was measured by
X-ray micro-computed tomography (micro-CT). In order to reduce motion artifacts due to respiration
and cardiac motion, all whole-body scans were performed right after the animal sacrifice and before
harvesting the tissue components for subsequent ex vivo and in vitro analysis. The IRIS-CT scanner
(Inviscan SAS, Strasbourg, France) was used for this purpose. The following scan parameters were
used: 65 kV, 1 mA, 1280 views over 360◦, for a total scan time of 90 s per mouse. Volumetric images
were reconstructed using cone-beam filtered backprojection (FBP) with standard ramp filter, using
corrections for beam hardening and ring artifacts. Reconstructions were done on a field of measurement
(FOM) of 47 × 47 × 114 mm and with an isotropic voxel size of 58.8 micron. Image segmentation
was performed using the software Seg3D v 2.4. The following tissue components were segmented:
bone, lung and airways, total adipose tissue, interscapular brown adipose tissue (BAT). Only slices
comprised between the first cervical vertebra and the first caudal vertebra were considered for the
segmentation. For each segmented tissue, the radiodensity was calculated as the average CT number
expressed in Hounsfield Units (HU). The radiodensity was used as an indirect metric of tissue mass
density due its good linear relationship in the density range of soft tissues [31]. The total mouse length
was also measured from the tip of the nose to the first caudal vertebra, using a multi-segment broken
line tool in ImageJ [32] that allowed tracking the entire vertebral column along its specific curvature.
Mann–Whitney nonparametric test between the two groups of mice was performed for each measured
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parameter. The threshold for statistical significance was set to p = 0.05. All statistical analyses were
performed in R ver. 3.5.3.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/15/
3639/s1.
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