Article Expression analysis of PIN genes in root tips and nodules of Lotus japonicus

Izabela Sańko-Sawczenko ¹, Dominika Dmitruk ¹, Barbara Łotocka ¹, Elżbieta Różańska ¹ and Weronika Czarnocka ^{1,*}

¹ Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; izabela_sanko_sawczenko@sggw.pl (I.S-S.); dominika_dmitruk@sggw.pl (D.D.); barbara_lotocka@sggw.pl (B.Ł.); elzbieta_rozanska@sggw.pl (E.R.)

* Correspondence: weronika_czarnocka@sggw.pl; Tel.: +48-22-59-326-6

Figure S1. Cladogram presenting the phylogenetic relationship of PIN proteins from *L. japonicus* (Lj), *M. truncatula* (Mt) and *A. thaliana* (At).

Figure S2. Transmembrane topology of *L. japonicus* PIN proteins. Red peaks represent transmembrane helices.

Figure S3. Normalized expression level of *LjPIN6a* and *LjPIN6b* in root nodules. Mean values (±SE) are derived from three biological replicates, for which three individual qPCR reactions were performed.

Figure S4. The electrophoretic separation of LjPIN6 fragment amplification products. bp- base pairs.

A

LjPIN6 – complete coding sequence (CDS)

ATGGTTACAGGAGATGATTTGTACAACGTGATGTGCGCCATGGTGCC TCTATATTTCGCAATGCTGGTAGCTTACGCATCAGTGAAATGGTGCA AAATGTTCACCCCACAGCAGTGCTCCGGCGTCAACCGTTTCGTGGCG GTGTTTGCGATTCCGGTTCTCTCTTTCCATTTCATTTCCATCAACAATC CTTATGAGATGGACGCTAAGTTCATCATAGCGGACACGCTCTCCAAG CTCGTCGTGCTGTTCTTCCTCTTTCTCTGGGCTATTTTTTTGCTTCTG GATCTCTCGACTGGCTTATCACGCTCTTCTCGCTCGCAACCTTGCCCA ACACGCTTGTCATGGGGGATTCCTCTACTCCAAGCCATGTACGGCCAA TTCACGCAAGGCCTCATGGTGCAACTCGTTGTACTCCAATGCATCATA TGGTATACTCTACTGTTGTTTCTATTGGAATACAGAGCAGCGACCCTT TTGATCAAAACCGAGTTCCCTGGGGGACACGGCGGCGTCCATAACCAA AATCGAGGTCGACGGCGACGTGATTTCCCTCGACGGCCACGACGTGC CACTGCAAACGCAGTCGGAAACCGACACCCACGGCCGCATCAGCGT GCGAATCCGGCGATCAATCTCCTCAGCTCCGGACTCAACCTCATCAA TCGGCAACGCCGTTATCACTCCAAGGCATTCGAATCTCACCAACGCC GAGCACCTGCTCGACGGCGACCCCTCCTTTGGATACCCGCCGGCGAG CCCGAGGTTATCCGGATGCGCCTCCTCCGACGCGTACTCGCTTCAGCC CACGCCGCGGGCGTCAAAATTTCAATGAGACGGAGGTCACGGCGGGA GCAGATGTCGCCGGGGAAATGCCAAGTAGAAGAGAGAGACAG**GGATGC** AAGGACATTACGCAGTCAGATAAAGAAATTAGCTTCAGAGACAAC **ATCAAAGTTTCA**ATGCCAGGGGAAGAAGCTGCAGACACAACTGCTC GTAACCAGAAAATGCCACATGCTTTTGTCATGATAAGGCTTATACTT ACAGTAGTGGGAAGAAAACTTTCGCGTAACCCTAATACATATTCTAG TGTATTAGGACTTGTTTGGTCTCTAATCTCCTTCAAATGGAACATGGA AATGCCTAGTCTGATCAAAGCATCTATCAAAATCATCTCGGATGCAA GCCTTGGAATGGCTATGTTTAGCTTAGGGCTTTTCATGGCCCTTCAGC CTCGTATCATTGCTTGTGGTACCAAAAGAGCAGCCATGGGAATGGCC ATTCGTTTCGTGTGCGGGGCCTCTTGTAATGTCAGCATCCTCCATTGTC ATTGGATTGAGAGGGGGACAAATTGCACACAGCAATTGTACAGGCTGC ACTTCCACAGGGGATTGTACCATTTGTATTTGCAAGGGAATATGGGC TGCATCCTGATATTTTGAGCACAGGGGTTATCTTTGGCATGCTAGTAT CCTTACCAATAACTCTCCTATATTACATACTTCTTGGCTTGTGA

LjPIN6 – complete protein sequence

MVTGDDLYNVMCAMVPLYFAMLVAYASVKWCKMFTPQQCSGVNRFV AVFAIPVLSFHFISINNPYEMDAKFIIADTLSKLVVLFFLFLWAIFFASGSL DWLITLFSLATLPNTLVMGIPLLQAMYGQFTQGLMVQLVVLQCIIWYTL LLFLLEYRAATLLIKTEFPGDTAASITKIEVDGDVISLDGHDVPLQTQSET DTHGRISVRIRSISSAPDSTSSIGNAVITPRHSNLTNAEHLLDGDPSFGYP PASPRLSGCASSDAYSLQPTPRASNFNETEVTAGTPVWGRSPVGGGRVS RQMSPGKCQVEERQGCKDITQSDKEISFRDNIKVSMPGEEAADTTARNQ KMPHAFVMIRLILTVVGRKLSRNPNTYSSVLGLVWSLISFKWNMEMPSL IKASIKIISDASLGMAMFSLGLFMALQPRIIACGTKRAAMGMAIRFVCCP LVMSASSIVIGLRGDKLHTAIVQAALPQGIVPFVFAREYGLHPDILSTGVI FGMLVSLPITLLYYILLGL-

Figure S5. Complete sequence of LjPIN6 and its transmembrane domain topology. (**A**) LjPIN6 coding and protein sequence with the fragment obtained through the sequencing (bolded) and binding sites of primers used for sequencing (shaded). (**B**) Transmembrane domain topology of LjPIN6 and its orthologs from *A*. *thaliana* and *M. truncatula*. Red peaks represent transmembrane helices.

Figure S6. The electrophoretic separation of *LjPIN5* (**A**) and *LjPIN8* (**B**) products of amplification performed on genomic *L. japonicus* DNA template. Wells number 1 and 2 represent two biological repetitions, wells "N" state for negative controls (PCR performed in the same conditions as other samples, with the same volume of ingredients, but without DNA template). bp- base pairs.

Figure S7. The pattern of *LjPIN1* expression in the "hidden" (**A**) and "emerged" (**B**) root nodule primordia. Labels: crh – curled root hair; nc – nodule cortex; np – nodule primordium; nvb – nodule vascular bundle; rc – root primary cortex; asterisk – vascular connection with the root stele within the nodule base. Bars: 50 μ m (A), 100 μ m (B).

Figure S8. The pattern of *LjPIN2* expression in the "hidden" (**A**, **B**) and "emerged" (**C**) root nodule primordia. Labels: crh – curled root hair; np – nodule primordium; nvb – nodule vascular bundle; asterisk – vascular connection with the root stele within the nodule base. Bars: 50 μ m (A), 100 μ m (B, C).

Figure S9. The pattern of *LjPIN3* expression in the initial (**A**), "hidden" (**B**), "emerging" (**C**) and "emerged" (**D**) root nodule primordia and in juvenile, 20 dpi, nodules (**E**).

Labels: crh – curled root hair; np – nodule primordium; rc – root primary cortex; asterisk – vascular connection with the root stele within the nodule base. Bars: 50 μ m (A-C), 100 μ m (D, E).

Figure S10. The pattern of *LjPIN4* expression in the initial (**A**, **B**, **C**) and "emerged" (**D**) root nodule primordia and in juvenile, 20 dpi, nodules (**E**, **F**).

Labels: crh – curled root hair; np – nodule primordium; nvb – nodule vascular bundle; rc – root primary cortex; thin black arrows – divided cells of root cortex constituting initial primordium of the nodule; arrowheads – starch grains; asterisk – vascular connection with the root stele within the nodule base. Bars: 20 μ m (B, C), 50 μ m (A), 100 μ m (D-F).

Figure S11. The pattern of *LjPIN5* expression in the initial (**A**), "hidden" (**B**, **C**, **D**, **E**) and "emerged" (**F**) root nodule primordia.

Labels: crh – curled root hair; np – nodule primordium; nvb – nodule vascular bundle; rc – root primary cortex; thin black arrows – divided cells of root cortex constituting initial primordium of the nodule; arrowheads – starch grains; asterisk – vascular connection with the root stele within the nodule base. Bars: 50 μ m (A-C), 100 μ m (D-F).

Figure S12. The pattern of *LjPIN6* expression in the initial (**A**, **B**, **C**, **D**, **E**) and "emerged" (**F**, **G**) root nodule primordia and in juvenile, 20 dpi, nodules (**H**).

Labels: crh – curled root hair; np – nodule primordium; nvb – nodule vascular bundle; rc – root primary cortex; pink arrow – curled root hair expressing GUS signal; thin black arrows – divided cells of root cortex constituting initial primordium of the nodule; arrowheads – starch grains; asterisk – vascular connection with the root stele within the nodule base. Bars: $20 \mu m$ (A-D), $50 \mu m$ (E), $100 \mu m$ (F-H).

Figure S13. The pattern of *LjPIN7* expression in the initial (**A**, **B**), "hidden" (**C**) and "emerged" (**D**) root nodule primordia and in juvenile, 20 dpi, nodules (**E**).

Labels: crh – curled root hair; np – nodule primordium; nvb – nodule vascular bundle; thin black arrows – divided cells of root cortex constituting initial primordium of the nodule; asterisk – vascular connection with the root stele within the nodule base. Bars: $20 \ \mu m$ (A), $50 \ \mu m$ (B), $100 \ \mu m$ (C, D).

Figure S14. The pattern of *LjPIN8* expression in the initial (**A**) and "hidden" (**B**) root nodule primordia and in juvenile, 20 dpi, nodules (**C**).

Labels: crh – curled root hair; np – nodule primordium; nvb – nodule vascular bundle; asterisk – vascular connection with the root stele within the nodule base. Bars: =100 μ m.

Figure S15. The control *L. japonicus* nodules collected from plants with adventitious roots formed after cutting off the root system (as in regular transformation process) but not transformed with *A. rhizogenes* (**A**), and plants transformed with non-transgenic *A. rhizogenes* (**B**).

Labels: nvb - nodule vascular bundle; blue arrows – files of tracheary elements in the vascular bundle; asterisk – vascular connection with the root stele within the nodule base. Bars: 100 μ m.

Figure S16. Normalized expression level of G2-M phase cell cycle markers. Mean values (±SE) are derived from three biological replicates, for which three individual qPCR reactions were performed.

Table S1. RT-PCR conditions.

Temperature	Time
98 °C	30 s
35 cycles:	
98 °C	10 s
59.5 °C	30 s
72 °C	1 min
72 °C	10 min

 Table S2. Real-time qPCR conditions.

Temperature	Time			
PCR				
50 °C	20 s			
95 °C	10 min			
40 cycles:				
95 °C	15 s			
60 °C	1 min			
Melting curve				
95 °C	15 s			
60 °C	1 min			
95 °C	30 s			
60 °C	15 s			

Gene / ID	Forward primer sequence $5' \rightarrow 3'$	Reverse primer sequence $5' \rightarrow 3'$	Product length [bp]
<i>LjPIN1</i> (Lj4g3v3114900.1)	ATACTCTCTACAATCCTCAAGGAACC	GTTCCACCAGAAATAGCATCATAGT	150
<i>LjPIN2</i> (Lj4g3v2139970.1)	CCCACTATTGTAAAAGGTTCCATC	AGCCATAGAAAATGTTGCTACAGA	138
<i>LjPIN3</i> (Lj0g3v0320849.2)	ATCGCTATGTACGGCGATTACT	GGAGTCAACCTTGAATGACACAAT	174
<i>LjPIN4</i> (Lj4g3v0633470.1)	ATTTCTTACAGGTCCTGCAGTTATG	GGTAGAGCTATCAACATCCCAAATA	192
<i>LjPIN5</i> (Lj1g3v2809230.1)	TCGCCCTGTTTTTAGGCTAC	TATCGCATCGCACTGTTCTC	71
LjPIN6a (Lj0g3v0178829.1)	CTCTATATTTCGCAATGCTGGTAG	CTATGATGAACTTAGCGTCCATCTC	174
LjPIN6b (Lj1g3v0264160.1)	GAAAACTTTCGCGTAACCCTAATA	CATGAAAAGCCCTAAGCTAAACAT	167
<i>LjPIN7</i> (Lj1g3v4106960.1)	GCTAGTGTCATGACTAGGCTCATTT	GCCTGCATCAGATAGAATTGATATT	171
<i>LjPIN8</i> (Lj2g3v1034600.1)	ATAACCGGTCTATCATTGTCAACAC	TGTAGCTCCTGAGAAGTCTCACTTT	242
<i>LjCDKB1;1</i> (Lj3g3v2061650.1)	CGATCTCAAGAAATACATCGATACC	TACAGAGCTGAAACAGAAAACTCTGAA	95
<i>LjCDKB2;1</i> (Lj5g3v0279150.1)	AGGAACTTATGGGAAGGTGTATAGG	TGTTTAACATCCATTAACCTGACAA	180
<i>LjCYC1</i> (Lj2g3v1645400.1)	CATATGTTTTCATGAGAAGGTTCCTA	CATACTCAACTAGAGACAGCTCAACC	99
<i>LjPP2AA1</i> (Lj2g3v1155670)	GCAGTGCTTATAGACGAGCTGA	TGGATAGCTTGCGAATTGAG	70
<i>LjPP2AA2</i> (Lj2g3v0742070)	TCGACGAGTTGAAGAACGAG	GTGTCCTCTCCTCACCAAGC	93

Table S3. Accessions of genes, sequences of primers and product lengths for real-time qPCR. bp - base pairs.

Table S4. PCR conditions.

Time
5 min
30 s
30 s
30 s
5 min

Table S5. Seque	nces of pri	imers	for promoter am	plification. S	haded p	parts of the	sequence	represe	nt frag	ments
for Gateway cloning, while underlined nucleotides in the primers for elongation PCR show complementarity										
to the template.										
			•	n		•		D 1/1	~	

	Forward primer sequence Reverse primer sequence		Position of promoters	
	$5' \rightarrow 3'$	$5' \rightarrow 3'$		
al DINI	AAAAAGCAGGCTCCTAAACCATTGTT	AGAAAGCTGGGTCTTCTTCACTTCGGT	Chromosome 4	
pLjPINI	CCGATCTTAC	AGAGAAACA	4216864542170156	
1 :DIND	AAAAAGCAGGCTCCATAGGGAACCT	AGAAAGCTGGGTCGGCTAAACCAAG	Chromosome 4 (-)	
pLjPINZ	CCTAGATCG	GTTGTTGT	2954463329546630	
TI DINI2 DODI	AAAAAGCAGGCTCCTCCCATGAGTCA		-	
<i>pljrino,</i> rCKi	AGTTATCC	GIACICAAAGAGGAAIAAGAGGAG		
pLjPIN3,	AAAAAGCAGGCTCCTCCCATGAGTCA	AGAAAGCTGGGTCCTTTTTTTTGTTGG	Chromosome 0 (-)	
PCRII	AGTTATCC	GTTTTA	167444230167446018	
al iDINIA	AAAAAGCAGGCTCCAAGAATAAGCC	AGAAAGCTGGGTCTTTCTTTATATGGC	Chromosome 4	
pL)1-11N4	TCTCGTTTCTCAA	CAAAAAAAG	1002031610021906	
AL DINE DODI	AAAAAGCAGGCTCCTATGATGATGT		-	
<i>pljpins,</i> rCKi	CCAAGCTGA	GAGAAGCAAAGIGAGCCAIA		
pLjPIN5,	AAAAAGCAGGCTCCTATGATGATGTC	AGAAAGCTGGGTCCTTTTTTAATTTT	Chromosome 1 (-)	
PCRII	CAAGCTGA	TTTCTTGTCTCTCG	3194455731946536	
nI iDINI6			Chromosome 1	
pLjFINO			Unmapped region	
nI iDINI7	AAAAAGCAGGCTCCAGAAATTTAAA	AGAAAGCTGGGTCTTGTTTTAGCAGA	Chromosome 1	
pLjFIIN7	ACCCACAATTCCA	AACAATCACT	4877419648776085	
	AAAAAGCAGGCTCCTTCATACAGAAT	AGAAAGCTGGGTCGATTCCTAAGTAT	Chromosome 2 (-)	
рцично	CACCACGA	TGAAAGA	1654270416544503	
Elongation	GGGGACAAGTTTGTACAAAAAAGCA	GGGGACCACTTTGTACAAGAAAGCTG	-	
PCR pLjPIN6	GGCTCCAATTCTAAGGTGG	GGTC <u>TTTTGAGTGAGATA</u>		
Elongation			-	
PCR	GGGGACAAGTTTGTACAA <u>AAAAGCA</u>	GGGGACCACTTTGTACAA <u>GAAAGCTG</u>		
pLjPIN1-5,	GGCT	GGT		
pLjPIN7-8				

Table S6. Conditions of promoter regions amplification.

-

Temperature	Time
98 °C	5 min
35 cycles:	
98 °C	30 s
58 °C – <i>pLjPIN6</i> 60 °C – <i>pLjPIN: 2, 3, 8</i> (PCRI, PCRII), 5 (PCRII) 66 °C – <i>pLjPIN: 1, 4, 7</i> 70 °C – <i>pLjPIN5</i> (PCRI)	30 s
72 °C	1 min
72 °C	5 min

Table S7. Conditions of promoter regions elongation with *att* sequences.

Temperature	Time
98 °C	30 s
30 cycles:	
98 °C	10 s
60 °C	30 s
72 °C	1 min
72 °C	5 min