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Abstract: Deriving a practical formula for the atomic body with generalized shell occupations, we
perform a detective analysis of the radial distribution in the exchange energy, hinting at ideas about
new types of density functionals, dedicated to the specifics of the electronic structure of atoms,
exploiting the intrinsic spherical symmetry.
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1. Introduction

The electronic structure of the atoms is tacitly perceived nowadays as something definitively
resolved. Aiming at immediate applications, from the start of the era of low power computers,
the quantum chemists leaned toward rather drastic approximations and numerical compromises.
This trend is continued even nowadays, in the quest for computing larger structures, challenging
the domain of nano-chemistry. In this race, feedback with a sound account of the atomic structure is
somewhat ignored.

A clear example is the extensive and intensive use of Gaussian type orbitals (GTOs) [1,2]. The users
are aware that the rk

·exp(−ζ·r2) primitives are not the best choices, since the known exact solutions for
the hydrogen atom suggests that the Slater type orbitals (STOs) [3], with rk

·exp(−ζ·r) components, are
more natural options. The GTO-based codes [4,5] are more massively employed than the rather rare
STO-type ones [6]. In addition, as we observed recently [7], the GTO computational establishment
carries, since early editions of computer codes, a hidden drawback, overlooked by most users. Namely,
the GTO codes and repositories are built on drastically limited radial power-patterns of rk

·exp(−ζ·r2)
primitives. Thus, the s-type orbitals are always without radial prefactors (i.e., k = 0), the p-type ones
get only k = 1, while the d functions correspond to k = 2, and so on. An inspiration borrowed from
hydrogen prototypic exact solution will suggest that a larger variety of k powers for each type of shell is
conceptually welcomed and technically beneficial. Another collateral loss induced by the success of
GTO technology comes from the evaluation of all the integrals, including the atomic ones, by products
dichotomized with respect to x, y, and z Cartesian coordinates, because this is technically convenient [8].
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However, in this way, a whole wisdom of factorizing the atomic problems in radial and angular
parts is lost. The black-box treatment of the atomic integral ignores the advantage of thinking
of the inter-electronic effects (Coulomb, exchange, and correlation) with the help of the so-called
Slater–Condon integrals [9]:

Fk
ab ≡ Fk

nala,nblb
=

∫
∞

r1=0

∫
∞

r2=0
Rnala(r1)

2Rnblb(r2)
2 min(r1, r2)

k

max(r1, r2)
k+1

r2
1r2

2dr1dr2 (1)

Gk
ab ≡ Gk

nala,nblb
=
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∞
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∫
∞

r2=0
Rnala(r1)Rnblb(r1)Rnala(r2)Rnblb(r2)

min(r1, r2)
k

max(r1, r2)
k+1

r2
1r2
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defined as a function of the radial components R(r) of atomic functions belonging to a given couple of
shells, a and b, each identified with their main and secondary quantum numbers, n and l. In the body
of this article we will perform analyses of the exchange density in atoms, rationalizing the energy with
the help of Slater–Condon formulas.

The exchange energy in atoms deserves continuous attention. The importance of which is
weighted by the high popularity gained by the application of density functional theory (DFT) in
practical calculations [10]. The sensible issue is that practically the whole applied DFT stays on
extrapolations originating from the uniform electron gas [11]. The many alleviations of this rather
limiting hypothesis, belonging to the classes of generalized gradient approximation (GGA) [12,13]
or hybrid functionals [14,15], are tacitly an offshoot of the local density approximation. In the atom,
the variation of radial density is very steep, decaying exponentially from the height of the nuclear
cusp. In such circumstances, the foundation based on electron gas can be questioned, aiming for new
paradigms, and exploiting the regularities due to the spherical symmetry. We will attempt this idea in
the actual work.

2. Results and Discussion

2.1. The Energy of the Atom with a General Shell Occupation Scheme

As a basic tool of investigation in the aimed area, we need an explicit formula, with the
function of arbitrary occupations of atomic shells, compatible with calculations performed by
state-averaged complete active space (CAS), or, in certain cases, in the restricted Hartree–Fock
(RHF) frame. Basic textbooks [16] offer many details of the atomic structure theory, which, however,
are not handy and general enough to be applied as ancillary tools, compliant with the modern numeric
computational procedures. Then, we will tailor a closed formula for the total atomic energy as a
function of shell occupations.

The derivation can be started with master formulas met in the so-called DFT + U methods [17,18],
where the two-electron energy of a given configuration, defined by its α and β occupation numbers, is
written as:

Vee[{n}α, {n}β] =
1
2

a∈α∑
a

a∈α∑
a′,a

nana′(Uaa′ − Jaa′) +
1
2

b∈β∑
b

b′∈β∑
b′,b

nbnb′(Ubb′ − Jbb′′) +
a∈α∑

a

b∈β∑
b

nanbUab (3)

where U refers to Coulomb-type integrals, actually equivalent to the Fab
0 Slater–Condon parameters,

and J to the averaged exchange integrals, taken as combinations of Fk or Gk integrals.
The above formulation, ascribed in the spin-unrestricted spirit, does not offer the final answer,

being valid for a given Sz = S spin projection resulted from the balance of α and β populations, but not
for the S spin itself. Rethinking the situation as a spin-restricted case, the electron–electron potential
for a definite S spin state can be obtained as the difference between the above generic formula taken at
Sz = S and those for the Sz = S − 1 projection, averaging over the whole set of configurations that span
these Sz quantum numbers.
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The obtained general formula is given in Equation (4), admitting general occupations, pli , over the
whole set of shells, l denoting the secondary quantum number, while i counts the repetition of the
given shell type:

E =
∑
l

∑
i

plihli +
∑
l

∑
i

{
1
2 pli

(
pli − 1

)
F0

lili
+

[
αl · pli + β l · p2

li
+ γl · σli

(
σli + 1

)]
Jlili

}
+

∑
l≤l′

∑
li,l′i′

{
plipl′i′

(
F0

lil′i′
−

1
2 Jlil′i′

)
− 2σliσl′i′ · Jlil′i′

} (4)

The hli elements are the orbital one-electron energies (kinetic and electron-nuclear parts), the F0
lili

and F0
lil′i′

are the respective intra- and inter-shell Coulomb integrals, while the Jlili and Jlil′i′ are the
corresponding averaged exchange integrals. For a ln sub-configuration, having n ≡ pli electrons in the
li shell, more exactly with nα spin-up and nβ spin-down particles, the σli = (nα − nβ)/2 denotes the
net spin of the shell. The shell-distributed spin quantities are summed to the total spin of the atom
S =

∑
l
∑

i σli . Note that, according to the previous discussion, the obtained energy refers to S as a
good quantum number. The tacit assumption is that the spin from possible multiple open shells of the
general configuration is coupled all parallel. This condition induces a certain limitation, but yet the
situation is sufficiently general.

The coefficients ascribed to the intra-shell exchange were obtained by induction, after analyzing
the results of spherical averaging on the all possible sets of integer occupations of the shells. Their
expressions were found as follows:

αl =
4l + 3

4(l + 1)
, βl = −

2l + 3
8(l + 1)

, γl =
2l + 1

2(l + 1)
, (5)

if l > 0. For the s-type orbitals, there is no intra-shell exchange (all the above factors being null).
Table 1 shows the formulas for the inter-shell exchange integrals. The diagonal contains the same type
of shells, but spanning different functions.

The Jll are the average values of the exchange integrals over all the orbital couples within a given
shell. For the respective p, d, and f cases, these quantities are

Jpp =
1
5

F2
pp (6a)

Jdd =
1

14
F2

dd +
1
14

F4
dd (6b)

J f f =
2

45
F2

f f +
1

33
F4

f f +
50

1287
F6

f f (6c)

as function of Slater–Condon radial parameters.
To the best of our knowledge, a closed formula for the atomic energy of the atomic body, as a

function of general shell occupation numbers, is not presented in the specialized literature, particularly
in the concern of the intra-shell exchange terms fulfilling the meaning of state-averaged CAS over
multiple open-shell configurations.

We realized our own code for atomic calculations based on GTO primitives and explicit use of
Slater–Condon integrals. The Formula (4) was checked to yield the same results with state-averaged or
single-configuration ab initio calculations. It must be emphasized that retrieving the ab initio result with
the above formula is not trivial. First of all, this validates the treatment. Then, recall the above sentence,
that the actual quantum chemistry codes are not working with Slater–Condon parameterization,
because of the lost interest in radial-angular factorization. However, equating to spherically adapted
proper parameters brings transparency in the causal engine and clears the way for new rationales.
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Table 1. Generic formulas for inter-shell averaged exchange integrals.

Shell Couples s p d f

s Js1s2 = G0
n1sn2

p Jps = Jsp = 1
3 G1

sp Jp1p2 =
1
3 G0

n1pn2p + 2
15 G2

n1pn2p

d Jds = Jsd = 1
5 G2

sd
Jdp = Jpd = 2

15 G1
dp + 3

35 G3
dp

Jd1d2 =
1
5 G0

n1dn2d + 2
35 G2

n1dn2d + 2
35 G4

n1dn2d

f J f s = Js f =
1
7 G3

s f J f p = Jp f =
3

35 G2
f p + 4

63 G4
f p J f d = Jd f =

3
35 G1

f d + 4
105 G3

f d + 10
231 G5

f d

J f1 f2 =
1
5 G0

n1 f n2 f + 2
35 G2

n1 f n2 f + 2
77 G4

n1 f n2 f + 100
3003 G6

n1 f n2 f
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2.2. A Methodology for the Decomposition of Two-Electron Terms

Before going to the analysis step, to describe the exchange energy, further adequate tools must
be prepared. In this view, we will proceed to the decomposition of two-electron terms, conducting
their evaluation on numeric grids. Note that we are able to, and we do the full analytic calculation
of two-electron integrals, repeating the procedure in the numeric mode only for detective purposes.
The numeric integration is better done with a grid with an exponential spacing of the points. Such an
integration scheme, due to Weber et al. [19], uses the following definition for the m-th point:

rm = δr0
exp(mh) − 1
exp(h) − 1

(7)

depending on the spacing of the first point with respect of the origin, δr0, and a scale parameter, h.
The same grid is used in several programs conducting numeric calculations of the atoms, to prepare
pseudo-potentials for plane-wave calculations, as is the case of the ATOMPAW module [20] from the
ABINIT suite [21].

Deciding a maximal radial extension of the set, rmax, the number of points results as

mmax = int
[

1
h

ln
(
1 + rmax

exp(h) − 1
δr0

)]
(8)

The square brackets meaning the integer value. Conversely, if a certain number of points over
a given radial interval is desired, the h parameter must be fitted, correspondingly. The points are
associated with a set of weights:

wm = h · δr0
exp(kh)

exp(h) − 1
(9)

so that the numeric integration of a given function f (r) can be formulated as a weighted sum over
the grid: ∫

∞

r=0
f (r)dr ≈

mmax∑
m=1

wm· f (rm) (10)

A double sum of this sort being performed for two-dimensional integration.
Then, to account for the given exchange element, Jab, the entities to be integrated over the 2D

grid are

Xab
mn = r2

mr2
nRa(rm)Rb(rm)Ra(rn)Rb(rn)

mmax∑
m=1

χk
ab ·

min(rm, rn)
k

max(rm, rn)
k + 1

(11)

The χk
ab coefficients formalize the definition of Jab integrals for a given shell couple, ab, as a

combination of Slater–Condon parameters with k superscript. The χk
ab values can be picked from

Equation (6a,b) and from Table 1. Conventionally, the m and n indices run on the electrons labeled 1
and 2, respectively, in Equations (1) and (2). One may produce a partial summation, emulating the
integration over the electron #2, which corresponds to the one-electron operator in the mean-field
treatment of an exchange element:

Yab
m ≈

nmax∑
n=1

Xab
mnwn → Ĵab(r1) (12)

The numeric estimation of the whole exchange coupling integrals can be termed as

Jab ≈

mmax∑
m=1

wm · Yab
m =

nmax∑
n=1

mmax∑
m=1

wm ·wn ·Xab
mn (13)
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We probed that, in the calculations described below, the numerically estimated integrals resemble
the fourth digit, or better (in atomic units), the analytic ones, working over a 300 point grid, established
with the following parameters: δr0 = 0.001 Bohr, rmax = 20 Bohr, and h = 0.02.

2.3. The Radial Distribution of the Exchange Energy in Atoms

Now we can attempt the aimed for insight into the atomic structure. For the first check, we will
confine the calculations to the B-Ne series, first submitted to CAS or RHF calculations, and afterward
reloaded in our codes of analytic atomic calculations, followed by numeric decomposition of the
exchange integrals. The RHF refers to the closed-shell case of neon, and to the single-configuration
(non-degenerate ground state) of the half-filled p shell in nitrogen. All the other situations imply a
degenerate orbital term (P), treated as CAS average over the corresponding three states.

Let us start with the simple task of drawing the radial density profiles, as shown in Figure 1.
One may note that going from B to Ne, the area under the curves increased, directly corresponding to
the total number of electrons in the atoms. The main changes occurred in the part corresponding to the
progressive population of the p shell.
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Figure 1. The radial electronic density distribution for the B-Ne atoms series.

In the following, we produce the density distribution of the exchange. With the leverage described
in Equation (12), one may select from the sum of total energy; in Equation (4), the exchange components
integrated only on one electron:

Vll′
x (r1) =

∑
l≤l′

∑
li,l′i′

{
− plipl′i′

(1
2

+ 2σliσl′i′

)
· Ĵ lil′i′(r1)

}
(14a)

Vl
x(r1) =

∑
li

[
αl · pli + β l · p2

li
+ γl · σli

(
σli + 1

)]
Ĵ lili(r1) (14b)

Then, summing over all the intra- and inter-shell contributions, we obtained the energy profiles of
total exchange density, Vx, shown in Figure 2.
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Figure 2. The radial density of the exchange energy in the B-Ne atoms series.

Contemplating Figure 2, one may see that it looks like a “lake” reflection of the “hills” portrayed
in Figure 1. This prompts the idea that the exchange Vx(r) ≡ Vx[ρ(r)] in an atom is better related to the
radial density distribution, r2ρ(r), than with the ρ(r)4/3 celebrated formula originating from the theory
of uniform electron gas.

Figure 3 details the exchange energy in the Xmn components derived from Equation (11) for the
case of a neon atom. The maps for the other atoms look qualitatively similar. Figure 3a sums all the
Xmn contributions at each (m,n) point of the 2D radial grid. The other panels detail the distinct shell
contributions. Figure 3b shows the interaction between the two occupied s shells, which can be ascribed
as X1s,2s

mn . This shows positive zones, due to the negative 1s(r1)2s(r2) areas, whose action was amended
with the negative sign of the exchange in the total energy, −2J1s,2s. However, the total balance of the
exchange was negative due to the net positiveness of the exchange parameters. Figure 3c shows the s–p
inter-shell exchange, each point containing the X1s,2p

mn + X2s,2p
mn terms. Figure 3d shows the p intra-shell

exchange, small in relative value, as compared to the other parts. For comparability, all the 3D maps
from Figure 3 (exchange energy vs. r1 and r2 grid points) are drawn at the same vertical scale.
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Figure 3. The exchange energy distribution for Ne atom, as function of radial coordinates of formal
electrons 1 and 2. (a) The total exchange energy; (b) the exchange due to inter-shell s-s interaction;
(c) the s-p exchange coupling; (d) the exchange energy inside the p shell. The color map goes from blue,
at minimum, trough yellow at intermediate negative values, to red for small negative, small positive
and null values.
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In the following, we will extract a function useful for the discussion of the Fermi hole, h(r1,r2).
Namely, considering the generic formulation of the exchange energy as integration over ρ(r1)h(r1,r2)/r12,
we emulate h(r1,r2) multiplying the exchange potential by r12 and dividing by ρ(r1). The transformation
Vxr12/ρ(r1) is applied to all the exchange components. Thus, with this reasoning, we propose as
interesting quantities the following transformations of Slater–Condon primitives involved in the
exchange integrals:

uab(r1, r2) =
1

ρ(r1)
Rnala(r1)Rnblb(r1)Rnala(r2)Rnblb(r2)

min(r1, r2)
k

max(r1, r2)
k

r2
2 (15)

The above expression is the result after converting the r12 factor in terms of minimum and
maximum from individual electron coordinates, r1 and r2, via multipolar expansion, implicit in the
definition of Slater–Condon parameters. Performing such a mutation in the body of each exchange
term and summing them in the same way as used for the obtaining of the total energy, one draws
the map seen in Figure 4. The standard definition of the Fermi hole follows the integration over the
elements of density matrices [22,23]. The above procedure can be taken as an alternative way, useful in
the further quest for new empirical recipes for the Fermi hole shape. Obeying the demands of spherical
symmetry, we propose here the idea of redrawing the Fermi zone in atoms as a spherical crust, i.e.,
a radial profile, instead of the actual image, as a local hole in the homogenous or non-homogenous
electronic density. Analyzing sections along the r2 coordinate in Figure 4, one may believe that a sharp
Gaussian profile of the Fermi radial distribution may be a reasonable approximation. The subject
demands further investigation and come-back studies on different classes of atoms and bases.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 10 

 

In the following, we will extract a function useful for the discussion of the Fermi hole, h(r1,r2). 
Namely, considering the generic formulation of the exchange energy as integration over 
ρ(r1)h(r1,r2)/r12, we emulate h(r1,r2) multiplying the exchange potential by r12 and dividing by ρ(r1). The 
transformation Vxr12/ρ(r1) is applied to all the exchange components. Thus, with this reasoning, we 
propose as interesting quantities the following transformations of Slater–Condon primitives involved 
in the exchange integrals: 

푢 (푟 , 푟 ) =
1

ρ(푟 ) 푅 (푟 )푅 (푟 )푅 (푟 )푅 (푟 )
푚푖푛( 푟 , 푟 )
푚푎푥( 푟 , 푟 )

푟  (18) 

The above expression is the result after converting the r12 factor in terms of minimum and 
maximum from individual electron coordinates, r1 and r2, via multipolar expansion, implicit in the 
definition of Slater–Condon parameters. Performing such a mutation in the body of each exchange 
term and summing them in the same way as used for the obtaining of the total energy, one draws the 
map seen in Figure 4. The standard definition of the Fermi hole follows the integration over the 
elements of density matrices [22,23]. The above procedure can be taken as an alternative way, useful 
in the further quest for new empirical recipes for the Fermi hole shape. Obeying the demands of 
spherical symmetry, we propose here the idea of redrawing the Fermi zone in atoms as a spherical 
crust, i.e., a radial profile, instead of the actual image, as a local hole in the homogenous or non-
homogenous electronic density. Analyzing sections along the r2 coordinate in Figure 4, one may 
believe that a sharp Gaussian profile of the Fermi radial distribution may be a reasonable 
approximation. The subject demands further investigation and come-back studies on different classes 
of atoms and bases. 

 
Figure 4. The grid representation of the quantity defined in Equation (15). The color map follows the 
same convention as in Figure 3. 

3. Methods 

The primary calculations were done with GAMESS (General Atomic and Molecular Electronic 
Structure System) code [24], using the 6-31+G* basis set [25]. The developed analyses were done with 
original codes written in the MATLAB–Octave environment [26,27]. 

4. Conclusion 

This work takes a constructive critical contribution the actual state-of-the-art in quantum 
description of the electronic structure in atoms. The actual GTO-based technologies removed the 
conceptually valuable idea of radial-spherical factorization and the explicit account of the Coulomb, 
exchange, and correlation effects in the atom by the Slater–Condon parameters. To restore 
transparency, we derived a handy general formula for the atom in arbitrary shell occupations, 
obeying the total spin resulted from open shells, as good quantum number. This formula reproduces 

Figure 4. The grid representation of the quantity defined in Equation (15). The color map follows the
same convention as in Figure 3.

3. Methods

The primary calculations were done with GAMESS (General Atomic and Molecular Electronic
Structure System) code [24], using the 6-31+G* basis set [25]. The developed analyses were done with
original codes written in the MATLAB–Octave environment [26,27].

4. Conclusions

This work takes a constructive critical contribution the actual state-of-the-art in quantum
description of the electronic structure in atoms. The actual GTO-based technologies removed the
conceptually valuable idea of radial-spherical factorization and the explicit account of the Coulomb,
exchange, and correlation effects in the atom by the Slater–Condon parameters. To restore transparency,
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we derived a handy general formula for the atom in arbitrary shell occupations, obeying the total spin
resulted from open shells, as good quantum number. This formula reproduces results from CAS and
RHF calculations with dedicated ab initio codes, being implemented with the analytical expansion
of all the integrals, in original MATLAB–Octave scripts. In addition, the Slater–Condon parameters
were evaluated by numeric quadrature, this way enabling the insight, by analyzing the elementary
contributions. In this manner, we drew the radial distribution in the exchange energy density for a
prototypic series, including the B-Ne atoms. We found a clear qualitative correlation of the exchange
with the radial electronic density distribution. Further numeric handling and corresponding mapping
suggested the idea of new density functionals dedicated to the specific of spherical atomic symmetry.
Namely, instead of considering the Fermi hole as a local void, it is more appropriate to regard it as a
depletion on a spherical crust (i.e., as a radial profile), obeying the spherical symmetry intrinsic to the
atom. We will develop this paradigm in future investigations.
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