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Abstract

:

Phylogenetic framework for the closely related Ancylodiscoidinae and Ancyrocephalinae subfamilies remains contentious. As this issue was never studied using a large molecular marker, we sequenced the first two Ancylodiscoidinae mitogenomes: Thaparocleidus asoti and Thaparocleidus varicus. Both mitogenomes had two non-coding regions (NCRs) that contained a number of repetitive hairpin-forming elements (RHE). Due to these, the mitogenome of T. asoti (16,074 bp) is the longest among the Monogenea; especially large is its major NCR, with 3500 bp, approximately 1500 bp of which could not be sequenced (thus, the total mitogenome size is ≈ 17,600 bp). Although RHEs have been identified in other monopisthocotyleans, they appear to be independently derived in different taxa. The presence of RHEs may have contributed to the high gene order rearrangement rate observed in the two mitogenomes, including the first report of a transposition of rRNA genes within the Neodermata. Phylogenetic analyses using mitogenomic dataset produced Dactylogyrinae embedded within the Ancyrocephalinae (paraphyly), whereas Ancylodiscoidinae formed a sister-group with them. This was also supported by the gene order analysis. 28S rDNA dataset produced polyphyletic Dactylogyridae and Ancyrocephalinae. The phylogeny of the two subfamilies shall have to be further evaluated with more data.
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1. Background


Species from the genus Thaparocleidus (Ancylodiscoidinae or Ancylodiscoididae, see below) are common monogenean parasites found in catfishes, but their phylogeny remains debated. Half a century ago, in Bychowsky’s classification [1], this genus (and other genera nowadays putatively assigned to Ancylodiscoidinae) was originally assigned to the subfamily Ancyrocephalinae, family Dactylogyridae. Price [2] and Gusev [3] later assigned some of the genera from Ancyrocephalinae to three new subfamilies within the Dactylogyridae: Ancylodiscoidinae, Heteronchocleidinae and Anacanthorinae. Later, Bychowsky and Nagibina [4] excluded Ancyrocephalinae from the family Dactylogyridae, and gave it the family status (Ancyrocephalidae). They also assigned Ancylodiscoidinae into this newly established family. However, Kritsky and Boeger [5] found that Ancyrocephalidae was not a monophyletic group, and suggested placing all subfamilies within this family back into the family Dactylogyridae, as well as reverting the Ancyrocephalidae back to the subfamily status (within the Dactylogyridae). Finally, Lim, et al. [6] proposed to elevate the Ancylodiscoidinae to the family status. These incompatible classifications demonstrate the deeply complex and unresolved relationship of Ancylodiscoidinae and Ancyrocephalinae. However, as all of the above studies were based on morphological data, several studies later attempted to resolve the phylogenetic relationships within the family Dactylogyridae using molecular data: 18S rDNA [7], 28S rDNA [8], and a combination of 18S, 28S and 16S rDNA [9]. In these studies, predominantly marine Ancyrocephalinae species (with a few freshwater outliers, see clade B in [8]) constantly clustered with the Dactylogyrinae and Pseudodactylogyrinae species (M-clade henceforth). However, Ancylodiscoidinae either formed a sister-clade with freshwater Ancyrocephalinae species [7,9,10], or grouped with Ancyrocephalinae species that parasitize on Siluriformes (AA-clade, henceforth) [8]. In the latter results, M-clade formed a sister-clade with AA-clade (but with low support), whereas freshwater Ancyrocephalinae were basal to them, i.e., formed a sister-clade with the former two groups. Therefore, both morphological and molecular studies failed to obtain monophyletic Ancyrocephalinae, and the relationship of Ancylodiscoidinae and Ancyrocephalinae remains unresolved.



Several previous studies suggest that morphological characters are a poor phylogenetic marker in many microscopic parasitic animals, often exhibiting host-specific morphological variability [11,12,13]. It is likely that at least part of the underlying cause for the multiple incongruent hypotheses inferred using morphological data. Small molecular markers often also have limited resolving power [14], but relationships of Ancylodiscoidinae and Ancyrocephalinae have not been studied using a large molecular marker (previous molecular studies employed 1 to 3 genes), comprised of multiple concatenated genes, due to unavailability of suitable data. Although such markers can also produce conflicting and homoplastic signals [15,16], and despite the fact that there may not exist such a thing as the ‘accurate’ phylogenetic tree [17], the high resolution that they carry may help us shed some light on the contentious relationships of Ancylodiscoidinae and Ancyrocephalinae. Due to a number of peculiarities that make them a suitable candidate for such tasks, mitochondrial genomes (mitogenomes) have become a popular tool in population genetics [18], phylogenetics [19,20] and diagnostics [21] studies.



Among the monogenean mitogenomes available in the GenBank, Ancyrocephalinae are relatively well-represented with seven mitogenomes, but Ancylodiscoidinae currently remain unrepresented. This scarcity of data has thus far hampered studies of the phylogeny of Ancylodiscoidinae and Ancyrocephalinae subfamilies from the mitogenomic perspective. To address this, we sequenced and characterized the mitogenomes of two Ancylodiscoidinae species: Thaparocleidus asoti and Thaparocleidus varicus. Here, we used the newly sequenced mitogenomes and the data available from public databases to investigate phylogenetic relationships of the two subfamilies, and their position within the family Dactylogyridae.




2. Results


2.1. Genome Organization and Base Composition


The complete mitogenome of Thaparocleidus varicus (MN151339) was 14,088 bp in size, and the nearly complete mitogenome of Thaparocleidus asoti (MN151340) was 16,074 bp in size (Figure 1). Both mitogenomes contain the standard [22] 36 flatworm mitochondrial genes, including 12 protein-encoding genes (PCGs; atp8 is absent), 22 tRNA genes and two rRNA genes (Table 1 and Figure 1). Majority of PCGs of the two studied mitogenomes used standard initial codons for the genetic code 9 (echinoderm and flatworm mitochondrion): ATG or GTG. However, it proved difficult to determine the initial codons of the nad4 and cox1 genes in T. varicus. Canonical stop codons for the genetic code 9 (echinoderm and flatworm mitochondrion), TAA and TAG, were found in all 12 PCGs, except for cox2 in T. asoti, which used the abbreviated T-- codon (Table 1). The architecture and similarity of orthologous sequences for the two studied mitogenomes are summarized in Table 1. Average sequence similarity of PCGs between the two studied Thaparocleidus mitogenomes ranged from 68.89% (nad4L) to 84.22% (cytb) (Table 1). We also investigated the codon usage, RSCU, and codon family (corresponding to the amino acids) proportions between the two Thaparocleidus species (Supplementary Figure S1). Leu2, Phe, Ile and Val were the most common codon families, predominantly encoded by adenosine and thymine-rich codons, such as TTA in Leu2, TTT in Phe, ATT and ATA in Ile (Supplementary Figure S1).




2.2. Non-Coding Regions


Two large non-coding regions (NCR1 and NCR2) were found in both mitogenomes (Figure 2). NCR1 was located between nad5 and trnK genes, whereas NCR2 was positioned between trnG and cox3 (Figure 2). NCR1 of T. varicus was 478 bp in size. We managed to sequence only 2020 bp of the NCR1 of T. asoti, but we have successfully amplified it and estimated its size to be approximately 3500 bp. Therefore, we estimate that around 1480 bp remains unsequenced. NCR2 was 792 bp and 416 bp in size in T. asoti and T. varicus, respectively.



All the NCRs contained highly repetitive regions (HRR). As the sequencing gap of T. asoti was located in the central of HRR of the NCR1, we hypothesized that the gap was probably composed of tandem repeats (TRs). In this way, counting the unsequenced gap, the HRR of NCR1 in T. asoti probably contained 23 uninterrupted TRs, assuming identical repeat units (132 bp, Figure 2). The HRR of NCR2 in T. asoti was comprised of 11 uninterrupted TRs, where repeat units 2–11 were identical (63 bp), whereas unit 1 exhibited one nucleotide mutation at the tenth position (Figure 2). Similarly, HRR of NCR1 in T. varicus was composed of three 166 bp-long TRs, where repeat unit 3 was severely truncated to only 53 bp (lost 113 nucleotides at the 3′ end), and had a nucleotide mutation at the seventh, eighth and 40th positions (Figure 2). The HRR of NCR2 in T. varicus was composed of five TRs, where repeat units 1–4 were identical (48 bp), whereas unit 5 only contained the first 13 nucleotides of the TR, and it exhibited one A to C mutation at the third position and one nucleotide deletion at the fifth position (Figure 2). The consensus repeat patterns of all HRRs in T. asoti and T. varicus are capable of forming double to hexa stem-loop structures (Figure 2).




2.3. Phylogeny


Regardless of the method used, Bayesian inference (BI) and maximum likelihood (ML) produced identical topologies (Figure 3). Gyrodactylidea was placed at the base of Monopisthocotylea, whereas the rest of monopisthocotyleans were split into two clades: Tetraonchidea and Dactylogyridea + Capsalidea. Most of the nodes exhibited high support values, except for some internal nodes of Dactylogyridae (Figure 3). Despite these low support values, among the three Dactylogyridae subfamilies, Ancyrocephalinae was rendered paraphyletic by the embedded Dactylogyrinae, whereas Ancylodiscoidinae formed a sister-group with them, with maximum support values (BI/ML = 1/100) (Figure 3). 28S rDNA data also failed to resolve the Ancyrocephalinae/Ancylodiscoidinae debate, as both BI and ML analyses produced instable topologies, with polyphyletic Dactylogyridae and Ancyrocephalinae, and Ancylodiscoidinae embedded within the Ancyrocephalinae (Supplementary Figure S2).




2.4. Gene Orders


The gene orders (GO) of the two studied Thaparocleidus species are identical, but notably different from other monogeneans, exhibiting many tRNA and rRNA genes’ rearrangements (Figure 3). However, the GO between trnG to trnI is conserved. The high rate of GO rearrangements in the two Thaparocleidus species was further corroborated by the low similarity values produced by pairwise comparisons with other monogeneans: values ranged from 102 (compared with Paratetraonchoides inermis) to 326 (compared with Cichlidogyrus sclerosus), where the value of 1254 indicates identical GOs (Table 2).





3. Discussion


Despite the sequencing gap in the non-coding region, the mitogenome of T. asoti is the longest monogenean mitogenome reported so far. Unlike T. varicus and most other monopisthocotyleans, which have an overlap between nad4L and nad4 genes, T. asoti had an 87 bp gap between them (Supplementary Table S1). The A+T content of the two Thaparocleidus species was relatively high among the 33 selected monogeneans (Supplementary Table S2), and it was notably higher than in other dactylogyrids (Figure 4). The AT skewness of the two Thaparocleidus species was similar to other dactylogyrids, except for Tetrancistrum nebulosi, Ancyrocephalus mogurndae and Euryhaliotrema johnii, which were outliers, with a somewhat lesser magnitude of (negative AT) skews (Figure 4). On the basis of results reported in other related species (Supplementary Table S3), as a working hypothesis, we propose TTG as the initial codon of nad4, and ATT as the start codon of cox1. TTG was proposed as an alternative start codon for flatworm mitogenomes before [23]. Noteworthy, all codons from the four prominent codon families used thymine in the second position. In addition, the second position of the PCGs exhibited the highest negative AT skewness (i.e., T preference) in comparison to other mitogenomic elements (Figure 4). This is probably a reflection of the fact that codons for hydrophobic amino acid residues, which are functionally preferred for conformational stability of mitochondrial proteins, mostly have T in the second codon position [24].



The size of the NCRs in T. asoti was much larger than that in T. varicus, resulting in approximately 25% larger mitochondrial genome in this species (Table 3). Repetitive stem-loop elements are not uncommon within the subclass Monopisthocotylea; they were also found in Dactylogyrus lamellatus [25], diplectanids [26] and Tetraonchus monenteron [27]. However, as these species are phylogenetically distant and secondary structures and nucleotide composition of the stem-loop elements were largely different among different species, this suggests multiple independent invasions [28] of these features. These findings consistently reject the hypothesis that monopisthocotylids possess fewer and smaller (in size) TRs in the LNCR than polyopisthocotylids [29]. Since NCRs with repetitive features are believed to indicate control regions [28], and the presence of tandem repeats forming stable secondary structure is often associated with the initiation of replication in mitochondria [20,30,31], it appears likely that these repeat regions are embedded within the control region. Given that the non-sequenced gap in T. asoti was located within the TR region, this would also explain why we failed to sequence this segment, as it is likely that HRRs in this segment formed complex structures that interfered with the sequencing [32,33].



The ordinal relationships obtained in this study were similar to the topology obtained in an earlier mitogenomic study [26]. Notably, Capsalidea was embedded within the Dactylogyridea order, thus causing paraphyly of the latter order (Figure 3), which was discussed before [26]. With regards to the three Dactylogyridae subfamilies, the results suggest a closer relationship between Ancyrocephalinae and Dactylogyrinae than between Ancylodiscoidinae and Ancyrocephalinae subfamilies, which contradicts some of the morphology-based hypotheses that grouped the species of Ancylodiscoidinae within the Ancyrocephalid(n)ae (sub)family [1,4]. Beyond the Thaparocleidus species and the mesoparasitic Enterogyrus malmbergi, the rest of dactylogyrids belonged to the M-clade (see Background section) [8,10]. However, the freshwater A. mogurndae (Ancyrocephalinae) was embedded within a clade that contained marine E. johnii and T. nebulosi, and freshwater Cichlidogyrus mbirizei, C. sclerosus and C. halli, thus contradicting previous molecular studies, which placed A. mogurndae within the clade containing Pseudodactylogyrinae and Dactylogyrinae [8,10]. However, due to the limited taxon sampling (only 1/7 representatives of the speciose Dactylogyrinae/Ancyrocephalinae subfamilies were available, respectively; and only three of the nine subfamilies within the Dactylogyridae were represented), we cannot infer the relationships of the three subfamilies (Ancylodiscoidinae, Ancyrocephalinae and Dactylogyrinae) with confidence. The instable result indicates that 28S rDNA has too low a resolution to resolve the phylogeny of Dactylogyridae. However, the closer relationship between Ancyrocephalinae and Dactylogyrinae than between Ancylodiscoidinae and Ancyrocephalinae was also supported by our gene order analysis.



The rearrangement of rRNA genes is the first reported within the subphylum Neodermata. In all other neodermatans, these two genes are located between cox1 and cox2 genes [34], but in the two newly-sequenced Thaparocleidus species, they are translocated to the position between nad5 and cox3, together with several tRNA genes (Figure 3). Noteworthy, in dactylogyrideans, tetraonchideans (Figure 3) and cestodes [35], the major NCR is usually found in the region between nad5 and cox3. As we hypothesized that the NCRs of these two Thaparocleidus species harbor the control regions (see “Non-coding regions” section), our results are in agreement with the hypothesis that genes adjacent to the control region exhibit higher rates of rearrangements [36]. This is probably associated with the fact that hairpin elements can facilitate recombination and rearrangement events in the mitogenome [28]. Noteworthy, the GO most similar to that of Thaparocleidus was the putative ancestral neodermatan GO (AN-GO henceforth) [34]. According to the hypothesis proposed by Zhang, et al. [34], the GO of the common ancestor of all Dactylogyridae species most probably possessed the AN-GO, as this gene order was probably retained throughout all of the common ancestors leading to the extant species possessing the AN-GO in the Dactylogyridae clade: C. sclerosus, T. nebulosi and Enterogyrus malmbergi (Figure 3). This is also supported by the hypothesis proposed by Boore [37]: GOs are unlikely to revert to a primitive condition.



The highly rearranged GO of the two Thaparocleidus species may have uncovered a new group of monopisthocotylean monogeneans that exhibit fast-evolving GOs. Other monopisthocotyleans that exhibit elevated mitogenomic GO rearrangement rates include diplectanids [26], tetraonchideans [11] and Aglaiogyrodactylus forficulatus within the gyrodactylids [38] (Figure 3 and Table 2). However, the GOs of these groups of species exhibit low mutual similarity (Table 2), which indicates that all of these accelerations of GO evolution occurred independently, and share few common rearrangement patterns. This consistently confirms the hypothesis that evolution of mitogenomic GO arrangements is discontinuous in monogeneans [11,26], as GOs in a proportion of monogenean taxa are highly variable, whereas the remaining are conserved (Table 2 and Figure 3). Sequencing of future mitogenomes shall show whether the GO pattern exhibited by these two Thaparocleidus species may represent the synapomorphic arrangement of the subfamily Ancylodiscoidinae, and whether the GOs can be used to resolve some of the taxonomic and phylogenetic debates discussed herein. For example, the GO analysis supported the phylogenetic results that separated Ancylodiscoidinae from the two closely related Ancyrocephalinae and Dactylogyrinae (Figure 3). However, GOs should be used with utmost caution for phylogenetic purposes, as the discontinuity in GO rearrangements in monogeneans might produce misleading evolutionary signals and cause long-branch attraction artifacts [34].




4. Materials and methods


4.1. Specimen Collection and Identification


Thaparocleidus asoti and T. varicus were obtained from the gills of a single Silurus meridionalis (Chen, 1977) (Siluriformes: Siluridae) specimen, bought at a local market in the Wuhan city, Hubei Province on 6 May, 2017. They were morphologically identified by the hard parts of the haptor and reproductive organs as described in Wu, et al. [39]. Additionally, to confirm the taxonomic identity from the molecular perspective, their 28S rRNA genes were amplified using the C1 (5′-ACCCGCTGAATTTAAGCAT-3′) and D2 (5′-TGGTCCGTGTTTCAAGAC-3′) primer pair [40]. Both species share a very high identity with corresponding conspecific homologs available in the GenBank: 99.35% (762/767 bp) for T. varicus (DQ157668), and 100% (800/800 bp) for T. asoti (MG601546). All sampled and identified parasites were first washed in 0.6% saline and then stored in 100% ethanol at 4 °C.




4.2. DNA Extraction, Amplification and Sequencing


To ensure a sufficient amount of DNA for amplification and sequencing of these small parasites, we used two types of DNA for amplification and sequencing: mixture DNA (extracted from 20 specimens) and individual DNA (a single specimen). Both were extracted using TIANamp MicroDNA Kit (Tiangen Biotech, Beijing, China). First, we selected 14 monogenean mitogenomes from GenBank, aligned them using ClustalX [41], designed degenerate primer pairs (Supplementary Table S4) matching the generally conserved regions of mitochondrial genes, and amplified the whole mitogenome using the mixture DNA. Specific primers, based on these obtained fragments, were then designed using Primer Premier 5 [42], and the remaining mitogenome was amplified and sequenced in several PCR steps. PCR products were sequenced bi-directionally using both degenerate and specific primers mentioned above on an ABI 3730 automatic sequencer (Sanger sequencing). All obtained fragments were BLASTed [43] to confirm that the amplicon is the actual target sequence. We carefully examined the chromatograms, paying close attention to double peaks or any other sign of the existence of two different sequences. To address the possibility of intraspecific sequence variation present in the mixture DNA, we then used individual DNA and long-range PCR to re-sequence the mitogneomes. If the two sequences differed, we used the DNA extracted from a single specimen to assemble the final mitogenome, thereby ensuring that each sequence belongs to a single specimen.




4.3. Sequence Annotation and Analyses


Both mitogenomes were assembled and annotated following the procedure described before [11,25,35,44] using DNAstar v7.1 software [45], MITOS [46] and ARWEN [47] web tools: after assembling with the help of DNAstar, MITOS was used to annotate the mitogenome, Protein-coding genes (PCGs) were determined by searching for ORFs using genetic code 9 (echinoderm and flatworm mitochondrion) and aligning with homologs, two rRNA genes were also confirmed by the alignment with homologs, and tRNAs were identified by combining the results of ARWEN and MITOS. An in-house PhyloSuite software [48] was used to parse and extract the annotations recorded in Word documents, as well as create GenBank submission files and organization tables for mitogenomes. The same software was used to make genomic statistics of the mitogenome of monogeneans. Codon usage, amino acid proportion and relative synonymous codon usage (RSCU) for 12 protein-encoding genes (PCGs) of the two studied Thaparocleidus species were calculated and sorted using PhyloSuite, and finally the RSCU figure drawn using ggplot2 [49] plugin. Hierarchical clustering and heatmap analyses were drawn using the ComplexHeatmap package [50] implemented in R, with the help of the statistics file generated by PhyloSuite. Tandem Repeats Finder [51] was invoked to find tandem repeats in the non-coding regions, and their secondary structures were predicted by Mfold software [52]. Genetic distances (identity) among mitogenomic sequences were computed with the “DistanceCalculator” function in Biopython [53] using “identity” model.




4.4. Phylogenetic Analyses


Phylogenetic analyses were conducted using the two newly sequenced Thaparocleidus mitogenomes and 31 monogenean mitogenomes available in the GenBank (5/7/2019). Six polyopisthocotylid monogeneans were used as outgroups (Supplementary Table S2). We used a dataset comprised of concatenated amino acid sequences of all 12 protein-coding genes for the phylogenetic analysis. Additionally, to get a nuclear perspective on the topic, a 28S gene dataset that closely matched the taxonomic composition of the mitogenomic dataset was also used to conduct phylogenetic analyses (Supplementary Table S5). ModelFinder [54] plugin integrated into PhyloSuite was used to calculate the Best-fit model. mtZOA+F+I+G4 was selected as the optimal model for the mitogenomic dataset, whereas GTR+F+G4 was chosen for the 28S dataset. Phylogenetic analyses were performed using two different algorithms: ML and BI. ML analysis for both datasets was carried out in RAxML [55] using a ML+rapid bootstrap (BS) algorithm with 1000 replicates. Bayesian inference with GTR+F+G4 model for 28S dataset was conducted in MrBayes 3.2.6 [56] plugin in PhyloSuite. MrBayes was run with default settings, and 5 × 106 metropolis-coupled MCMC generations. Stationarity was considered to be reached when the average standard deviation of split frequencies was < 0.01, ESS (estimated sample size) value > 200, and PSRF (potential scale reduction factor) approached 1. Bayesian inference analyses for amino acid dataset were conducted using the empirical MTZOA model and PhyloBayes (PB) MPI 1.5a [57]. For each analysis, two MCMC chains were run after the removal of invariable sites from the alignment, and the analysis was stopped when the conditions considered to indicate a good run (PhyloBayes manual) were reached: maxdiff < 0.1 and minimum effective size > 300. Non-coding regions of the selected monopisthocotyleans were identified and extracted from GenBank files using PhyloSuite, with the threshold set at 200 bp. iTOL dataset files produced by PhyloSuite were then used to visualize and annotate the phylograms and gene orders in iTOL [58].





5. Conclusions


Mitogenomes of both T. asoti and T. varicus contain two large non-coding regions, which were comprised of a number of repetitive hairpin-forming elements (RHE). The number of repeats varied between the two species, resulting in the exceptionally large genome of T. asoti (although incomplete), the largest among all available monogeneans. The gene order exhibited by both species was notably different from other monogeneans, with the first rearrangement of rRNA genes reported among the subphylum Neodermata thus far. Ancyrocephalinae and Dactylogyrinae were closely related in the phylogenetic results using mitogenome dataset, whereas Ancylodiscoidinae formed a sister-group with them. This relationship was also supported by the gene order. 28S rDNA-based analyses failed to produce monophyletic Ancyrocephalinae and Dactylogyridae. Our phylogenetic results inferred using mitogenomic dataset contradict previous phylogenetic studies (morphology and molecular marker-based). Limited availability of mitogenomes (only three of nine subfamilies of Dactylogyridae were available, and some with too few representatives) and weakly supported topology prevent us from making conclusions with confidence. Sequencing of additional molecular data, such as mitogenomes, transcriptomes or multiple nuclear genes, will be needed to resolve the interrelationships of Dactylogyridae.
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Figure 1. Maps of the circular mitochondrial genomes of Thaparocleidus asoti and Thaparocleidus varicus. Protein-coding genes are red, tRNAs are yellow, rRNAs are green, and non-coding regions (NCR) are grey. The location of the highly repetitive regions (HRR) within NCR are shown with black spot. The unsequenced gap is shown in the in the NCR of T. asoti. 
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Figure 2. Stem-loop structures of the consensus repeat patterns in repetitive regions of the non-coding regions of Thaparocleidus asoti and Thaparocleidus varicus. Thermodynamic energy values (dG) are shown next to the secondary structures. The nucleotide A is blue, T is green, C is deep pink and D is orange. 






Figure 2. Stem-loop structures of the consensus repeat patterns in repetitive regions of the non-coding regions of Thaparocleidus asoti and Thaparocleidus varicus. Thermodynamic energy values (dG) are shown next to the secondary structures. The nucleotide A is blue, T is green, C is deep pink and D is orange.



[image: Ijms 20 04214 g002]







[image: Ijms 20 04214 g003 550]





Figure 3. A phylogram reconstructed using mitogenomes of 33 monogeneans and the mtZOA model. Scale bar corresponds to the estimated number of substitutions per site. Statistical support values of Bayesian analyses and maximum likelihood are shown by the nodes (left/right, respectively). Taxonomic families and orders are shown in different colors. Gene orders and non-coding regions (grey boxes) are shown to the right of the tree. 
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Figure 4. Hierarchical clustering of the A+T content and AT-skewness of various mitogenomic elements among the monogenean mitogenomes. 
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Table 1. Comparison of the annotated mitochondrial genomes of Thaparocleidus asoti and Thaparocleidus varicus. Negative values in the ‘Intergenic Nucleotides’ column indicate overlaps.
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Gene

	
Position

	
Size

	
Intergenic Nucleotides

	
Codon

	
Anti-codon

	
Identity




	
From

	
To

	
Start

	
Stop






	
Thaparocleidus asoti/Thaparocleidus varicus

	

	

	

	

	




	
cox1

	
1/1

	
1554/1557

	
1554/1557

	

	
ATG/ATT

	
TAG/TAG

	

	
82.59




	
trnC

	
1554/1566

	
1617/1630

	
64/65

	
−1/8

	

	

	
GCA/GCA

	
87.69




	
cox2

	
1621/1634

	
2245/2260

	
625/627

	
3/3

	
ATG/GTG

	
T/TAA

	

	
77.35




	
nad6

	
2247/2261

	
2693/2707

	
447/447

	
1/0

	
GTG/ATG

	
TAA/TAG

	

	
72.48




	
trnL1

	
2694/2708

	
2758/2776

	
65/69

	

	

	

	
TAG/TAG

	
78.26




	
trnS2

	
2759/2777

	
2825/2843

	
67/67

	

	

	

	
TGA/TGA

	
77.61




	
trnL2

	
2831/2850

	
2895/2914

	
65/65

	
5/6

	

	

	
TAA/TAA

	
87.69




	
trnR

	
2896/2916

	
2963/2981

	
68/66

	
0/1

	

	

	
TCG/TCG

	
72.46




	
nad5

	
2966/2983

	
4537/4548

	
1572/1566

	
2/1

	
ATG/ATG

	
TAA/TAA

	

	
68.89




	
trnK

	
6558/5027

	
6622/5091

	
65/65

	
2020/478

	

	

	
CTT/CTT

	
86.36




	
trnT

	
6623/5094

	
6686/5159

	
64/66

	
0/2

	

	

	
TGT/TGT

	
86.36




	
trnW

	
6689/5162

	
6751/5225

	
63/64

	
2/2

	

	

	
TCA/TCA

	
93.75




	
trnY

	
6752/5232

	
6814/5295

	
63/64

	
0/6

	

	

	
GTA/GTA

	
93.85




	
trnS1

	
6838/5301

	
6894/5357

	
57/57

	
23/5

	

	

	
GCT/GCT

	
82.46




	
rrnL

	
6895/5358

	
7828/6297

	
934/940

	

	

	

	

	
84.93




	
rrnS

	
7829/6298

	
8550/7030

	
722/733

	

	

	

	

	
85.56




	
trnE

	
8551/7031

	
8611/7093

	
61/63

	

	

	

	
TTC/TTC

	
77.78




	
trnG

	
8620/7131

	
8686/7196

	
67/66

	
8/37

	

	

	
TCC/TCC

	
80.6




	
cox3

	
9479/7613

	
10150/8284

	
672/672

	
792/416

	
ATG/ATG

	
TAA/TAA

	

	
76.64




	
trnH

	
10131/8265

	
10192/8328

	
62/64

	
−20/−20

	

	

	
GTG/GTG

	
89.06




	
cytb

	
10193/8329

	
11269/9405

	
1077/1077

	

	
ATG/ATG

	
TAA/TAA

	

	
84.22




	
nad4L

	
11269/9405

	
11520/9656

	
252/252

	
−1/−1

	
ATG/ATG

	
TAG/TAG

	

	
76.59




	
nad4

	
11608/9629

	
12852/10846

	
1245/1218

	
87/−28

	
ATG/TTG

	
TAG/TAA

	

	
71.73




	
trnQ

	
12856/10849

	
12916/10911

	
61/63

	
3/2

	

	

	
TTG/TTG

	
85.71




	
trnF

	
12915/10910

	
12979/10974

	
65/65

	
−2/−2

	

	

	
GAA/GAA

	
98.46




	
trnM

	
12971/10967

	
13035/11030

	
65/64

	
−9/−8

	

	

	
CAT/CAT

	
92.31




	
atp6

	
13039/11031

	
13548/11543

	
510/513

	
3/0

	
ATG/ATG

	
TAG/TAA

	

	
76.02




	
nad2

	
13552/11544

	
14373/12371

	
822/828

	
3/0

	
ATG/ATG

	
TAA/TAA

	

	
69.2




	
trnV

	
14378/12372

	
14442/12435

	
65/64

	
4/0

	

	

	
TAC/TAC

	
81.54




	
trnA

	
14443/12436

	
14506/12503

	
64/68

	

	

	

	
TGC/TGC

	
82.35




	
trnD

	
14506/12504

	
14568/12566

	
63/63

	
−1/0

	

	

	
GTC/GTC

	
81.25




	
nad1

	
14569/12567

	
15468/13466

	
900/900

	

	
ATG/GTG

	
TAA/TAA

	

	
80.56




	
trnN

	
15475/13468

	
15538/13530

	
64/63

	
6/1

	

	

	
GTT/GTT

	
84.38




	
trnP

	
15562/13573

	
15626/13639

	
65/67

	
23/42

	

	

	
TGG/TGG

	
83.82




	
trnI

	
15626/13639

	
15692/13704

	
67/66

	
−1/−1

	

	

	
GAT/GAT

	
92.54




	
nad3

	
15696/13711

	
16058/14073

	
363/363

	
3/6

	
ATG/ATG

	
TAA/TAA

	

	
75.21
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Table 2. Pairwise common interval comparison of mitochondrial gene orders among 12 monopisthocotylean species (only one representative is shown for species with identical gene orders), based on the order of all 36 genes. Scores indicate the similarity between gene orders, where 1254 represents an identical gene order. Shading indicates the level of similarity: light to dark = similar to dissimilar.






Table 2. Pairwise common interval comparison of mitochondrial gene orders among 12 monopisthocotylean species (only one representative is shown for species with identical gene orders), based on the order of all 36 genes. Scores indicate the similarity between gene orders, where 1254 represents an identical gene order. Shading indicates the level of similarity: light to dark = similar to dissimilar.




















	
	N
	B
	B
	T
	L
	C
	D
	G
	G
	A
	T
	P





	Neobenedenia melleni
	1254
	546
	1120
	294
	292
	1186
	1056
	622
	1120
	302
	344
	148



	Benedenia seriolae
	546
	1254
	610
	162
	162
	580
	514
	342
	552
	184
	230
	84



	Benedenia hoshinai
	1120
	610
	1254
	294
	292
	1186
	1056
	660
	1120
	302
	356
	146



	Thaparocleidus varicus
	294
	162
	294
	1254
	222
	326
	316
	114
	294
	128
	144
	102



	Lepidotrema longipenis
	292
	162
	292
	222
	1254
	322
	306
	110
	292
	146
	232
	182



	Cichlidogyrus sclerosus
	1186
	580
	1186
	326
	322
	1254
	1120
	638
	1186
	322
	370
	162



	Dactylogyrus lamellatus
	1056
	514
	1056
	316
	306
	1120
	1254
	608
	1056
	322
	336
	162



	Gyrodactylus gurleyi
	622
	342
	660
	114
	110
	638
	608
	1254
	688
	252
	214
	94



	Gyrodactylus nyanzae
	1120
	552
	1120
	294
	292
	1186
	1056
	688
	1254
	344
	356
	146



	Aglaiogyrodactylus forficulatus
	302
	184
	302
	128
	146
	322
	322
	252
	344
	1254
	150
	108



	Tetraonchus monenteron
	344
	230
	356
	144
	232
	370
	336
	214
	356
	150
	1254
	430



	Paratetraonchoides inermis
	148
	84
	146
	102
	182
	162
	162
	94
	146
	108
	430
	1254
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Table 3. Nucleotide composition and skewness comparison of different elements of the mitochondrial genomes of Thaparocleidus asoti and Thaparocleidus varicus. PCGs: protein-encoding genes.






Table 3. Nucleotide composition and skewness comparison of different elements of the mitochondrial genomes of Thaparocleidus asoti and Thaparocleidus varicus. PCGs: protein-encoding genes.





	
Regions

	
Size (bp)

	
T(U)

	
C

	
A

	
G

	
AT(%)

	
GC(%)

	
GT(%)

	
AT Skew

	
GC Skew






	
Thaparocleidus asoti/Thaparocleidus varicus

	

	

	

	

	

	

	




	
PCGs

	
10038/10020

	
48.6/49.4

	
7.5/7.6

	
26.8/26.8

	
17.1/16.2

	
75.4/76.2

	
24.6/23.8

	
65.7/65.6

	
−0.288/−0.297

	
0.393/0.364




	
1st codon position

	
3346/3340

	
41.7/42.3

	
7.8/7.2

	
29.7/30.5

	
20.8/20.0

	
71.4/72.8

	
28.6/27.2

	
62.5/62.3

	
−0.168/−0.162

	
0.455/0.474




	
2nd codon position

	
3346/3340

	
50.1/50.2

	
11.6/12.0

	
21.0/20.4

	
17.3/17.5

	
71.1/70.6

	
28.9/29.5

	
67.4/67.7

	
−0.410/−0.423

	
0.196/0.187




	
3rd codon position

	
3346/3340

	
53.9/55.8

	
3.0/3.5

	
29.8/29.6

	
13.4/11.1

	
83.7/85.4

	
16.4/14.6

	
67.3/66.9

	
−0.288/−0.308

	
0.631/0.516




	
atp6

	
510/513

	
50.2/49.3

	
6.7/8.2

	
27.6/26.7

	
15.5/15.8

	
77.8/76.0

	
22.2/24.0

	
65.7/65.1

	
−0.290/−0.297

	
0.398/0.317




	
cox1

	
1554/1557

	
45.3/46.6

	
11.0/11.0

	
24.8/24.0

	
18.9/18.4

	
70.1/70.6

	
29.9/29.4

	
64.2/65.0

	
−0.293/−0.320

	
0.265/0.252




	
cox2

	
625/627

	
42.4/43.1

	
9.3/9.7

	
28.2/27.8

	
20.2/19.5

	
70.6/70.9

	
29.5/29.2

	
62.6/62.6

	
−0.202/−0.216

	
0.370/0.333




	
cox3

	
672/672

	
51.3/49.9

	
6.5/6.8

	
23.5/26.2

	
18.6/17.1

	
74.8/76.1

	
25.1/23.9

	
69.9/67.0

	
−0.372/−0.311

	
0.479/0.429




	
cytb

	
1077/1077

	
47.3/47.8

	
8.9/8.9

	
25.6/26.2

	
18.2/17.1

	
72.9/74.0

	
27.1/26.0

	
65.5/64.9

	
−0.297/−0.292

	
0.342/0.314




	
nad1

	
900/900

	
48.9/49.9

	
8.1/7.1

	
26.9/27.0

	
16.1/16.0

	
75.8/76.9

	
24.2/23.1

	
65.0/65.9

	
−0.290/−0.298

	
0.330/0.385




	
nad2

	
822/828

	
51.6/54.7

	
5.4/5.1

	
28.2/26.4

	
14.8/13.8

	
79.8/81.1

	
20.2/18.9

	
66.4/68.5

	
−0.293/−0.348

	
0.470/0.462




	
nad3

	
363/363

	
49.6/49.3

	
3.0/5.0

	
30.9/29.8

	
16.5/16.0

	
80.5/79.1

	
19.5/21.0

	
66.1/65.3

	
−0.233/−0.247

	
0.690/0.526




	
nad4

	
1245/1218

	
50.8/52.6

	
7.5/6.7

	
26.5/27.0

	
15.3/13.6

	
77.3/79.6

	
22.8/20.3

	
66.1/66.2

	
−0.314/−0.322

	
0.343/0.339




	
nad4L

	
252/252

	
50.8/53.6

	
5.2/5.2

	
29.0/28.6

	
15.1/12.7

	
79.8/82.2

	
20.3/17.9

	
65.9/66.3

	
−0.274/−0.304

	
0.490/0.422




	
nad5

	
1572/1566

	
48.4/48.9

	
5.5/6.3

	
28.7/28.6

	
17.4/16.2

	
77.1/77.5

	
22.9/22.5

	
65.8/65.1

	
−0.256/−0.262

	
0.517/0.443




	
nad6

	
447/447

	
51.7/51.9

	
5.8/5.4

	
26.2/27.7

	
16.3/15.0

	
77.9/79.6

	
22.1/20.4

	
68.0/66.9

	
−0.328/−0.303

	
0.475/0.473




	
rrnL

	
934/940

	
39.8/39.3

	
8.5/8.4

	
35.1/37.0

	
16.6/15.3

	
74.9/76.3

	
25.1/23.7

	
56.4/54.6

	
−0.063/−0.029

	
0.325/0.291




	
rrnS

	
722/733

	
41.0/38.6

	
8.4/8.3

	
35.6/38.2

	
15.0/14.9

	
76.6/76.8

	
23.4/23.2

	
56.0/53.5

	
−0.071/−0.005

	
0.278/0.282




	
rRNAs

	
1656/1673

	
40.3/39.0

	
8.5/8.4

	
35.3/37.5

	
15.9/15.1

	
75.6/76.5

	
24.4/23.5

	
56.2/54.1

	
−0.066/−0.019

	
0.305/0.288




	
tRNAs

	
1410/1424

	
40.6/40.8

	
7.8/8.1

	
36.2/35.7

	
15.3/15.4

	
76.8/76.5

	
23.1/23.5

	
55.9/56.2

	
−0.057/−0.067

	
0.325/0.313




	
Full genome

	
16074/14088

	
46.5/46.8

	
7.4/7.6

	
31.2/30.1

	
14.8/15.5

	
77.7/76.9

	
22.2/23.1

	
61.3/62.3

	
−0.197/−0.217

	
0.334/0.341












© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
: 1u = 3 L -39 f u O ot 12 i {# E an =n £n E
Z EHNTERRNENETTIRER R T |
i i ! !
Colors: | : | ;
p SHEHEIEEHNEIHETHIREREE FIRHEN ;
. 23 tandem repeats (putative) " 4 : F i 11 tandem repeats :
1 1 ry I
: = : |
1 : a 1
: - + : g I o %’ I
: {:f E . dG = -11.47 : d6=-837 |
Thaparocleidus asoti T i a5 " fr o
SENR JE AN A i R A S NAD5| EISEAN [ F === m=min s as e e e s S i S e S i G R R COX 3 ------------
Thaparocleidus varicus WA . i o g i e i 0
e i B S g --.__ |5tandem repeats e :
| 3 tandem repeats é‘. : : ﬁ :
! 2, % i wo ;
1 i 5 L 1
E Farh { d ’f “P‘f”“} : oo :
: ¥ E‘ g ‘EE £ s 3 :
1 -3 : 1 :—: 1
. - «$8ay dG=-11.61 i g :
: : iy ; te . dG=9.15 |
: n an ' ¥ o il 1} 1N 120 I 1< [ : : llﬂ ;In "‘:Irj 1 :
SRR A S e B BN R B R R R = |

Tl





nav.xhtml


  ijms-20-04214


  
    		
      ijms-20-04214
    


  




  





media/file2.png
14,088 nt

13K

16,074 nt

Thaparocleidus varicus Thaparocleidus asoti

12K






media/file5.jpg
Wi






media/file3.jpg
il






media/file1.jpg
14,088 nt 5 16,074 nt

Thaparocleidus varicus Thaparocleidus asofi






media/file7.jpg
G
MR NN

AT skewness

B \w\\'\\v\m»x\m\

TTT TR





media/file0.png





media/file8.png
Al skewness i s

AT{%)
| W

—D4 -02 D 0.2

50 60 70 80 B0 Family e Family
Pa-a:e'raurr. wides S Tetraonr,hmdpdae I Ghrsdscdpive dafasioiaes
. ) Gyrodactylidae sfmm.y s S3iis Gyrodactylidae
Tihap: H Gyrodas yll.s ..m:ﬁyn"_,sms .
r.\amma.f\.s as*x.‘ L D.sactmngy_'rldaa Tetraonchoididae
me ‘cn,:\uans Diplectanidae C ) Taneu%ae
d . |.o|
Alotisan ey Capsaliiae Ractyogyridse
H’aﬁ')"n'ra-:rﬂus var.e;wn i5 Gyrodactylidaa |!1|crc|<:aa|:’r'[3,1y 1ini:Iﬂae
..ama.‘n'\cws S0 . - 1€
Diplectanidas ANSVTOCATNSIIS MEQUNIas Dactylogyridaes
Agisiogrodasis Gt : Fuligbris paishoses Microcotylidas
G’;‘:#f;r,-‘-‘:.-:_ m‘r'e a Gyrodactylidas .ﬁcl.ﬂ:rmna‘ostra'rus Farglangenss plectanidae
Hansasms hosh Capsalidae Capsalidaa
TensonchuE monsntera Tetraonchidae Diplectanidae
AT (I e
G Yt rn:r_fﬂashnl GerdaCtylldaE G)'I'Cld actylidas
Polplanns holichonms Microcotylida
Evntpiozoon ep. DZ-Z016 Diplozoidae actylogyridae
PEsUR0CAUNBNea MasoIchis Chau ha|t-||=,l, gae Gymdactyhdae
»'I.fl.,rc.l.ul'l~ el slic Microcotylidae Capsalidae
,\ = depavinaides Eyrodactylldae ; 7 i
'Qmu JAREiEE Da Diplectanidae
‘.-nc.-mczmn sp LE-2018 :lpln:-nl .-:n:.:
larsppE mal e Dractylog ridae
Paradiplsrozn opsarichitpdis Diplozoidae x
Gyrodaciaus draskmysiacis Gyrodactylidae Dactylogyridae
EnnEnsinana jakan
i nebLing! ;
B Dactylogyridas .
gyras el . Tetraonchidae
Fpratacrses salans Yyrodactylicas i i
CizhNdagETE moinze Dactyl id Diplozoidaa
OB ONANS MOgTOSS actylogyridae

%, %,_7&;%,% LN es/"o I RO ,,ﬁ:%?@%% %ﬁ%@,% 'a@% % %ﬁ%‘b@ é%ﬁc/%" L?%“o%%%%@%”%%f%‘%%

] @ ) o
o, R S, O A





media/file6.png
Pseudochauhanea macrorchis
Polyiabris halichoeres
Microcotyle sebastis
Eudiplozoon sp. DZ-2018
Sindiplozoon sp. DZ-2018
Paradipiozoon opsariichthydis

1.00M00

o 1 o 0 R BN -t <1 s K- - - nas <M - a1
o 1 R <Y L1 o - L1940 < G113 -2 4 <ot WP ra 1
- o T L o NG 6 1503 o oS0 -NG REE Bt P K B
o T 5 - 2 <€ Y <10 NGRA- 832 R -3 - S L 0 N 65 02 - -t NP s 51
Gyrodactylidae 1.004100 1.00100 A
. o T -0 < - S Y 10 MR- R 3 L e O W5 -t P K 81
Gyrodactylidea 1.00/100
2 o T < ¥ 5 M N800 2 R B e+ e S <t <M Bl 1
jooss T 0 F 1 NI 7 R H ] £ T el < K1
00100 R o T < <0592 e M ]l T <K 61
: 1.00M00
schymyst o T S ot -5 N30 0 e g L G i B 1
Mol o Tatraonchus monentaro o 1 S+ Lt LG 16T 4 6 € -k RG24 1 o7 e - G T N <4 S
Tetraonchidea 1.00100 N ) _ :
Tetraoncholdidae —— Paratetraonchoides inermis I T e S ]
Lamefiodiscus spari o <0 - L0 <20 B G L £ 76 a0 BB
Dactylogyridea 1 008 By Pseudorhiabdosynochts yangjlangensis wx JiL-ms-so- -5 £~ vt~ - -8 - et -Gt 3 - sl -t~ T BB <H 528 - k<=0 <00 <K
-4 Lepidotrema tonglpenis o <1 A cos <528 et <2 <R 16BN cod < - e <@ 2B 3 - < -t <R
T 5 R 2 < - B2 a5 e - L <0 F - - 3 - <~ <H P e B
Capsalldae Neobenet.:‘enla .merreni a < zex3 -8
Capsalidea Benedenia seriofae o L5 i < A5 A S W G R A0 - <A B < e B
Benedenia hoshinai o T 0 < ¥ 2 Bl SR 8 - N P S
aneviodiaceldims] Thaparot S 5 R G T S L S AT <At kKA Dl NPt
Arcviecei parociimc O EE 0 OO REIN 6606 OO0 = o
___________ ° ——  Enterogyrus matmborgi O M 516 §./6 O Hi Il § i O Ml ik 5l 0 0 O Wil 12 6 0 O T OSSO OO v
Dactylogyrinae Dactylogyrus lameliatus o 6 Lt L1 s 1 e -1 L 0N e e
Dactylogyridae oesar|[ Euryhatiotrema johnii o) < e < 5 -2 - -1 L~ <0 - 5 - e et
Dactylogyridea 0872 Ancyrocephalus mogurndae B e R T
Ancyrocephalinae ;o5 Tetrancistrum nebulosi o <15 G <6 Y 1L o NI~ - o -4 -0 - 3 o2 -G ra MBI Keren s L
Cichtidogyrus mbirizel o <1 5 BN -2 < £ NGRS 05 -1 <4 8 e -1 204~ - A N B 81 :
Clehtidogyrus sclerosus B R B e R e
0.1 : 0.92/53 it @ EY

Cichtidogyrus hali S T MR RS SH TS L





