Supplementary Information

Table S1. Deep eutectic solvents prepared in this work.

#	DES	Mol ratio¹	Tm °C¹	Method of preparation ¹
	Amides			
1	Choline chloride : urea	1:2	12	Heating under vaccum
2	Choline chloride : methyl urea	1:2	29	Heating under vaccum
	Acids			
3	Choline chloride: malonic acid	1:1	10	Heating
4	Choline chloride : levulinic acid	1:2	RT	Heating
	Alcohols			
5	Choline chloride : ethylene glycol	1:2	-10	Heating
6	Choline chloride : D-isosorbide	1:2	RT	Heating
7	Methyitriphenylphosphoniumbromid : glycerol	1:2	26	Heating
8	Choline chloride : glycerol	1:301:2	-20	Heating
9	Choline chloride : benzyl alcohol	1:2	RT	Heating
	Natural DES (NADES)			
10	Choline chloride : 1,3-propanediol : water	1:1:1	-110	Heating up to $50 \mathrm{C}$ (no vacuum)
11	Choline chloride: sucrose: H ₂ O	4:1:4	-83	Heating
12	Choline chloride: glucose: H ₂ O	5:2:5	-84	Heating

¹The molar ratio is given as well as the melting point of the eutectic mixture if known. The solvents were prepared by the method indicated.

Figure S1. Non-linear curve fitting to Michaelis-Menten or inhibition product equations. Initial velocities (μmol/mg*min) were plotted against increasing concentrations of starch (mg/mL). In the case of the reactions carried out in DES, viscosity became a limiting factor at high starch concentrations. Error bars correspond to standard deviation of triplicates.

Figure S2. Initial velocities vs Starch concentration in DES and DES:MeOH medium. Since viscosity became a limiting factor, data at starch concentrations above 8 mg/mL were discarded, and the remaining data were fit to the Michaelis-Menten equation. Error bars correspond to standard deviation of triplicates.

Figure S3. Chromatographic profile of standards and alcoholysis reaction products. In black, 80% DES; in blue, methyl glucoside (MG) directly dissolved in mobile phase (ACN:H20, 80:20); in dark green, MG dissolved in 40% DES; in red, alcoholysis reaction products (includes a mixture of dextrins, glucose, methanol, DES and MG). Samples from reactions were previously diluted 1:1 with buffer and digested for 6 h with glucoamilase from *A. niger* to hydrolyze remaining amylose. After digestion, samples were filter through a 0.22 μ m nylon membrane and injected into a Gold-amino column. The red arrow shows the peak corresponding to the product of interest MG to be quantified.