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Abstract: Our previous study suggested that the interleukin (IL)-6 and IL-10 could serve as good
biomarkers for chronic inflammatory disease. We previously established an IL-6 and IL-10 reporters
assay that could examine reporter activity along with the reference gene in LPS-induced RAW
264.7 cells. In this study, we described new and stable RAW 264.7 derived dual-color IL-6/gapdh and
IL-10/gapdh reporters. This assay allowed us to easily determine relative IL-6 and IL-10 levels with
96-well plate within one step. We evaluated the relative IL-6 and IL-10 levels in the LPS-induced
stable cells testing 52 natural products by real-time bioluminescence monitoring and time-point
determination using a microplate luminometer. The relative IL-6 and IL-6/IL-10 values decreased by
the crude ethanol extracts from nutmeg and by 1′S-1′-acetoxychavicol from greater galangal using
real-time bioluminescence monitoring. At the same time, the relative IL-10 was induced. The relative
IL-6 and IL-6/IL-10 decreased by crude ethanol extracts from nutmeg and 1′S-1′-acetoxychavicol
acetate at 6 h. Only crude ethanol extract from nutmeg induced IL-10 at 6 h. We suggested that the use
of these stable cells by real-time monitoring could serve as a screening assay for anti-inflammatory
activity and may be used to discover new drugs against chronic inflammatory disease.
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1. Introduction

Nitric oxide (NO) has a most versatile role in the immune system. It is involved in several
diseases such as infectious disease, autoimmune disease, tumors [1], stress-related diseases [2],
chronic inflammatory diseases, stroke, diabetes, neurodegenerative disorders [3], and inflammatory
bowel disease [4]. Many studies [1,3–5] showed that NO is related with pro-inflammatory cytokines
interleukin (IL)-6 and anti-inflammatory cytokines IL-10. Lipopolysaccharide (LPS) induces production
of NO, IL-6, and IL-10 in macrophage cell lines. IL-10 could inhibit anti-inflammatory IL-6 in activated
macrophage cell lines [6]. Recently, balance of pro-inflammatory and anti-inflammatory cytokines has
become important for recovery of patients which have inflammatory diseases [7–12]. Our previous
study also suggested that IL-6/IL-10 balance may restore chronic inflammatory disease, obesity,
diabetes type 2 and depression disease [13].

Therefore, we are finding new determination of IL-6 and IL-10 level assay. Luciferase reporter
assays are widely used cellular activities, gene expression, intracellular detection of bioactive compound
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and drug screening both in vitro and vivo [14,15]. The multicolor luciferase reporter assay is suitable
for high-throughput analysis of multiple gene expression in vitro assay system. In previous study,
we established IL-6 and IL-10 reporters that could determine reporter activity along with gapdh
reporter in LPS-induced RAW 264.7 cells. However, it needs transfection of dual IL-6/gapdh and
IL-10/gapdh reporters. It is possible that ratio of IL-6:gapdh and IL-6:gapdh will change by each time
of transfection. Moreover, it is difficult to use this system with 96-well plate for screening. In this study,
we established novel stable RAW 264.7 derived dual-color IL-6/gapdh and IL-10/gapdh reporters.
We could determine relative IL-6/gapdh and IL-10/gapdh without transfection. Therefore, we could
determine relative IL-6/gapdh and IL-10/gapdh with 96-well plate within one step. It will make
determination of IL-6 and IL-10 are less cost and time by these assays. As mentioned above, NO is
related with IL-6 and IL-10 levels in macrophage. Therefore, we screened 52 natural products using
the inhibition of NO production in RAW 264.7 cells. Then, we screened natural products with these
stable cells by real-time bioluminescence monitoring and time-point determination with microplate
luminometer. Finally, our assay led to discover a new compound for balancing pro-inflammatory and
anti-inflammatory activity

2. Results and Discussion

NO plays roles in several physiological and pathological processes which are associated with
chronic inflammation [16]. In previous study [5], we succeeded to use screening of NO production
inhibition to search for anti-inflammatory compounds. In the present study, we screened various
crude extracts for the inhibition of NO production to find anti-inflammation compounds Table 1.
Crude extracts were prepared as described in Experimental. Crude extracts at 50, 100, and 150 µg/mL
were studied for inhibition of NO production in LPS treated RAW 264.7 cells. The results of NO
production inhibition were shown in Figure S1. and showed that crude extracts from turmeric,
white pepper, laurel, anise seed, Japanese pepper, liquorice, green pepper, curry leaf, and lemongrass
and crude polyphenol extract from Agaricus b. and crude polysaccharide extract from Phellinus l. at 50,
100, and 150 µg/mL significantly inhibited NO production. The crude extract of greater galangal at 50,
100, and 150 µg/mL was toxic for cells (data not shown), but it showed the strongest inhibition of all
extracts at the low concentrations of 5, 10, and 20 µg/mL.
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Table 1. The summary of results from anti-inflammation screening assays.

NO Production Relative IL-6/Gapdh Relative IL-10/Gapdh

Extract Conc. (µg/mL) Extract Conc. (µg/mL) Extract Conc. (µg/mL)

No. Sample Name 150 100 50 75 50 25 75 50 25

1 cinnamon 0 0 � � �

2 turmeric 0 0 0 0 0 0 0 0

3 nutmeg 0 0 0 0 0 � � �

4 black pepper 0 0 0 0 0 0 0

5 white pepper 0 0 0 0 0 0 0 0

6 red pepper � � �

7 oregano 0 0 � �

8 basil �

9 parsley 0 � � �

10 laurel 0 0 0 0 0 0 � � �

11 cardamom 0 �

12 cumin 0 � �

13 cilantro 0 � � �

14 fennel 0 0 0 � � �

15 anise seed 0 0 0 � � �

16 allspice � � �

17 caraway � � �

18 clove 0

19 Japanese pepper 0 0 0

20 ginger 0 � � �

21 star anise �

22 celery seed � � �

23 long Pepper 0 0 0 0 0 � � �

24 fenogreek � � �

25 mace 0 0 0 � � �

26 dil Seed � � �

27 kaffir lime leaf 0 0 0 � � �

28 summer savory � �

29 kaba 0 0 � � �

30 sage 0 0

31 thyme � � �

32 taragon 0 � � �

33 marjoram � � �

34 rosemary 0 0 0 0

35 Chinese pepper 0 0 0 0
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Table 1. Cont.

NO Production Relative IL-6/Gapdh Relative IL-10/Gapdh

Extract Conc. (µg/mL) Extract Conc. (µg/mL) Extract Conc. (µg/mL)

No. Sample Name 150 100 50 75 50 25 75 50 25

36 liquorice 0 0 0 0 0 0 0 0 0

37 garlic � � �

38 green Pepper 0 0 0 0 0 0 0

39 paprika � � �

40 horse radish � � �

41 mustard � � �

42 curry leaf 0 0 0 0 0 0 0

43 spearmint

44 dillweed

45 peppermint 0 0

46 lemongrass 0 0 0 0 0

47 Saffron

extract conc.
(µg/mL) 20 10 5

48 greater galangal 0 0 0 0 0 0 0 0 �

extract conc.
(µg/mL) 150 100 50

49

crude
polysaccharide

extract from
Agaricus b.

� � �

50

crude
polyphenol

extract.
from Agaricus b

0 0 0 � � �

51 crude polysaccharide
extract from Ganoderma l. � � �

52

crude
polysaccharide

extract from
Phellinus l.

0 0 0 0 0

0 decreased

� increased

For further analysis the crude extract of greater galangal was fractioned by Wakogel®C-300
with Hexane and Acetone and the fractions were determined for inhibition of NO production.
The results shown in Figure S2A, the results showed that all fractions strongly inhibited NO production.
Fraction 1 was selected and fractioned by HPLC (Figure S3) as described in Experimental. The resulting
6 fractions were again measured for the inhibition of NO production in LPS treated cells. The results
showed that HPLC fraction No. 1.3 has the strongest NO production inhibition in Figure S2B.
The fraction No. 1.3 was purified by HPLC as before and identified for structure by 1H NMR,
13C NMR, HMQC, HMBC, and COSY. The results from NMR suggested that fraction No. 1.3 is
1′S-1′-Acetoxychavicol acetate. 1H NMR and 13C NMR chemical shifts were compared with published
1H NMR and 13C NMR chemical shifts of 1′S-1′-Acetoxychavicol acetate (ACA) as shown in Table 2
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Table 2. The 1H NMR and 13C NMR chemical shifts of 1′S-1′-Acetoxychavicol acetate (ACA) and
fraction No. 1.3 (δ in ppm).

ACA 1.3 ACA 1.3

A. Khalijah, et al. H. Azuma et al.

Carbon Number 13C (ppm) 13C (ppm) 1H (ppm) 1H (ppm)

1 150.5, s 150.6, s

OCOCH3 169.4, s 169.4, s

OCOCH3 21.2, q 21.2, q 2.29 (s, 3H) 2.25 (s, 3H)

2 121.7, d 121.8, d 7.08 (d, 8.5, 1H) 7.07 (d, 8.5, 1H)

3 128.5, d 128.6, d 7.37 (d, 8.5, 1H) 7.36 (d, 8.5, 1H)

4 136.5, s 136.6, s

5 128.5, d 128.6, d 7.37 (d, 8.5, 1H) 7.36 (d, 8.5, 1H)

6 121.7, d 121.8, d 7.08 (d, 8.5 1H) 7.07 (d, 8.5, 1H)

1′ 75.6, d 75.6, d 6.26 (d, 5.9, 1H) 6.26 (d, 5.9, 1H)

OCOCH3 169.7, s 169.8, s

OCOCH3 21.3, q 21.3, q 2.10 (s, 3H) 2.10 (s, 3H)

2′ 136.1, d 136.2, d 5.98 (ddd, 17.1,
10.5, 5.9, 1H)

5.98 (ddd, 17.1,
10.7, 6.1, 1H)

3′ 117.2, t 117.2, t 5.30 (d, 17.1, 1H),
5.25 (d, 10.5, 1H)

5.29 (d, 17.1, 1H),
5.23 (d, 10.5, 1H)

To confirm NO production inhibition of 1′S-1′-Acetoxychavicol acetate, the purified
1′S-1′-Acetoxychavicol acetate at 5, 25, and 100 µM from greater galangal was determined to inhibit
NO production. The results showed that 1′S-1′-Acetoxychavicol acetate at 25 and 100 µM are slightly
toxic for RAW 264.7 cells (data not shown). 1′S-1′-Acetoxychavicol acetate at 5 µM strongly reduced
NO production significantly (Figure S2C).

In previous study, we constructed new IL-6 and IL-10 reporters and developed dual-color luciferase
reporter assay for determination of IL-6 and IL-10 promoter expression with relative gene expression of
gapdh [17]. In this study, we generated new stable RAW264.7 cell derived dual-color IL-6/gapdh and
IL-10/gapdh reporters. The stable RAW 264.7 cells were constructed by transfection of IL-6 or IL-10
and gapdh reporters. After transfection, IL-6/gapdh and IL-10/gapdh transfected RAW 264.7 cells were
diluted and treated with Hygromycin B for selection. Several cells were selected and treated at 1 µg/mL
LPS. Then, relative IL-6/gapdh IL-10/gapdh levels were determined by real-time bioluminescence
monitoring for 48 h. The stable cells which have stable and the strongest IL-6 and IL-10 expression
were selected and stocked for further experiments (data not shown).

To find appropriate concentration of LPS, stable cells were plated in 24-well black plate with
clear bottom for 24 h. Cells were replaced with DMEM with 10% FBS, 0.1 mM D-Luciferin potassium
salt, 25 mM hepes, and LPS at 1 ng/mL, 10 ng/mL, 100 ng/mL, and 1 µg/mL. Bioluminescence was
recorded in real-time with multi-color system under a 5% CO2 atmosphere at 37 ◦C for 48 h. In Figure 1,
it appears that LPS response to IL6 and IL10 levels in stable cells are concentration-dependent. LPS also
response to relative IL-6/IL-10 are concentration-dependent (Figure 1C).
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replaced with DMEM with 10% FBS, 0.1 mM D-Luciferin potassium salt, 25 mM hepes and samples. 
After 30 min, cells were treated by LPS at 100 ng/mL. Bioluminescence was recorded in real-time with 
multi-color system under a 5% CO2 atmosphere at 37 °C for 48 h. The results of relative IL-6/gapdh 
and IL-10/gapdh represent the mean of four representative experiments (data not shown). The results 
are concluded in Table 1. As mentioned above, we screened all crude extracts for the inhibition of 
NO production. We found that crude extracts from Anise seed, Japanese pepper and crude 
polyphenol extract from Agaricus b. significantly inhibition NO production, but did not inhibit 
relative IL-6. However, the results showed that NO production and relative IL-6 were strongly 
inhibited by crude ethanol extracts from nutmeg, oregano, laurel, long pepper, and greater galangal. 

Figure 1. The expression of stable interleukin (IL)-6/gapdh-RAW264.7 cells and IL-10/gapdh-RAW264.7
cells by real-time bioluminescence recording. (A): Stable IL-6/gapdh RAW264.7 cells were treated
by lipopolysaccharide (LPS) at 1 µg/mL, 100 ng/mL, 10 ng/mL, and 1 ng/mL. (B): Stable IL10/gapdh
RAW264.7 cells were treated by LPS at 1 µg/mL, 100 ng/mL, 10 ng/mL, and 1 ng/mL. (C): Relative
IL6/IL10. The results represent the mean of four representative experiments.
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To evaluate novel stable cells, relative IL-6/gapdh and IL-10/gapdh were measured in LPS-induced
stable cells by all extracts as followed in Table 1 with real-time monitoring of dual-color luciferase
reporter assay. Stable were plated in 96-well plate for 24 h. The culture medium was replaced with
DMEM with 10% FBS, 0.1 mM D-Luciferin potassium salt, 25 mM hepes and samples. After 30 min,
cells were treated by LPS at 100 ng/mL. Bioluminescence was recorded in real-time with multi-color
system under a 5% CO2 atmosphere at 37 ◦C for 48 h. The results of relative IL-6/gapdh and IL-10/gapdh
represent the mean of four representative experiments (data not shown). The results are concluded
in Table 1. As mentioned above, we screened all crude extracts for the inhibition of NO production.
We found that crude extracts from Anise seed, Japanese pepper and crude polyphenol extract from
Agaricus b. significantly inhibition NO production, but did not inhibit relative IL-6. However, the results
showed that NO production and relative IL-6 were strongly inhibited by crude ethanol extracts from
nutmeg, oregano, laurel, long pepper, and greater galangal. The relative IL-10 was stimulated by
crude ethanol extract from nutmeg, oregano, laurel, long pepper, and greater galangal. We expected to
discover a new compound for balancing pro-inflammatory and anti-inflammatory activity. Therefore,
we selected crude extracts that could reduce NO production and IL-6 level, and could induce IL-10 level.

We found that 1′S-1′-Acetoxychavicol acetate from greater galangal strongly inhibited NO
production. Therefore, the selected crude extracts and 1′S-1′-Acetoxychavicol acetate were determined
relative IL-6 and IL-10 by these stable cells to confirm the results again. The stable cells were plated in
24-well black plate with clear bottom in the DMEM under standard conditions for 24 h. The culture
medium was replaced with DMEM with 10% FBS, 0.1 mM D-Luciferin potassium salt, 25 mM
hepes and crude ethanol extracts from nutmeg, oregano, laurel and long pepper at 75 µg/mL and
1′S-1′-Acetoxychavicol acetate at 5, 25 and 100 µM from greater galangal. After 30 min, LPS 100 ng/mL
was treated into cells. Bioluminescence was recorded in real-time with multi-color system under a
5% CO2 atmosphere at 37 ◦C for 48 h. The results showed in Figure 2. The crude ethanol extracts
from nutmeg, oregano, laurel and long pepper at 75 µg/mL and 1′S-1′-Acetoxychavicol acetate at 5
and 25 µM from greater galangal could reduce relative IL-6 and IL-6/IL-10. Whereas, crude ethanol
extracts from nutmeg and 1′S-1′-Acetoxychavicol acetate at 5 and 25 µM clearly induced IL-10.
1′S-1′-Acetoxychavicol acetate at 100 µM is toxin for stable cell. Bioluminescence could not be detected
(data not shown).

In T. Takahashi et al. (2011) [18], stable THP-1–derived IL-8 reporter cell line was determined at
time point by microplate luminometer for skin sensitizers screening. Therefore, we also examined
stable IL-6 and IL-10 cells with time point by microplate luminometer. First, we stimulated stable cells
with LPS 100 ng/mL and determine IL-6 and IL-10 at time point from 0–48 h. The maximum induction
of stable IL-6 and IL-10 cells were observed between 6–12 h (Figure 3). The gapdh reporter activity did
not significantly change from 0 to 24 h and then gradually decreased at 48 h.

Therefore, we determined the effect of crude ethanol extracts from nutmeg, oregano, laurel,
long pepper, and 1′S-1′-Acetoxychavicol acetate on relative IL-6 and IL-10 level at 6 and 8 h by
microplate luminometer. Stable cells were plated in 96-well plate for 24 h. The culture medium was
replaced with DMEM with 10% FBS and crude ethanol extracts from nutmeg, oregano, laurel, and long
pepper at 75 µg/mL and 1′S-1′-Acetoxychavicol acetate at 5, 25, and 100 µM from greater galangal.
After 30 min, LPS 100 ng/mL was treated into cells. After incubation for 6 and 8 h, culture medium
was replaced with phosphate-buffered saline (PBS) and Tripluc luciferase assay reagent. After shaking,
reporter activity was measured by microplate luminometer. In Figure 3, the results showed that crude
ethanol extracts from nutmeg, oregano, laurel and long pepper at 75 µg/mL and 1′S-1′-Acetoxychavicol
acetate at 5, 25, and 100 µM from greater galangal could reduce relative IL-6 and IL-6/IL-10 at 6 h.
Whereas, we found only crude ethanol extracts from nutmeg could induce relative IL-10 at 6 h.

In Figure 4, the results showed that crude ethanol extracts from nutmeg, oregano, laurel, and long
pepper at 75 µg/mL and 1′S-1′-Acetoxychavicol acetate at 5, 25, and 100 µM from greater galangal could
reduce relative IL-6/IL-10 at 8 h. Crude ethanol extracts from laurel and long pepper at 75 µg/mL and
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1′S-1′-Acetoxychavicol acetate at 5, 25 and 100 µM could reduce relative IL-6. Whereas, we found that
crude ethanol extracts from nutmeg and oregano at 75 µg/mL could induce relative IL-10 significantly.
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Figure 2. The expression of relative IL-6/gapdh and IL-10/gapdh by real-time bioluminescence recording
for 48 h. (A) Stable IL-6/gapdh RAW264.7 cells and (B) stable IL-10/gapdh RAW264.7 cells were treated
with crude ethanol extracts from nutmeg (3), oregano (7), laurel (10), and long pepper (23) at 75 µg/mL
and LPS at 100 ng/mL. (D) Stable IL-6/gapdh RAW264.7 cells and (E) Stable IL-10/gapdh RAW264.7
cells were treated with 1′S-1′-Acetoxychavicol acetate (ACA) at 5, 25 and 100 µM from greater galangal
and LPS at 100 ng/mL. (C,F) Relative IL-6/IL-10. Each value represents the mean ± SD (n = 4).
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These results showed that crude ethanol extracts from nutmeg, oregano, laurel, and long pepper
at 75 µg/mL and 1′S-1′-Acetoxychavicol acetate at 5, 25, and 100 µM from greater galangal could
reduce relative IL-6/IL-10 at 6 and 8 h. Whereas, reduction of relative IL-6 and induction of IL-10 were
changed by 6 and 8 h. The reporter activity from microplate luminometer at time point is different
from real-time bioluminescence recording. We could detect clearly that S-1′-Acetoxychavicol acetate
at 5 and 25 µM from greater galanga induced relative IL-10 by real-time bioluminescence recording,
but we could not detect induction of relative IL-10 by S-1′-Acetoxychavicol acetate at 5 and 25 µM
at 6 and 8 h using microplate luminometer. Moreover, we could detect crude ethanol extracts from
nutmeg and oregano induced IL-10, but they could not reduce IL-6 at 8 h. We previously reported that
crude polysaccharide from Phellinus l. significantly inhibited IL-6 at 6 and 24 h and IL-10 level at 24 h
using Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis. In this study,
we found that Crude polysaccharide from Phellinus l. reduced IL-6 level in these stable cells, but did
not reduce IL-10 level. Although, T. Takahashi et al. [18] recommended determination of reporter
activity from stable cell by microplate luminometer, these results suggested that this method is not
suitable for IL-6 and IL-10 screening. It indicates that determination of reporter activity from stable cell
by real-time bioluminescence recording is more suitable for screening.

Nutmeg (Myristica fragrans) has been studied for anti-oxidant [19–23], anti-microbial [24,25],
hepatoprotection [26], anti-cancer [27], anti-hyperglycaemia, anti-hyperlipidaemia [28], anti-fungal [29],
and anti-inflammation [30–33]. It was reported that extract of nutmeg reduced NO, IL-6, and IL-10
in LPS-stimulated RAW 264.7 cells by enzyme-linked immunosorbent assay (ELISA) and multiplex
bead-based cytokine assay. However, we found that nutmeg extract induced relative IL-10 by real-time
bioluminescence monitoring. ELISA and multiplex bead-based cytokine assay are determination of
cytokines level at time-point as microplate luminometer assay. Therefore, we could not detect induction
of IL-10 level by nutmeg extract. It clearly indicated that our assay has merit, and is more suitable for
determination of IL-6 and IL-10 levels Figure 5.
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Figure 4. The expression of relative IL-6/gapdh (A), IL-10/gapdh (B), and IL-6/IL-10 (C) by microplate
luminometer at 6 h. Stable cells were treated with crude ethanol extracts from nutmeg (3), oregano (7),
laurel (10) and long pepper (23) at 75 µg/mL, 1′S-1′-Acetoxychavicol acetate (ACA) at 5, 25, and 100 µM
from greater galangal and LPS at 100 ng/mL. Each value represents the mean ± SD (n = 4). * p < 0.05,
**p < 0.01, *** p < 0.001 versus the LPS group.

S-1′-Acetoxychavicol acetate from greater galangal (Alpinia galangal) has been studied mainly for
anti-cancer [34–39]. Although, it was reported that S-1′-Acetoxychavicol acetate from Languas galangal
suppressed NO production in LPS-induced RAW 264.7 cell with dose-dependent [40]. However,
we found that S-1′-Acetoxychavicol acetate from greater galangal could reduce IL-6 level and increase
IL-10 level. This discovery may lead to develop new drug for balancing pro-inflammatory and
anti-inflammatory activity and chronic inflammatory disease.
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Figure 5. The expression of relative IL-6/gapdh (A), IL-10/gapdh (B) and IL-6/IL-10 (C) by microplate
luminometer at 8 h. Stable cells were treated with crude ethanol extracts from nutmeg (3), oregano (7),
laurel (10), and long pepper (23) at 75 µg/mL and 1′S-1′-Acetoxychavicol acetate (ACA) at 5, 25, 100 µM
from greater galangal and LPS at 100 ng/mL. Each value represents the mean ± SD (n = 4). * p < 0.05, **
p < 0.01, *** p < 0.001 versus the LPS group.

3. Materials and Methods

3.1. Cell Culture

The mouse Abelson leukemia virus transformed monocyte macrophage cell line (RAW 264.7 cells)
were obtained from Riken Cell Bank (Tsukuba, Japan). RAW 264.7 cells and stable cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM, FUJIFILM Wako Pure Chemical Corporation, Osaka,
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Japan) containing 10% fetal bovine serum (FBS, Biowest, Tokyo, Japan) at 37 ◦C in 5% CO2 in a
humidified incubator.

3.2. Extraction, Isolation, and Purification of 1′S-1′-Acetoxychavicol Acetate

Dried Samples (No.1-48) in Table 1 were kindly provided by S&B Foods (Tokyo, Japan).
Dried samples were extracted by Ethanol (Wako Pure Chemical Industries, Ltd., Osaka, Japan).
Dried fruit body powder of Agaricus blazei (Agaricus b.), Ganoderma lucidum (Ganoderma l.), and Phellinus
linteus (Phellinus l.) were extracted using ethanol at 70 ◦C for 24 h. The solution was filtered to obtain
a crude ethanol extract. The tissue residue was then autoclaved with 4 volumes of water at 121 ◦C
for 30 min. After filtration, half the amount of the clear filtrate was added to 2 vol of ethanol and at
−20 ◦C for 4 h. The resulting precipitate was dissolved in water to obtain the crude polysaccharide
extract. The remaining half of the clear water solution was evaporated, and the dry residue dissolved
in dimethyl sulfoxide (DMSO) for the crude polyphenol extract. All extracts were evaporated and
dissolved in ethanol or distilled water for bioassay.

The crude ethanol extract from greater galangal was fractionated by Wakogel®C-300 (Wako Pure
Chemical Industries, Ltd. (Osaka, Japan) with Hexane:Acetone (4:1) to (1:1) (Wako Pure Chemical
Industries, Ltd. (Osaka, Japan) We used the NO inhibitory effect of the different fractions to search for
the presence of anti-inflammatory compounds [5]. Isolation and purification of the active materials was
done by high performance liquid chromatography (HPLC) (Tosoh Model CCPD computer-controlled
pump, Tokyo, Japan) equipped with a Capcell PAK C18 5 µM, 10 mm i.d. × 250 mm column
(Shiseido Co., Ltd., Tokyo, Japan), and eluted with gradient 50% methanol with 0.1% formic acid
and 100% methanol with 0.1% formic acid at a flow rate of 1.5 mL/min and detected using a Jasco
UV wavelength detector at 254 nm (JASCO International Co., Ltd., Tokyo, Japan). After we isolated
1′S-1′-Acetoxychavicol acetate, we purified 1′S-1′-Acetoxychavicol acetate again by HPLC as same as
condition again.

3.3. Analysis of Nuclear Magnetic Resonance Spectroscopy (NMR)

10 mg of dried 1′S-1′-Acetoxychavicol acetate was exchanged in a Chloroform-D1 0.03 col.% TMS.
One-dimensional NMR spectroscopy (1H NMR and 13C NMR) and two-dimensional NMR (COSY,
HMBC, and HMQC) were performed using a Bruker 500 MHz NMR (Bruker, Yokohama, Japan).

3.4. Nitric Oxide (NO) Production

RAW 264.7 cells were cultured in DMEM containing 10% FBS at 37 ◦C in 5% CO2 in a humidified
incubator. RAW 264.7 cells (8 × 105 cells per mL) 200 µL were plated in 96-well plate in the DMEM
under standard conditions for 24 h. Then, RAW 264.7 cells were treated with samples in Table 1 at
50, 100, and 150 µg/mL and LPS at 1.25 µg/mL [5]. After 15 h, the activated cells’ culture medium
was transferred to a new 96-well plate. Griess reagent (Sigma-Aldrich Co., St. Louis, MO, USA) was
added and incubated at 37 ◦C for 15–20 min. The absorbance was read at 540 nm on an iMarkTM
Microplate Reader (Bio-Rad Laboratories, Inc., Berkeley, CA, USA). The percentage of NO production
was calculated and compared with that of LPS treated cells.

3.5. Cell Proliferation Assay

Cell proliferation assay is a colorimetric method for determining the mitochondrial enzyme activity
which reflects the number of viable cells. RAW 264.7 cells or stable RAW 264.7 cells (8 × 105 cells
per·mL) 200 µL were plated in 96-well plate in DMEM under the standard conditions for 24 h. Then,
RAW 264.7 cells were treated with samples and LPS (1.25 µg/mL). After 15 h, the cell culture medium
was drained. CellTiter 96® AQueous One Solution Reagent (Promega Corp., Madison, WI, USA) was
added to cells and incubated at 37 ◦C for 20–30 min. The solution was transferred to a new 96-well
plate. Its absorbance was read at 490 nm on an iMarkTM Microplate Reader. The absorption due to the
proliferating cells was determined and compared to that of untreated RAW 264.7 cells.
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3.6. Generation of Stable RAW 264.7 Cell Lines

RAW 264.7 cells (7 × 105 cells/mL) were treated in 35-mm dish with 2 mL cells for 24 h. IL-6 or
IL-10 reporter plasmid [17] and Gapdh-SLR reporter plasmid [18] were co-transfected by Hilymax
transfection reagent (Dojindo Molecular Technologies, Inc., Rockville, MD, USA) according to the
manufacturer’s instructions for 24 h. Then, transfected cells were diluted and culture into 10 cm culture
dishes with Hygromycin B at 200µg/mL (Invitrogen, Tokyo, Japan) for cell selection. Several selected
cells (7 × 105 cells/mL) were transferred into 35-mm dish with 2 mL cells for 24 h. The culture medium
was replaced with DMEM with 10% FBS, 0.1 mM D-Luciferin potassium salt (Wako Pure Chemical
Industries, Ltd., Osaka, Japan), 25 mM hepes (Thermo Fisher Scientific Inc., Waltham, MA, USA)
and 1 µg/mL LPS from Escherichia coli O26:B6 (Sigma-Aldrich Corporation, St. Louis, MI, USA).
For evaluation, bioluminescence was recorded in real-time for 1 min in the presence or absence of
optical filter (R60-long pass filter, HOYA, Tokyo, Japan) at 19-min intervals under a 5% CO2 atmosphere
at 37 ◦C for 48 h using an AB-2500 Kronos (ATTO, Tokyo, Japan) as described previously [41].

3.7. Determination IL-6 and IL-10 Level by Stable Cells Using a Bioluminescence Measurement System for
Living Cells by Real-Time Monitoring

Stable RAW 264.7 cells (6 × 105 cells per mL) 500 µL were plated in 24-well black plate
with clear bottom (Wallac Oy, Turku, Finland) in the DMEM under standard conditions for 24
h. Cells were replaced with DMEM with 10% FBS, 0.1 mM D-Luciferin potassium salt, 25 mM hepes
and samples. After 30 min, LPS at 1 ng/mL, 10 ng/mL, 100 ng/mL and 1 µg/mL were added to the cells.
Bioluminescence was recorded in real-time for 10 s in the presence or absence of theR60-long pass
filter, HOYA, Tokyo, Japan) under a 5% CO2 atmosphere at 37 ◦C for 48 h using a WSL-1565 Kronos
HT (ATTO, Tokyo, Japan).

For screening, stable RAW 264.7 cells (8 × 105 cells per mL) 200 µL were plated in 96-well black
plate with clear bottom (Thermo Fisher Scientific, Waltham, MA, USA) in the DMEM under standard
conditions for 24 h. The culture medium was replaced with DMEM with 10% FBS, 0.1 mM D-Luciferin
potassium salt, 25 mM hepes and extracts at 25, 50 and 75 µg/mL. After 30min, LPS at 100 ng/mL was
added to the cells. Bioluminescence was recorded in real-time for 10 s in the presence or absence of
the R60-long pass filter, HOYA, Tokyo, Japan) under a 5% CO2 atmosphere at 37 ◦C for 48 h using a
WSL-1565 Kronos HT.

3.8. Determination IL-6 and IL-10 Level by Stable Cells Using a Microplate Luminometer

Stable RAW 264.7 cells (8 × 105 cells per mL) 200 µL were plated in 96-well plate with black
frame and transparent blank wells (PerkinElmer, Waltham, MA, USA) in the DMEM under standard
conditions for 24 h. Cells were replaced with DMEM with 10% FBS and samples. After 30 min, LPS at
100 ng/mL was treated into cells. After 6 and 8 h incubation, cells were replaced with 1:1 sterile
phosphate-buffered saline (PBS) and Tripluc luciferase assay reagent (TOYOBO Co., Ltd., Osaka, Japan).
Then, shake the plate for 10 min at room temperature. Luciferase activity was determined for 10 s in
the presence or absence of optical filter (R60-long pass filter, HOYA, Tokyo, Japan) using a microplate
luminometer with a multi-color detection system, Phelios AB-2350 (Atto Co., Tokyo, Japan)

3.9. Statistical Analysis

Statistical analyses were performed by one-way analysis of variance (ANOVA) with Dunnett’s
test for selected pairs. The statistical software “EZR” was used for statistical analysis [42]. Values are
indicated as means ± SE. The significant differences are shown as probability values.

4. Conclusions

We generated new stable RAW 264.7 derived IL-6/gapdh and IL-10/gapdh reporters cell lines.
We evaluated these stable cells with LPS and found that LPS response to IL-6 and IL-10 levels in
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stable cells are concentration-dependent. Our previous study [5] suggested that inhibition of NO
production is related with inhibition of IL-6 in RAW 264.7 cells. First, we screened ethanol crude
extracts for inhibition of NO production. We found that crude extract from greater galangal has the
strongest of NO production inhibition. Then, we isolated, purified and identified S-1′-Acetoxychavicol
acetate from greater galangal. We found that S-1′-Acetoxychavicol acetate from greater galangal dose
dependently inhibited NO production. Then, we screened ethanol crude extracts for relative IL-6
and IL-10 by these stable cells with real-time bioluminescence monitoring. We found that ethanol
crude extracts from nutmeg and S-1′-Acetoxychavicol acetate from greater galangal could reduce
relative IL-6 and relative IL-6/IL-10. They also could induce relative IL-10. We also determined
IL-6 and IL-10 level at time point by microplate luminometer. It suggests that this method is not
suitable for screening IL-6 and IL-10 by these stable cells. Our observations suggest that stable RAW
264.7 derived IL-6 and IL-10 reporters cell lines could serve to perform relative IL-6 and IL-10 screening
by real-time bioluminescence monitoring. S-1′-Acetoxychavicol acetate from greater galangal could
balance pro-inflammatory IL-6 and anti-inflammatory IL-10 cytokines that may contribute to the
prevention of chronic inflammatory disease.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4620/s1.
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