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1. Molecular dynamics methods. 43 

The crystallographic structure of the BTL2 in open conformation (UniProtKB - Q59260) was obtained 44 

from the RCSB-Protein Data Bank (PDB code: 2W22). In order to prepare the structures for further 45 

simulations, water molecules and co-solvent molecules including both Triton X-100 molecules (EGC-46 

403 and ECG-404) (Fig. S4) were removed. Next, we built a homology model of the BTL2 in the closed 47 

conformation using as template the Bacillus stearothermophilus lipase 1 (UniProtKB - Q9L6D3, PDB 48 

code: 1JI3) with a sequence homology of 95.1%. This homology model was built with the SWISS-49 

MODEL web server [1] obtaining a positive QMEAN value [2] of 0.66. The protonation states were 50 

calculated for both structures using the H++ web server [3] which relies on AMBER parameters and 51 

finite difference solutions to the Poisson–Boltzmann equation. 52 

The conformational change from the closed to the open conformation was simulated using targeted 53 

molecular dynamics (TMD) as implemented in AMBER 16 [4], using the previously generated 54 

models. A salt concentration of 0.15 M and an internal and external dielectric constant of 4 and 80, 55 

respectively, were used. Atom types and charges were assigned according to AMBER ff15FB (Force 56 

Balance) force field [5]. Both systems were hydrated by using boxes containing explicit TIP3PFB water 57 

molecules [6] with added counter ions to maintain electro neutrality. Solvent molecules and counter 58 

ions were relaxed by energy minimization and then allowed to redistribute around the positional 59 

restrained structures during a 50 ps run at constant temperature (300 K) and pressure (1 atm). These 60 

initial harmonic restraints were gradually reduced in a series of progressive energy minimizations 61 

steps until they were completely removed. The resulting systems were heated again from 100 to 300 62 

K during 20 ps and allowed to equilibrate in the absence of any restraints for 1.0 ns during which the 63 

system coordinates were collected every 2 ps for further analysis.  The equilibrated structures were 64 

then used as the starting points for the three targeted MD simulations we ran. These simulations had 65 

a duration of 5, 10 and 50 ns applying a steering force based on a mass-weighted RMSD with respect 66 

to reference target conformation with force constants of 1, 0.75 and 0.5. Periodic boundary conditions 67 

and the Particle Mesh Ewald methods were used to treat long-range electrostatic effects. The SHAKE 68 

algorithm [7] was used throughout; applied to all bonds and an integration step of 2.0 fs.  69 

The Root mean square deviation of the c-alpha atoms (RMSD) was calculated and distances between 70 

A191 and F206 where measured along the TMD simulation with the help of ccptraj tool from 71 

Ambertools 14 [8]. Moreover, from each of the three trajectories, we selected a structure when 72 

residues A191 and F206 where at least at 5Å from each other; these structures were conformationally 73 

similar to the open conformation. Then, we built three ccBTL2 structures using the mutagenesis tool 74 

from PyMOL Molecular Graphics [9] and performed an energy minimization, which leaded to three 75 

highly similar models. 76 

Finally, we performed molecular dynamic (MD) simulations on the ccBTL2, BTL2 open and closed 77 

conformations, in the absence of ligands using the previously generated molecular systems and  78 

AMBER16. The AMBER force field ff15FB (Force Balance) for the protein parametrization was 79 

applied. Water and metal parameters were obtained from the TIP3PFB and ions parameter 80 

modification file. After that, systems were minimized in vacuum, in order to release possible 81 

undesired interactions or clashes. Then the systems were embedded in an TIP3FB water box of 82 

approximately 12000 water molecules forcing neutrality by adding chloride ions. Initially, the 83 
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embedded systems were minimized and heated to 300 K in a NVT ensemble followed by 84 

equilibration during 0.5 ns in a NPT ensemble. In all systems the hydrogen atoms were kept at their 85 

equilibrium distance by means of the SHAKE algorithm. Atom pair distance cutoffs were applied at 86 

10.0 Angstroms to compute the Van der Waals interactions, while long-range electrostatics were 87 

computed by means of Particle-Mesh Ewald (PME) method [10]. Finally, the MD simulation was 88 

performed up to 200 ns using the thermostat NPT ensemble at 300 K and generating snapshots each 89 

20 ps for further analysis of both systems (10 000 in total). The trajectories of all complexes were 90 

collected and analyzed by the cpptraj module of AMBER16 [8] in order to obtain the previously 91 

mentioned root mean square deviation of the overall c-alpha atoms, and the atoms from alpha6- and 92 

alpha7-helices. Moreover, 10000 aligned PDBs were obtained from each trajectory to perform the 93 

analysis of the active pocket cavity by the versatile Fpocket software [11], which is based on Voronoi 94 

tessellation algorithm. The Mdpocket module [12] was applied to obtain the corresponding volumes 95 

in each MD simulation step using as a pocket reference (pocket1 and pocket2) the first ones obtained 96 

from the first step (md0) in the initial BTL2 in the open conformation. The volume of the pockets 97 

recorded along the simulation where represented as trend lines and violin plots using the software 98 

RStudio (www.rstudio.org) and the package ggplot2. 99 
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Figure S1. Residues in BTL2 that were modified to create the quadruple mutant ccBTL2. 147 
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 189 

Figure S2. SDS-PAGE electrophoresis of BTL2 and ccBTL2 lipases. From left to right: Lane 1 190 

(Molecular weight markers); Lane 2 crude extract from E. coli expressing ccBTL2; Lane 3 purified 191 

ccBTL2; Lane 4 purified BTL2. 192 
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 221 

Figure S3. Hydrolysis of p-NP esters of different acyl chain length with immobilized wtBTL2 222 

and ccBTL2 with different redox pretreatments. BTL2-CNBr: as obtained from purification (blue 223 

bar), pretreated with 200 mM Cu2+ (red bar), pretreated with 25 mM DTT (green bar). ccBTL2-CNBr: as 224 

obtained from purification (purple bar), pretreated with 200 mM Cu2+ (cyan bar), pretreated with 25 mM 225 

DTT (orange bar).  226 

Note S1: For both CNBr derivatives made with lipase without any pretreatment, there are not 227 

significant differences on hydrolytic activity (Figure 4) except for the C8 ester where ccBTL2-CNBr is 228 

18,8 % (11.4 IU/g) higher than that of the BTL2 derivative (9,6 IU/g). The profile obtained for the BTL2 229 

derivative activity vs. p-NP ester length chain is close to that obtained for the free BTL2 enzyme. It is 230 

noteworthy that both BTL2 and ccBTL2 showed broad substrate specificity towards p-NP acyl esters 231 

of different length, processing chains from C2 up to C16. Nevertheless, it was also obvious the relative 232 

higher activity against the C8 ester (Ref. [22] in the main text). The oxidative pretreatment deteriorates 233 

BLT2 derivative activity especially with C12 and C16 p-NP esters while for the ccBTL2 the same 234 

pretreatment was slightly positive or neutral. In general, the hydrolytic behavior of the ccBTL2 235 

derivative surpasses that of BTL2 even after the harsh oxidizing conditions assayed in presence of 236 

Cu2+.  237 
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 249 

 250 

Figure S4. Reference volumes used to monitor the variation between the crystallographic 251 

structures of BTL2 and the ccBTL2 model. a) Crystallographic structure of BTL2 (open conformation) 252 

in complex with Triton X-100 (EGC-403 and EGC-404) moieties (PDB code: 2W22). b) Volumetric 253 

representation (gray mesh) of Pocket 1 fitting the EGC-404 molecule. c) Volumetric representation 254 

(gray mesh) of Pocket 2 fitting the EGC-403 molecule. 255 
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