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Abstract: The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation
of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased
susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial
processes. The current study aimed to determine the role of PPARδ in fatty acid β-oxidation and
its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation
and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by
intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty
acids and mitochondrial β-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization.
Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after
the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the
PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane
potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis
during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation
between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.
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1. Introduction

Lipids are a potent source of energy, so considerable attention has been paid to their metabolism
during in vitro oocyte maturation and early embryonic development [1]. Lipid contents and
lipid-derived free fatty acid regulation have proven to be of great importance to oocyte developmental
competence and early embryo physiology [2]. In bovine oocytes, lipids are primary triglycerides of
specific fatty acids stored in distinct droplet organelles that re-localize during oocyte maturation [1,3].
In vitro cultured embryos are frequently associated with mitochondrial dysfunction and high ROS
levels due to elevated lipid contents [4]. Accumulation of cytoplasmic lipids is one of the major
drawbacks of in vitro bovine embryo production, and low cryotolerance is associated with enhanced
cytoplasmic lipids compared with that of in vivo derived counterparts [5,6].
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The potential of PPARs (peroxisome proliferator-activated receptors) in the management of
metabolic disorders has been recognized by many researchers owing to their positive roles in both
lipid and glucose utilization [7]. The PPARs, ligand-activated transcription factors belonging to
the nuclear receptor superfamily, mainly exist in three subtypes, PPARα, PPARγ, and PPARβ/δ, all
of which are regulated by fatty acids and their derivatives [8]. PPARs heterodimerize with RXR
(retinoid-X-receptor), bind to PPREs (peroxisome proliferator response elements), and form PPAR-RXR
heterodimers, which stimulate the expression of genes involved in glucose and fatty acid metabolism,
insulin signaling, cell differentiation, and cell proliferation [8,9]. PPARδ, a ubiquitously expressed
member of the PPARs family, plays a vital role in the transcription of many proteins related to
lipid homeostasis [10]. Its activation significantly upregulates lipolysis by activating AMPK and the
transcription of fatty acid β-oxidation-related genes [11,12]. PPARδ also improves glyceroneogenesis by
transcribing PEPCK (phosphoenolpyruvate carboxykinase), an enzyme well known for the regulation
of TCA cycle flux [8,13,14]. On the other hand, PEPCK is highly associated with energy production
and plays an important role in the homeostasis of lipids by re-esterification of free fatty acids to
generate triglycerides [15–17]. Among PPARs, PPARγ and δ are strongly expressed in the granulosa
and theca cells of rat oocytes, whereas their knockout or deletion exerts reproductive defects [18,19].
Deletion of PPARδ from mice oocytes reduced embryo development, cell proliferation, and implantation
potential [20,21]. Prostacyclin plays a critical role in embryo development and implantation, and PPARδ
activation is essential for prostacyclin-mediated blastocyst formation and hatching [21]. Activated
PPARδ represents a novel therapeutic target to improve in vitro fertilization and enhanced implantation
of cultured embryos [21]. Regulation/termination of PPARs in vivo or in vitro indicated that each
receptor has physiological roles in gamete maturation and embryo development [22].

In this study, we sought to determine the effects of the PPARδ synthetic agonist GW501516 on lipid
metabolism during in vitro bovine oocyte maturation and its consequences on ROS levels, mitochondrial
functioning, and the rate of developed bovine embryos. We analyzed PPARδ/PEPCK and PPARδ/CPT1
in control-, 2-bromopalmitate (2-BP)-, and GW501516-treated embryos. The PPARδ-specific antagonist
GSK3787 (4-chloro-N-(2-ethyl) benz amide) [23] was used to determine the mitochondrial membrane
potential, the expression of PEPCK and CPT1, and blastocyst development and hatching.

2. Results

2.1. Dynamic Changes in PPARs and PEPCK Expression during In Vitro Oocyte Maturation and
Embryo Development

To investigate the expression pattern of PPARs, we first analyzed the mRNA levels of PPAR genes
(PPARα, β/δ, and γ) at different developmental stages of bovine embryos. The results revealed that all
PPAR members were maternally expressed and showed their expression in COCs (cumulus oocyte
complexes), MII oocytes, two-cell embryos, 3.5-day embryos, and day-8 blastocysts (Figure 1A). The
PPAR genes were minimally expressed during the MII stage oocyte, but the expression began to be
enhanced as the developmental stages proceeded from the two-cell stage to day-8 blastocysts [24].
Meanwhile, PPARδ showed reduced expression relative to other PPAR members at the 3.5-day
embryonic stage (Figure 1B).

To confirm the PCR results and examine PPAR localization, we co-stained the development
stage-dependent samples with PPARα and PPARγ antibodies for immunofluorescence (Figure 1C). The
results showed the protein expressions of PPARα and PPARγ in GV oocytes as well as in surrounding
cumulus cells. At the MII stage, the protein expressions of both the PPARs were cytoplasmic. From
two-cell to day-8 blastocysts, the expression of PPARα andγwas highly enhanced and found all over the
embryo as well as in the inner cell mass. Thereafter, we analyzed PPARδ and PEPCK stage-dependent
protein expressions through immunofluorescence. To do this, we co-stained COCs, MII, and PN
(Pronuclear) with PPARδ and PEPCK antibodies (Figure 1D). PPARδ and PEPCK were expressed in
cumulus cells as well as in GV oocytes, but at the MII stage, the expression of both the proteins were
reduced. Surprisingly, PPARδ showed nuclear localization (as oocytes are transcriptionally inactive),
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while PEPCK was cytoplasmic. At the pronuclear stage (zygote), both proteins showed cytoplasmic
localization. The dynamic changes in the expression of PPARδ and PEPCK during maturation and
fertilization compelled us to analyze these proteins in detail (Figure 1E). From the two-cell to the
eight-cell embryonic stage, PEPCK and PPARδwere expressed in the nucleus as well as in the cytoplasm,
but in 3.5-day embryos and day-8 blastocysts, the expression of PEPCK was completely cytoplasmic.
PPARδ was expressed in both the cytoplasm and the nucleus of bovine embryonic cells.
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Figure 1. PPARs’ mRNA and protein expression during maturation and embryo development. (A) 
RT-PCR-based PPARα, PPARγ, and PPARδ expression at the COCs (cumulus oocyte complexes) (10 
per sample), MII oocyte (20 per sample), two-cell embryo (20 per sample), 3.5-day embryo (10 per 
sample) and day-8 blastocyst stages (five per sample). (B) Relative mRNA expressions of PPARα, 
PPARγ and PPARδ from the COCs stage to day-8 blastocysts. (C) Development stage-dependent 
immunofluorescent expression of PPARα and PPARγ (n = 15 per sample). (D) Immunofluorescent co-
localization of PPARδ and PEPCK from COCs to day-8 blastocysts (n = 15 per sample). The experiments 
were repeated three times, and the data are shown here as mean ± S.E.M. N.S., not significant. 
Significance: * p < 0.05, and ** p < 0.01. The original magnification is ×200. 

To confirm the PCR results and examine PPAR localization, we co-stained the development 
stage-dependent samples with PPARα and PPARγ antibodies for immunofluorescence (Figure 1C). 
The results showed the protein expressions of PPARα and PPARγ in GV oocytes as well as in 
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and found all over the embryo as well as in the inner cell mass. Thereafter, we analyzed PPARδ and 
PEPCK stage-dependent protein expressions through immunofluorescence. To do this, we co-stained 
COCs, MII, and PN (Pronuclear) with PPARδ and PEPCK antibodies (Figure 1D). PPARδ and PEPCK 
were expressed in cumulus cells as well as in GV oocytes, but at the MII stage, the expression of both 
the proteins were reduced. Surprisingly, PPARδ showed nuclear localization (as oocytes are 

Figure 1. PPARs’ mRNA and protein expression during maturation and embryo development.
(A) RT-PCR-based PPARα, PPARγ, and PPARδ expression at the COCs (cumulus oocyte complexes)
(10 per sample), MII oocyte (20 per sample), two-cell embryo (20 per sample), 3.5-day embryo (10 per
sample) and day-8 blastocyst stages (five per sample). (B) Relative mRNA expressions of PPARα,
PPARγ and PPARδ from the COCs stage to day-8 blastocysts. (C) Development stage-dependent
immunofluorescent expression of PPARα and PPARγ (n = 15 per sample). (D) Immunofluorescent
co-localization of PPARδ and PEPCK from COCs to day-8 blastocysts (n = 15 per sample).
The experiments were repeated three times, and the data are shown here as mean ± S.E.M. N.S.,
not significant. Significance: * p < 0.05, and ** p < 0.01. The original magnification is ×200.

2.2. Effect of 2-BP and GW501516 on PPARs, Lipid Metabolism, and ROS Level during GVBD Induction

To evaluate the effects of 2-BP and GW501516 on oocytes, we first examined the concentration-
and stage-dependent responses of both the compounds during embryonic development (Figure 2A,B).
After obtaining the effective concentrations, we analyzed the influence of these compounds on fatty
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acid β-oxidation in MII oocytes. To do this, we checked CPT1 protein expression through Western
blotting, and significant enhancement in GW501516-treated oocytes was observed relative to the control
and 2-BP groups (Figure 2C) [25–27]. Next we analyzed the effects of 2-BP and GW501516 on lipid
contents in MII oocytes (matured). For this we performed Nile red staining in control-, 2-BP-, and
GW501516-treated in vitro maturation (IVM) media (Figure 2D). The Nile red staining revealed high
lipid contents in control and 2-BP samples relative to GW501516. High lipid contents enhance ROS
levels, and this phenomenon was observed via H2DCFDA staining in MII oocytes (Figure 2E) [28]. The
level of ROS was markedly reduced in GW501516-treated oocytes relative to 2-BP and control groups.
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Figure 2. Effects of GW501516 and 2-BP on oocyte maturation and embryo development. (A) and (B)
Development stage-dependent responses of GW501516 and 2-bromopalmitate on embryo cleavage
percentage and blastocyst developmental percentage. (C) Western blot expression of CPT1 in MII
oocytes treated with control, 2-BP, and GW501516 in IVM media (n = 100 per group); the experiment was
repeated three times. (D) Immunofluorescent expression of lipid droplets in COCs and after treatment
with control, 2-BP, and GW501516 in IVM media (n = 20 per group) The original magnification is ×200.
(E) H2DCFDA staining in MII oocytes (20 per group) matured in IVM media treated with control, 2BP,
and GW501516. The original magnification is ×40. The experiments were repeated three times, and the
data are shown here as mean ± S.E.M. * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.3. PPARδ/PEPCK Expression and Mitochondrial β-Oxidation in Bovine Embryos

To determine the roles of PPARδ in preimplantation embryonic development, we investigated
the effect of 2-BP and GW501516 on the development of bovine embryos (Table S2). The obtained
blastocysts were immunostained with PPARδ antibody, and the results showed significantly high
nuclear localization in the 2-BP and GW501516 groups relative to the control (Figure 3A). After that,
we analyzed the PEPCK expression, which was markedly reduced in the 2-BP group relative to
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the control and GW501516 groups (Figure 3B). Immunofluorescent expression of the mitochondrial
β-oxidation surrogate marker CPT1 also showed downregulation in the 2-BP-treated group (Figure 3C).
2-BP significantly translocated PPARδ to the nucleus, but repressed PEPCK and CPT1 expression by
inhibiting fatty acid conversion to triglycerides and mitochondrial β-oxidation [29,30].
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blastocysts in control, 2-BP, and GW501516 groups (15 per group). (D) ATGL and PLIN2 were 
examined through RT-qPCR in day-8 blastocysts (n = 5). (E) Mitotracker (Green) and Nile red dyes 
(Red) were examined in control-, 2-BP-, and GW501516-treated day-8 blastocysts. The original 
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and control groups. The expression of ATGL and PLIN2 was considerably reduced in the 2-BP group, 

Figure 3. Activated PPARδ enhanced PEPCK and mitochondrial β-oxidation. (A) Immunofluorescent
expression of PPARδ, showing nuclear localized PPARδ in day-8 blastocysts (20 per group).
(B) Immunoreactivity of PEPCK in day-8 blastocysts treated with control, 2-BP, and GW501516
in IVC media (15 per group). (C) Immunofluorescent expression of CPT1 in day-8 blastocysts in control,
2-BP, and GW501516 groups (15 per group). (D) ATGL and PLIN2 were examined through RT-qPCR in
day-8 blastocysts (n = 5). (E) Mitotracker (Green) and Nile red dyes (Red) were examined in control-,
2-BP-, and GW501516-treated day-8 blastocysts. The original magnification is ×200. (F) H2DCFDA
staining was performed to measure ROS in day-8 control-, 2-BP- and GW501516-treated blastocysts
(20 per group). ImageJ software was used to quantify the signal intensity of the immunofluorescence
images. The experiments were repeated three times, and the data are shown here as mean ± S.E.M.
N.S., not significant. * p < 0.05, ** p < 0.01, and *** p < 0.001. The original magnification is ×100.

To further explore the effects of GW501516 and 2-BP on lipolysis, we assessed the mRNA expression
of AGTL and PLIN2 through RT-qPCR in bovine day-8 blastocysts (Figure 3D). The mRNA expressions
of all the genes showed upregulation in the GW501516 group relative to the 2-BP and control groups.
The expression of ATGL and PLIN2 was considerably reduced in the 2-BP group, which showed
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its effect on lipolysis, as perilipins interact with ATGL for the hydrolysis of triglycerides [31,32].
To examine the effect of the GW501516-activated PPARδ and PEPCK pathways on mitochondria and
lipid contents in bovine blastocysts, we combined Mitotracker green and Nile red staining (Figure 3E).
The mitochondrial distribution was markedly higher in the GW501516 and control groups compared
to 2-BP-treated blastocysts, whereas the lipid contents were significantly enhanced in the 2-BP and
control groups. Reduced mitochondrial activity enhanced ROS production, and this phenomenon was
observed in 2-BP-treated blastocysts (Figure 3F).

2.4. Disturbance in Lipolytic/Lipogenic Balance Enhanced Apoptosis in Bovine Blastocysts

The subtle balance between lipolysis and lipogenesis is essential for metabolic homeostasis during
oocyte maturation and embryo development [33]. Disturbance of lipolytic/lipogenic balance enhances
ROS levels and cellular apoptosis by inducing p-NF-κB DNA binding [34]. To investigate 2-BP-induced
disturbance in lipolytic/lipogenic balance, we examined p-NF-κB localization in control-, 2-BP- and
GW501516-treated blastocysts through immunofluorescence. As shown in Figure 4A, the p-NF-κB
nuclear localization was much higher in the 2-BP group compared to the other two groups. The
nuclear localized p-NF-κB signals were observed all over the blastocysts and initiated apoptosis as
shown in a TUNEL assay (Figure 4B). To further confirm that 2-BP disturbance enhanced apoptosis, we
analyzed caspase-3, a major marker of apoptosis initiation. To do this, we combined Nile red staining
with caspase-3 immunofluorescent staining, and the results showed that 2-BP significantly enhanced
lipids and apoptosis in the bovine day-8 blastocysts (Figure 4C). The above findings indicate that
PPARδ activation by GW501516 sustained a balance between lipolysis and lipogenesis due to enhanced
PEPCK and CPT1 expression, while 2-BP reduced PEPCK and CPT1 expression and interrupted lipid
metabolism and also deregulated mitochondrial activity.
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Figure 4. Lipolytic/lipogenic disturbance enhanced apoptosis and reduced embryo quality.
(A) Immunofluorescent analysis of p-NF-κB expression in control-, 2-BP-, and GW501516-treated
bovine day-8 blastocysts. (B) A TUNEL assay was performed to examine apoptosis in blastocysts,
and red signals show the apoptosis-positive cells (20 per group). The original magnification is ×100.
(C) Immunofluorescent expression of Caspase 3 (Green) and Nile red (Red) in day-8 blastocysts (15 per
group). ImageJ software was used to quantify the signal intensity of immunofluorescent images. The
experiments were repeated three times, and the data are shown here as mean ± S.E.M. * p < 0.05,
** p < 0.01, and *** p < 0.001. The original magnification is ×200.
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2.5. PPARδ Inhibition Reduced Embryo Development and Hatching

We then sought to examine the effect of specific inhibitor (GSK3787) of PPARδ on PEPCK and
CPT1 expression during bovine embryo development. GSK3787 antagonizes ligand-induced changes
in PPARδ-dependent gene expression [23]. The dose-dependent responses of GSK3787, in terms
of bovine embryo cleavage and blastocyst development, are shown in Figure 5A. To investigate
the effects of PPARδ inhibition on oocyte maturation, we used aceto-orcein staining. The results
showed the non-significant effect of GSK3787 on oocyte maturation relative to GW501516- and
control-treated oocytes (Figure 5B). The difference in the rate of in vitro fertilization of MII oocytes
was also nonsignificant in inhibitor-treated oocytes as compared to GW501516 and control groups
(Figure 5C) [21]. After that, GSK3787 was added to the IVC media, and during the first 84 h of
in vitro culture, the two-cell and 3.5-day embryo rates were significantly affected by inhibitor treatment
(Figure 5D and Table 1). Furthermore, we analyzed the blastocyst hatching rate, which showed a
marked reduction in the GSK3787 group (19.4%) compared to GW501516- (47.0%) and control-treated
(35.9%) blastocysts (Figure 5E).
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Figure 5. PPARδ inhibition reduced embryo development and hatching. (A) Dose-dependent effect
of GSK3787 (PPARδ inhibitor) on bovine embryo cleavage percentage and blastocyst development
percentage. (B) Aceto-orcein staining was performed in MII oocytes to analyze the percent of maturation
in control-, GSK3787-, and GW501516 IVM-treated oocytes. The original magnification is ×40. (C) DAPI
staining was performed for fertilized oocytes (pronuclear PN), and the percent of fertilized zygotes is
presented as a histogram. The original magnification is ×200. (D) Percent of two-cell embryos from
five independent experiments; the data presented here are the mean ± S.E.M. The experiments were
repeated three times, and the data are shown here as the mean ± S.E.M. N.S., not significant. * p < 0.05.

Table 1. Cleavage and development percentage of bovine embryos, control, GW501516 (PPARδ
activator), and GSK3787 (PPARδ inhibitor).

Groups No. of Fertilized
Zygotes

No. of Cleavage
Embryo

(% ± SEM)

No. of Blastocysts
(% ± SEM)

No. of Hatched
Blastocysts
(% ± SEM)

Control 399 306 (76.6 ± 1.2) b 133 (33.2 ± 0.9) b 47 (35.9 ± 2.8) b

GW501516 399 323 (81.1 ± 1.1) b 154 (38.8 ± 1.6) c 72 (47.0 ± 2.5) c

GSK3787 375 266 (70.8 ± 1.6) a 102 (27.3 ± 1.1) a 20 (19.4 ± 2.3) a

a,b,c Values with different superscripts in the same column are significantly different (p < 0.05). This experiment was
completed in eight replicates.
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2.6. PPARδ Reversibility Affected Lipid Metabolism and Embryo Survival

We speculated that PPARδ inhibition would reduce lipid metabolism and mitochondrial
β-oxidation. For this, we investigated PEPCK and CPT1 through immunofluorescence, and both had
significantly lower protein expression with GSK3787 treatment relative to control and GW501516-treated
blastocysts (Figure 6A). After that to further explore the link between PPARδ and lipolysis in bovine
embryos, we assessed the mRNA expression of ATGL, LMF1, LMF2, and LPL genes in day-8
blastocysts through RT-qPCR. The results showed that all lipolysis-related genes were significantly
reduced with PPARδ inhibition (Figure 6B). Previously, it was identified that PPARδ increased the
5’ promoter activity of the SIRT1 gene and enhanced mTOR through PEPCK regulation of central
carbon metabolism [13,35,36]. Through Western blot analysis, we found that GW501516 significantly
enhanced SIRT1 and p-mTOR expression relative to the control and inhibitor groups (Figure 6C).
These results identified that PPARδ activation/inhibition has significant effects on lipid metabolism in
bovine embryos.
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Figure 6. PPARδ reversibility and lipid metabolism in bovine embryos. (A) Immunofluorescent
co-localization of PEPCK and CPT1 in control-, GSK3787-, and GW501516 IVC-treated day-8 blastocysts
(15 per group). The original magnification is ×200. (B) RT-qPCR-based mRNA quantification of ATGL,
LMF1, LMF2, and LPL in day-8 blastocysts (five per sample). (C) Western blot analysis of SIRT1 and
p-mTOR in control-, GSK3787-, and GW501516 IVC-treated blastocysts (20 per group). The experiments
were repeated three times, and the data are shown here as mean ± S.E.M. * p < 0.05, ** p < 0.01, and
*** p < 0.001.

2.7. PPARδ Effects on Mitochondria and Implantation Potential of Bovine Day-8 Blastocysts

Oocytes and early cleaved embryos are critically dependent on mitochondria for proper
development from ovulation to the compacted morula stage [37]. Mitochondria are not only
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important for free fatty acid β-oxidation, but also an essential biomarker for blastocyst implantation
potential [31,38]. Through JC-1 staining, we analyzed the active mitochondria (red), which were
significantly lower in the GSK3787 group relative to the control and GW501516 groups in bovine
day-8 blastocysts (Figure 7A). Furthermore, to confirm mitochondrial functioning, the BCL-2 and
cytochrome c proteins were analyzed through immunofluorescence. The results showed that BCL-2 was
significantly enhanced in GW501516 relative to the inhibitor-treated group, in which the expression of
cytochrome c was markedly upregulated (Figure 7B). Thereafter, the blastocyst implantation potential
was analyzed through an invasion assay, and the invasion area plus proliferation rate were significantly
enhanced in GW501516 relative to the inhibitor and control groups (Figure 7C).
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Figure 7. PPARδ effect on mitochondria and implantation potential of bovine blastocysts. (A) JC-1
staining in day-8 blastocysts from the control-, GSK3787-, and GW501516-treated groups (20 per group).
(B) Blastocysts were co-stained with BCL-2 (red) and Cytochrome c (green) for immunofluorescence to
analyze mitochondrial activity (15 per group). The original magnification is ×200. (C) The effects of
PPARδ inhibition on blastocyst implantation potential were determined. Bright-field image showing
the area of invasion and DAPI for migrant cells in day-8 blastocysts. The original magnification is
×40. ImageJ software was used to quantify the signal intensity of immunofluorescent images. The
experiments were repeated three times, and the data are shown here as mean ± S.E.M. N.S., not
significant. * p < 0.05, and ** p < 0.01.
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3. Discussion

Management of energy stores is critical during oocyte maturation and early embryo development,
and PPARs function as critical regulators of lipid and fatty acid homeostasis [1,10]. Previously, it was
reported that PPARδ activation considerably enhanced mouse embryo development, hatching, and
live birth rates, but the effects of activated PPARδ on embryo lipid metabolism and mitochondrial
functioning were not explored [25]. Here, we demonstrated that PPARδ activation by a synthetic ligand
(GW501516) enhanced PEPCK and CPT1 protein expression in bovine embryos, and, as a result, the
balance between lipolysis and fatty acid β-oxidation improved embryo quality. Our work collectively
suggests that PPARδ activation facilitates bovine blastocyst development, hatching, and cryosurvival
via enhanced CPT1 and PEPCK expression.

Lipid metabolism is recognized as crucial to oocyte maturation and embryo development. Many
studies using a variety of techniques have identified that triglycerides are the major constituent
of lipid contents in bovine oocytes and early embryos [32]. According to Ferguson and Leese,
triglyceride contents in bovine oocytes decreased from 59 ng to 46 ng during maturation and
34 ng post fertilization [32,39]. This decrease in triglycerides is due to the breakdown (lipolysis)
and endogenous formation of free fatty acids for mitochondrial β-oxidation to act as a source of
energy [1,40]. Previously, it has been reported that the inhibition of lipolysis reduced oocyte maturation
and embryo development [41]. Similarly, the inhibition of fatty acid oxidation, by inhibiting CPT1
with methyl palmoxirate, also markedly reduces bovine oocyte maturation and fertilization [40]. Many
studies reported that fatty acids are ligands for PPARs to transcribe genes for mitochondrial fatty acid
oxidation, and PPAR inhibition reduces fatty acid oxidation as well as lipolysis [8,42]. Furthermore,
elevated concentrations of non-esterified fatty acids and glucose enhance lipid contents and reduce
lipolysis and fatty acid β-oxidation [43,44]. Increased lipid contents were correlated with apoptosis in
blastocysts [38]. High lipid content is one of the causes of reduced cryotolerance in in vitro developed
embryos [45]. Despite the known deleterious effects of lipid contents on cryopreservation, these
are an important energy source required by all cells [5,6]. Specifically, the metabolism of fatty acids
through mitochondrial β-oxidation is one of the leading pathways of oocyte nuclear and cytoplasmic
maturation and embryo development [46].

Until recently, the physiological functions of PPARδ remained elusive in bovine oocytes and
embryos. The utilization of subtype-selective agonists and specific antagonists revealed that PPARδ
played an important role in the metabolic adaptation of bovine embryos to in vitro conditions. In the
current study, for the first time, all PPAR family proteins were detected in bovine GV oocytes, MII
oocytes, and from two-cell to day-8 blastocysts (Figure 1). PPARδ, a member of the PPAR nuclear
receptor family, plays an important role in lipolysis and free fatty acid β-oxidation, generated by
lipolysis for the production of ATP [8]. Prostacyclin (PGI2) plays a vital role in embryo development
and hatching, and PPARδ is essential for PGI2 stimulation of mouse embryo development [21].
Bovine embryos exposed to PGI2 also showed enhanced blastocyst development and hatching [47].
Previously, it has been stated that free fatty acids activate PPARδ and translocate it to the nucleus; as a
result, lipolysis-related genes are transcribed [8]. We found that 2-bromo palmitate (nonmetabolized
fatty acid) significantly enhanced PPARδ nuclear localization but did not reduce lipid contents,
while GW501516-based PPARδ activation significantly reduced oocyte lipid contents and ROS levels
(Figure 2) [42].

PPARδ transcribed PEPCK in the liver, the encoding protein of PCK1, and played an important role
in free fatty acid reduction [48]. PEPCK is highly associated with energy production and is a key factor
in the regulation of the TCA cycle [13,16]. PEPCK is also required for steroidogenesis in Leydig cells,
and its expression in COCs is significantly correlated with successful embryo potential and pregnancy
outcome [17,49]. An important role of PEPCK is the maintenance of triglyceride/free fatty acid flux and
also glucose and lipid homeostasis [15]. Additionally, bovine embryos exposed to NEFA (non-esterified
fatty acids) downregulate PEPCK expression [50]. Furthermore, inhibition of lipolysis with a lipase
inhibitor reduces mRNA expression of PEPCK [51]. Previous work and our studies suggest that 2-BP
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significantly reduced PEPCK and CPT expression relative to GW501516 (Figure 3) [52]. High lipid
contents and dysfunctional mitochondrial also enhance apoptosis, and this phenomenon was found in
2-BP-treated bovine blastocysts (Figure 4) [53]. In accordance with previous studies, PPARδ enhances
and improves glycolysis, but through an unknown mechanism; here we found that PPARδ, through
PEPCK, promotes cellular growth by activating mTOR via coordination of the regulation of central
carbon metabolism (Figure 6) [13,36]. Our results are quite similar in that PPARδ inhibition (GSK3787)
had no effect on oocyte maturation; however, in contrast to previous studies, we found reduced
fertilization with PPARδ inhibition [25]. The reductions in embryo cleavage and blastocyst hatching
are quite similar to previous work (Figure 5) [25]. Likewise, PPARδ inhibition significantly reduced
mitochondrial activity, and we found that PPARδ inhibition not only reduced the mitochondrial
membrane potential, but also the implantation potential of bovine embryos (Figure 7) [30,31].

4. Materials and Methods

All experiments were conducted with slaughterhouse-derived materials. The Gyeongsang
National University Institute of Animal Care Committee approved all experiments, including surgical
procedures (GNU-130902-A0059). All of the chemicals and reagents were obtained from Sigma-Aldrich
(St. Louis, MO, USA), unless otherwise noted.

4.1. Experimental Design

4.1.1. Experiment 1 (PPARδ Activation)

GW501516 (cat. #SML1491), and 2-BP (cat. #238422) were separately added to the IVM and IVC
media. To optimize the concentration of GW501516, the COCs were divided into 12 experimental
groups and treated with 0 (control group), 0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 10 µM GW501516
in IVM and IVC media. Based on the blastocyst development rate, the 1 µM concentration was
selected for GW501516. Similarly, 2-BP in various concentrations (0, 1, 2, 4, 5, 6, 8, 10, and 20 µM)
was applied to COCs and embryos in IVM and IVC media, and 5 µM was selected as the minimal
effective concentration for further studies. Four biological replicates were performed to obtain the
optimal working concentration. After selecting the effective concentrations, the protein expression
levels of PPARα, PPARγ, PPARδ, CPT1, PEPCK, and p-NF-κB were analyzed in MII oocytes and day-8
blastocysts using Western blot and immunofluorescence. Lipid concentration and apoptotic signals
were analyzed using Nile red staining and a TUNEL assay. Real-time RT-qPCR was performed to
confirm the transcription levels of genes (ATGL and PLIN2) related to lipid metabolism.

4.1.2. Experiment 2 (PPARδ Inhibition)

The PPARδ-specific inhibitor GSK3787 (cat. #G7423) in different concentrations was added in
IVM media to COCs and in IVC media to embryos (0 (control group), 1, 2, 5, 10, 15, and 20 µM). Ten
micro-molar was selected as the minimal effective concentration after comparison with the control group.
The parameters were oocyte maturation rate, fertilization rate, percentage of cleavage, developed
blastocysts, and hatching percentages. Five biological replicates were performed to obtain the optimal
working concentrations. After selecting the effective inhibitor concentration, it was compared with the
GW501516 and control groups. The protein expression levels of PPARδ, CPT1, PEPCK, Sirt1, mTOR,
BCL2, and cytochrome c were analyzed through Western blot and immunofluorescence. Real-time
RT-qPCR was performed for genes (ATGL, LMF 1, LMF 2, and LPL) related to lipolysis. An in vitro
invasion assay was also used to analyze the embryo quality.

4.2. Oocyte Collection

Bovine ovaries were collected at a local abattoir as previously described [54]. Three- to six-millimeter
diameter COCs were aspirated using an 18-gauge disposable needle. TL-HEPES (10 mM HEPES
(H-6147), 10 mM sodium lactate, 114 mM sodium chloride (S-5886), 2 mM sodium bicarbonate (S-5761),
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0.5 mM magnesium chloride (M-2393), 3.2 mM potassium chloride (P-5405), 0.34 mM sodium phosphate
monobasic (S-5011), 2 mM calcium chloride (C-7902), 1 µL/mL phenol red, 100 IU/mL penicillin, and
0.1 mg/mL streptomycin solution was used for the collection of COCs. After aspiration, the COCs
were allowed to settle down as sediment in 15-mL conical tubes at 37 ◦C for 5 min. The COCs of ≥3
uniform layers were collected under a stereomicroscope, while expended or denuded oocytes were
discarded and washed three times with TLH-PVA (P-8136).

4.3. In Vitro Maturation (IVM)

A four-well Nunc dish (Nunc, Roskilde, Denmark) was used for oocyte maturation. Approximately
50 COCs were placed into each well containing 700 µL of IVM medium (TCM199; Invitrogen Corp.,
Carlsbad, CA, USA) with 10% (v/v) FBS (fetal bovine serum) (Gibco BRL, Life Technologies, Grand
Island, NY, USA; cat. #16000-044), 1 µg/mL oestradiol-17β, 10 µg/mL follicle-stimulating hormone,
0.6 mM cysteine, 10 ng/mL epidermal growth factor, and 0.2 mM sodium pyruvate (Gibco BRL, Life
Technologies, Grand Island, NY, USA, cat. #11360-070). The oocytes selected were allowed to undergo
in vitro maturation at 38.5 ◦C in a humidified atmosphere of 5% CO2 in air for 22–24 h [55].

4.4. In Vitro Fertilization and Culture

The IVM matured oocytes were fertilized in vitro with frozen–thawed bovine sperm, as described
previously [55]. In brief, the sperm were thawed at 38.0 ◦C for 1 min and diluted in D-PBS. After
dilution, the sperm were centrifuged at 750× g for 5 min at room temperature. Following centrifugation,
sperm pellets were resuspended in 500 µL of heparin (20 µg/mL) in IVF media (Tyrode’s lactate solution
supplemented with 6 mg/mL bovine serum albumin, 22 µg/mL sodium pyruvate, 100 IU/mL penicillin,
and 0.1 mg/mL streptomycin). To facilitate capacitation, the sperm were incubated at 38.5 ◦C in a
humidified atmosphere of 5% CO2 air for 15 min. Thereafter, heparin-treated sperm were diluted in
an IVF medium (final density of 1 × 106 sperms/mL) and co-cultured with mature oocytes for 20 h.
The presumed zygotes were thoroughly pipetted to remove cumulus cells and were washed and
cultured in four-well dishes for eight days of embryonic development. The culturing conditions were
38.5 ◦C and 5% CO2 air, while the medium composition was SOF-BE1 [28] medium supplemented with
5 µg/mL insulin, 5 µg/mL transferrin, 5 ng/mL sodium selenite (Sigma cat. #11074547001), 4 mg/mL
fatty-acid-free BSA, and 100 ng/mL epidermal growth factor (EGF).

4.5. Immunofluorescence

Immunofluorescence staining was performed as previously described [56]. In brief, bovine oocytes
or blastocysts were fixed in 4% (v/v) paraformaldehyde prepared in 1 M phosphate-buffered saline
(PBS) and preserved at 4 ◦C for a minimum of 30 min. On the staining day, oocytes or blastocysts were
taken in four-well dishes and washed twice in PVA-PBS (0.3% PVA 1× PBS) for 10 min. Proteinase K
solution was then added for 5 min to retrieve the antigen. Subsequently, the blastocysts were incubated
for 30 min in blocking solution containing normal bovine or donkey serum and 0.1% Triton X-100 in
PBS. Primary antibodies were applied, and the four-well dishes were kept at 4 ◦C overnight. The next
day, the blastocysts or oocytes were washed twice with PVA-PBS for 10 min. After washing, secondary
antibodies (FITC and TRITC conjugated, Santa Cruz Biotechnology, Dallas, TX, USA) were applied at
room temperature for an additional 90 min. Blastocysts and oocytes were again washed thrice with PBS
for 5 min. After that, oocytes or blastocysts were treated with 4′, 6′-diamidino-2-phenylindole (DAPI)
at 10 µg/mL for 5 min to stain the nuclei, and fixed on slides. Images were captured with a confocal
laser-scanning microscope (Fluoview FV 1000, Olympus, Tokyo, Japan). The relative integrated density
of the signal and area were measured with the ImageJ analysis program (National Institutes of Health,
Bethesda, MD, USA; https://imagej.nih.gov/ij).

https://imagej.nih.gov/ij


Int. J. Mol. Sci. 2019, 20, 6066 13 of 18

4.6. TUNEL Assay

An in situ cell death detection kit, TMR red (St. Louis, MO, USA cat. #12156792910) was used to
perform the TUNEL assay according to the manufacturer’s protocols. Briefly, paraformaldehyde-fixed
embryos were washed twice with PVA-PBS [54]. After washing, the embryos were permeabilized (0.5%
(v/v) Triton X-100 and 0.1% (w/v) sodium citrate) at room temperature for 30 min. Then, permeabilized
embryos were washed with PVA-PBS and incubated in the dark with fluorescent-conjugated terminal
deoxynucleotidyl transferase dUTP at 37 ◦C for 1 h. The stained embryos were again washed with
PVP-PBS and incubated in DAPI at 10 µg/mL for 5 min. After washing with PVP-PBS for 5 min, the
blastocysts were mounted onto a glass slide, and their nuclear configuration was analyzed. The number
of cells per blastocyst was determined by counting DAPI-stained cells (blue), and TUNEL-positive
cells were labeled bright red under an epifluorescence microscope (Olympus IX71, Olympus, Tokyo,
Japan) equipped with a mercury lamp.

4.7. H2DCFDA Assay for ROS Detection

ROS was measured with 2, 7, dichlorodihydrofluorescein diacetate (H2DCFDA) (cat. #D6883)
as previously described [57]. In brief, fresh blastocysts were incubated in PBS containing 10 µM
H2DCFDA for 30 min in a humidified atmosphere of 5% (v/v) CO2 in air at 38.5 ◦C. When incubation
was finished, the blastocysts were washed three times with PBS, mounted onto glass slides, and
examined under an epifluorescence microscope (Olympus IX71) under 490 nm excitation and 525 nm
emission filters.

4.8. Extraction of mRNA and cDNA Synthesis

Total mRNA was extracted as previously described [55]. In brief, mRNA was extracted from
different biological replicates, with 10 COCs, 20 mature oocytes/two cells stage embryos, 10 embryos
(day 3.5) and five blastocysts (day 8) per replicate, using a Dynabeads mRNA direct kit (Dynal AS,
Oslo, Norway). In 100 µL of lysis buffer, oocytes or blastocysts were suspended and vortexed at
room temperature for 2 min. The lysate was mixed with prewashed Dynabeads oligo (dT) (20 µL)
and annealed by rotation at room temperature for 3 min. To remove the supernatant, a Dynal MPC
magnetic particle concentrator (Dynal AS, Oslo, Norway) was used. Three hundred microliters of
washing buffer A were used to wash the magnetic beads harboring the hybridized mRNA and oligo
(dT). After that, 150 µL of washing buffer B was applied. To denature the secondary structures, bound
mRNAs were resuspended in 8 µL of 10 mM Tris-HCl and heated at 65 ◦C for 5 min, followed by rapid
quenching of the reaction on ice for 3 min. Superscript III reverse transcriptase was used for mRNA to
reverse-transcribe into first-strand cDNA (Bio-Rad Laboratories Hercules, CA, USA cat. #1708891).
The primers and PCR conditions for each gene are given below (Table S1).

4.9. Real-Time Polymerase Chain Reaction

Quantitative RT-PCR was performed using a CFX98 instrument (Bio-Rad Laboratories) as
previously described [56]. A total of 10 µL of reaction mixture containing 3 µL of diluted cDNA, 0.2 mM
bovine-specific primer, and 1× iQ SYBR Green Super mix (iQ SYBR Green Super mix kit, Bio-Rad
Laboratories cat. #170-8882) was used. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primer
was used for normalization and to detect variation in the expression of this internal control gene in
all cDNA samples. After confirming the nonsignificant difference in GAPDH among the samples, all
transcripts were quantified using independent real-time PCR analyses. Quantitative PCR programing
comprised pre denaturation at 95 ◦C for 3 min, followed by 44 cycles of 95 ◦C for 15 s, 57 ◦C for 20 s,
and 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min. Amplification was followed by melting
curve analysis using progressive denaturation, during which the temperature was increased from
65 ◦C to 95 ◦C at a rate of 0.2 ◦C per second. Quantitative analysis of the targeted genes was performed
using the ∆∆C (t) method, and the results were reported as a relative expression compared with the
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calibrator after standardization of the transcript to the normal estimation of the endogenous control
GAPDH. The coefficients of variation of the intra- and interassay variance were calculated according
to the formula s.d./mean × 100, for all genes profiled by qPCR.

4.10. Protein Extraction and Western Blot Analysis

Mature oocytes (100 per extract) or day-8 blastocysts (20 per extract) were washed with PBS,
dissolved thoroughly in pro-prep™ (iNtRON Biotechnology, Inc., Burlington, NJ, USA cat. #17081),
sonicated to make cell lysates, and then centrifuged at 13,200 rpm at 4 ◦C for 25 min. The supernatant
proteins were collected and quantified with a Bradford assay as previously described [54], with some
minor modifications. Sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) fractionation was
used to quantify equal amounts of protein (10 µg) using a Bio-Rad protein assay kit (cat. #5000002).
SDS-PAGE-containing proteins were transferred to a PVDF (cat. #GE 10600023) membrane and blocked
in 5% skim milk or 5% BSA for 1 h. Thereafter, the proteins were incubated with primary antibodies
overnight at 4 ◦C. The next day, after washing, the membrane was incubated with secondary antibody
at room temperature for 90 min. ECL (Pierce TM ECL Western Blotting Substrate, Thermo Fisher
Scientific, Waltham, MA USA) detection reagent was used according to the manufacturer’s instructions
to detect proteins. To detect the molecular weights of the proteins, prestained protein ladders
(Abcam, Cambridge, Cambs, UK cat. #ab116029) were used. X-ray films (iNtRON Biotechnology, Inc.,
Burlington, NJ, USA) were scanned, and the ImageJ program was used to detect the optical densities
of the bands.

4.11. Mitochondrial–Lipid Dual Staining

Dual staining of lipid and mitochondria was performed as previously described [58]. In brief, the
live blastocyst mitochondria were stained with 2 µM Mitotracker Green FM (Invitrogen, Eugene, OR,
USA) (diluted in PBS and 0.4% BSA) for 30 min at 38.7 ◦C. After that, the blastocysts were washed thrice
in PVA-PBS and fixed in 4% formaldehyde for 24 h at 4 ◦C. After fixation, the oocytes or blastocysts
were washed with PVA-PBS and stained with Nile red dye (Invitrogen, Molecular Probes) at 10 µM
(diluted in PBS) applied at room temperature for 20 min. The samples were washed thrice in PVA-PBS
and stained with DAPI (1:100 (v/v) in D-PBS) for 10 min. The oocytes or blastocysts were mounted on
a glass slides without compression in a mounting medium and covered with coverslips. A confocal
laser-scanning Olympus Fluoview FV1000 microscope (Olympus, Tokyo, Japan) was used to excite the
green fluorescence excitation wavelength at 594 nm, and the emission was read at 608 nm for Mitotracker
and lipophilic fluorescent dye NR at 485 nm. For image analysis, the intensities of green fluorescence
(mitochondria) and red fluorescence (lipids) were measured using ImageJ software (version 1.50,
National Institutes of Health, Bethesda, MD, USA; https://imagej.nih.gov/ij) after normalization through
subtraction of the background intensity from each image of the experimental groups.

4.12. Antibodies

The following antibodies from Santa Cruz Biotechnology (Dallas, TX, USA) were used in this
study: CPT1 (cat. #sc-393070), p-NF-κB (cat. #sc-271908), PEPCK (cat. #sc-166778), PPARα (cat.
#sc-9000), BCL-2 (cat. #sc-783), Caspase-3 (cat. #sc-1225), Sirt 1 (cat. #sc-15404) mouse β-actin (cat.
#sc-47778). While the other antibodies, PPARγ Abcam (cat. #ab45036), cytochrome C (cat. #ab110325),
p-mTOR Abcam (cat. #ab84400) and PPARδ (LS bioscience cat. #LS-C437498, Seattle, WA, USA).

4.13. Statistical Analysis

A computer-based Sigma Gel System (SPSS Software, Inc., Chicago, IL, USA) was used for embryo
development analysis. To analyze the density and integral optical density (IOD) of scanned X-ray films
of Western blot and immunofluorescence images, GraphPad Prism 6 (GraphPad Software, San Diego,
CA, USA) and ImageJ software were used. To determine the statistical significance (p-value), one-way
ANOVA followed by Student’s t-test was used to analyze the data. The density values of the data are

https://imagej.nih.gov/ij
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expressed as the mean ± SEM of three independent experiments. Significance: * p < 0.05, ** p < 0.01,
and *** p < 0.001.

5. Conclusions

In conclusion, we noted that bovine embryonic PEPCK expression was regulated by PPARδ and
played a significant role in the lipolytic/lipogenic balance. Bovine embryos treated with GW501516
had low ROS levels and apoptosis relative to control- and 2-BP-treated embryos. Moreover, we found
an increased hatching rate of bovine embryos treated with GW501516, which was most likely due to
PPARδ-regulated lipolysis. This approach may be of significant value for the development of more
efficacious protocols for in vitro-generated bovine embryos.
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