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Abstract: Mycotoxins produced by Fusarium species on cereals represent a major concern for food
safety worldwide. Fusarium toxins that are currently under regulation for their content in food include
trichothecenes, fumonisins, and zearalenone. Biological control of Fusarium spp. has been widely
explored with the aim of limiting disease occurrence, but few efforts have focused so far on limiting
toxin accumulation in grains. The bacterial genus Streptomyces is responsible for the production
of numerous drug molecules and represents a huge resource for the discovery of new molecules.
Streptomyces spp. are also efficient plant colonizers and able to employ different mechanisms of control
against toxigenic fungi on cereals. This review describes the outcomes of research using Streptomyces
strains and/or their derived molecules to limit toxin production and/or contamination of Fusarium
species in cereals. Both the scientific and patent literature were analyzed, starting from the year 2000,
and we highlight promising results as well as the current pitfalls and limitations of this approach.
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1. Introduction

Mycotoxins are extracellular metabolites produced by filamentous fungi that contaminate cereals,
grains, fruits, and vegetables. The most important Fusarium toxins are trichothecenes, zearalenone
(ZEN), and fumonisins (FBs), that are dangerous for human and animal health, and their presence
in food is regulated worldwide [1]. Mycotoxin co-occurrence in food is a real and relatively
underestimated issue [2], as is the modification of toxins by plant metabolism (creating masked
mycotoxins) [3]. Both factors mean that the levels of toxins measured in food, and therefore being
ingested, are significantly underestimated. Due to this, it is likely that normative limits will be lowered
by the regulatory agencies in the future.

Cereals, the staple foods of diets all over the world, are perfect hosts for pathogenic and toxigenic
fungi and represent one of the main sources of mycotoxin contamination for humans and animals [4].
Among toxigenic species, Fusarium spp. (Division Ascomycota) are major producers of mycotoxins in
cereals [5].

Trichothecenes A and B are mainly associated with Fusarium head blight (FHB) and crown
rot (FCR) in wheat and barley. The major group of Fusarium spp. responsible for these diseases
includes Fusarium graminearum species complex (FGSC; [6]) that exhibits a diverse distribution of
species across the different continents [7]. The most important species are F. graminearum, F. culmorum,
and F. pseudograminearum [8,9]. Grain quality decrease and yield are of concern [10]. The trichothecenes
type B are the most prevalent and comprise deoxynivalenol (DON) and nivalenol (NIV) and their
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acetylated forms 3-ADON, 15-ADON, and 4-ANIV [11]. They are immunosuppressant and neurotoxic
and cause intestinal irritation, leading to feed refusal in livestock [12,13]. In maize, F. graminearum and
other related species were found to be associated with Fusarium ear rot (FER), contaminating grains
with ZEN. ZEN displays estrogenic activity, causing reproductive problems in animals, in addition to
cytotoxic and immunosuppressive effects [14,15].

Ear rot in maize is also caused by F. verticillioides (syn. F. moniliforme [16]) and F. proliferatum, which
produce fumonisins [17]. Fumonisins have been classified as Group 2B carcinogens (i.e., as possibly
carcinogenic to humans [18]), and fumonisin B1 (FB1) is the most abundant analogue found in
contaminated samples [19]. Moreover, Fusarium spp. infecting cereals can also produce other minor
mycotoxins with cytotoxic effects such as enniatins, beauvericin, and moniliformin. Knowledge gaps
regarding the occurrence, toxicity, and toxicokinetic data for these compounds in cereal crops represent
a major and immediate problem [20].

Fusarium spp. infections of cereals are therefore a major concern for both the growers and the
food chains associated with the processing of grains. Several control strategies against this complex
group of pathogens have been developed and include host resistance, the application of fungicides,
and the implementation of specific agricultural practices [21]. However, effective management of
Fusarium pathogens and the related toxins cannot be achieved through the use of a single control
strategy because each has its own limitations [22]. Therefore, at least in Europe, integrated disease
management is urgently needed, favored by European Regulation 1107/2009/EC and European Directive
128/2009/EC [23,24]. Moreover, biocontrol approaches are becoming increasingly important due to the
limitation on the use of certain fungicides. Among the biocontrol agents (BCAs) used to control toxigenic
Fusarium spp. in cereals, bacteria have shown a number of successful outcomes. For instance, strains
of Bacillus spp. [25–28], Brevibacillus sp. [29], Pseudomonas spp. [27,30], and Lysobacter enzymogenes [31]
were applied to limit pathogen development, reducing disease severity and mycotoxin production.
Microbial communities or single strains were also tested to detoxify contaminated substrates as
reviewed by McCormick in 2013 [32].

Bacteria of the genus Streptomyces display promising plant growth-promoting features and
biocontrol efficacy against plant pathogens. They belong to the phylum of Gram-positive Actinobacteria,
which is one of the largest taxonomic units within the bacterial domain, and include microorganisms
relevant to human and veterinary medicine, biotechnology as well as ecology [33]. Streptomycetes are
the most abundant actinobacteria in soil [34]. They display a unique life cycle, and after germination
grow through a combination of tip extension and the branching of hyphae. They first form a vegetative
mycelium firmly attached to the growth substrate and, subsequently, due to nutrient depletion and
under environmental stress signals, develop an aerial mycelium. Each aerial hypha then differentiates
into a long chain of pre-spore compartments which subsequently mature into individual spores [35].
The ability to produce a variety of secondary metabolites, including anti-infective agents, has an
important ecological role including the inhibition of competitors during the transition from mycelial
to aerial growth [36]. These various characteristics enable them to colonize different substrates and
establish symbiotic interactions with plant tissues and other eukaryotes [37]. The ability to produce
numerous secondary metabolites means they are the most exploited bacterial genus in natural product
research. Notably, more than half of all antibiotics in current clinical use are derived from actinobacterial
secondary metabolites [38]. Furthermore, Streptomyces spp. were evaluated as plant growth-promoting
bacteria (PGPB), as they can inhibit pathogen development, enhance nutrient uptake by mineral
solubilization, and increase plant growth by nitrogen fixation and phytohormone synthesis [39].
Streptomycetes have therefore been investigated for their possible use in agriculture, including cereal
crops [40].

The diversity of secondary metabolite production plus their reported endophytic features make
the genus Streptomyces a perfect candidate to control toxigenic Fusarium spp. development and
related toxin production [41,42]. Endophytic microorganisms have been reported as useful antagonists
against Fusarium head blight, and are able to reduce disease severity on spikelets [43]. Nevertheless,
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the incredible diversity and potentiality of these microorganisms against mycotoxigenic fungi and
their possible influence on toxin accumulation have been rarely explored and deserve further
investigation [44]. This review describes reports in which streptomycetes, or molecules derived
from them, were exploited against Fusarium spp., and will pay special attention to the possible influence
on toxin production. The scientific and patent literature were analyzed from the period 2000–2018.

2. Critical Assessment of Literature

Despite the huge amount of literature regarding the biological control of Fusarium mycotoxigenic
isolates in cereals, only two products have found a consistent market niche [45]. These are based on
Pseudomonas chlororaphis and Pythium oligandrum and are marketed in Europe as Cerall® (Belchim
Crop Protection) and Polyversum® (Biopreparáty/De Sangosse), respectively [46]. Furthermore,
no Streptomyces product is officially registered to be used for this purpose [47]. The main obstacles
for biocontrol agents are due to the lack of consistency when microbial inoculants are applied under
complex environmental conditions, and to the complexity of finding appropriate formulation and
timing for application [48]. Biological, ecological, toxicological, and regulatory cost factors also
influence the effectiveness and marketability of biological control products [49].

In order to verify the status of research using Streptomyces strains, and their derived molecules,
to limit toxigenic Fusarium spp. infections and/or toxin contamination, we screened the published
literature. To critically assess the status of each research paper, a set of definitions describing the type
of study and their accuracy was established as follows.

1. Streptomyces species definition. Species identification is essential as approximately 10 Streptomyces
species have been described as plant pathogens, causing economically important diseases on
underground plant structures such as tuber/root crops. The best studied and characterized of these
is Streptomyces scabies which causes potato scab [50,51]. Moreover, from a food safety perspective,
Streptomyces isolates are able to produce dangerous metabolites for human and animal health,
such as antimycin A found on wheat and barley grains [52]. Therefore, it is essential that species
and strain characterization is performed accurately.

2. In vitro testing for antifungal activity. This is generally the first step for identifying antifungal
microorganisms or molecules produced by them. Such studies help define the mechanism(s) of
action of the Streptomyces species(s) and lead to the identification of potential interactions with
the target organism. Assessment of bioactivity should consider the diversity of targets (verifying
if pathogen diversity influences the consistency of the BCA or derived product). Indeed, specific
interactions occur among bacterial and fungal strains [53] and this may impact the biocontrol
capability of a strain [54,55].

3. The effect of culture media in the bioassays in vitro. Media composition modulates secondary
metabolite production in actinomycetes [55–57], and optimizing laboratory selection procedures
should broaden the number of interesting BCAs that can be identified.

4. The use of fermentation extracts to perform bioassays. During screening procedures, it would be
ideal to identify the metabolite(s) responsible for the observed antifungal effect. The screening of
crude extracts is generally followed by further steps of purification and chemical analysis, and
retesting of purified compound(s) [58].

5. Evaluation of the antifungal mode of action. Risks concerning the use of these antibiotic-producing
bacteria associated with events of horizontal gene transfer and the development of antibiotic
resistance are still under debate within the scientific community [44]. However, given the current
legislative requests [59], understanding the mode of action is essential in order to proceed with
the registration of a BCA, in order to avoid risks of spreading dangerous metabolites for human
and animal health in the environment [60].

6. Assessment of the ability to colonize treated plant organs. Many BCAs are rhizosphere-colonizing
microorganisms and can be applied as seed coatings [61]. However, some Streptomyces spp. can
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exhibit endophytic behavior, colonizing different parts of the plant (e.g., roots, stem, leaves) [41].
Some BCAs exhibit activity both in the rhizosphere and after infection of the plant and function
inside the root at the same time. Therefore, the colonization niche of the strain should be
investigated in order to warrant a consistent protection [62]. These studies are fundamental to
providing an assessment of the durability of the protection warranted by the BCA.

7. Testing the influence of complex environmental conditions. As for pathogens during disease
development, antagonist strains are influenced by environmental factors that strongly impact the
ability of the BCAs to exert their biocontrol activity [40]. Assessing the impact of environmental
parameters on BCAs using both greenhouse and field trials is essential to selecting strains with
consistent biocontrol activity.

8. Assessment of antifungal and plant growth-promoting effect in planta. This step is essential, given
that the BCA will ultimately be employed in the field. Very often, there is poor correlation between
in vitro and in planta trials [55,63,64]. Moreover, the wide range of metabolites produced may
have direct influences on plant development, altering growth and plant fitness both positively
and negatively [39]. Indeed, negative effects cannot be underestimated—some Streptomyces can
be pathogens (see before) or produce phytotoxic and herbicidal substances [65].

9. Assessment of the method used for application. Selecting an appropriate delivery system for the
BCA as well as an optimized formulation can determine its efficacy in the field [66].

10. The effects of the BCA on the pathogen inoculum in planta. Due to the complex epidemiology of
Fusarium diseases in cereals, quantification of the pathogen in planta is important to verify if the
treatment can, for example, effectively reduce the source of overwintering inoculum, limiting the
infection pressure at the subsequent infection season [67].

11. Quantification of the mycotoxin. It is essential to verify if the BCA limits toxin production,
specifically given that there is a lack of full correlation between the presence of the fungus and the
amount of toxin that is found in the grains [68,69]. Moreover, some secondary metabolites can limit
toxin production without impairing growth of the pathogen [70]. Biological interactions can also
lead to unexpected crosstalk between the BCA and pathogen that can lead to an overproduction
of toxins and secondary metabolites [71–75].

3. Literature Analysis

To guide future implementation of biocontrol research using Streptomyces spp., it is essential
to identify the strengths and weaknesses of past and present research in this domain. Therefore,
we reviewed the published literature, focusing on the methods used for the selection of promising
biocontrol streptomycetes and on the results achieved.

We searched the Scopus and Google Scholar databases for articles including the words “Fusarium”
and “Streptomyces” that were published during the timeframe 2000–2018. The resulting articles were
read and individually screened leading to the identification of 63 articles that dealt with the ability
of Streptomyces or their secondary metabolites to limit the growth or toxin production of toxigenic
Fusarium spp. in cereals (Table 1).

Streptomyces spp. or their derived molecules have been tested mostly against Fusarium spp.
producing trichothecenes, including DON. The species investigated are all usually found to infect
cereals and include F. graminearum, F. culmorum, F. poae, F. cerealis, F. sporotrichioides, and F. equiseti.
The most studied interactions address the wheat–F. graminearum pathosystem, which is the most
important cause of DON (and derivatives) accumulation in grains [76]. Less frequently, streptomycetes
have been tested against fumonisin producers in maize, all belonging to the F. fujikuroi species
complex [77].

3.1. Streptomyces Identification

Regarding the identification of Streptomyces species, most studies focused on the integration of
morphological and molecular characteristics. Given the complexity of streptomycete biology [33],
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the use of 16S rRNA alone as molecular marker is not sufficient to achieve species discrimination.
Multi-locus sequence typing [78] integrated with biochemical and morphological identification would
be a preferred option, but none of the studies used this approach. On this basis, all the species
identifications reported in the selected papers should be treated with caution. Looking forward,
the increasing number of Streptomyces strain genomes now available may help in correct species
identification [79].

3.2. Screening for Antifungal Activity: In Vitro Tests

Among the selected articles, in vitro testing is the most commonly used first-line screening method.
Indeed, dual-culture assays on solid media are exploited in all the studies as a preliminary screen,
evaluating the inhibition halo between the growth of the streptomycete and the fungal target or
measuring the radial growth of the Fusarium colony in comparison with an untreated control to obtain
a percentage of growth inhibition. Rather than use these standard in vitro inhibition assays, some
research groups [80–82] characterize the type of interactions occurring in dual culture by using the
index of dominance (ID) [83]. The ID consists of visually observing antagonist and pathogen growth
in dual culture, testing different media or water activity (aw) of the culture medium, and classifying
the type of interactions occurring based on predefined scores, namely, mutual intermingling (1/1),
mutual inhibition on contact (2/2), mutual inhibition at a distance (3/3), dominance of one species
on contact (4/0), and dominance at a distance (5/0). This method evaluates whether the inhibition is
due to the production of antifungal metabolites diffusible in the media or whether the mycelium is
parasitized by the antagonists. Moreover, the negative effect of the target pathogen on the potential
antagonists can be noted. Therefore, the selection of biocontrol agents is carried out by evaluating the
biocontrol interactions (e.g., mycoparasitism, competition, or antibiosis) established under different
growth conditions.

For most reports, growth of the Streptomyces inoculum to some predefined point usually takes
place on agar media before addition of the pathogen in order to allow a complete establishment of
these growing bacteria [80,84].

The use of a diverse range of growth media and fungal strains was evaluated in our analysis,
given the importance that these criteria have in the estimation of the biocontrol activity in vitro [55].
Interestingly, the influence of growth media was seldomly evaluated in these types of experiments [84,85]
as well as the assessment of antifungal activity on different Fusarium strains belonging to a single
species [80,86–88].

Given the lack of a standardized protocol when performing dual-culture assays (e.g., Fusarium
strains on which the biocontrol activity should be tested, position and distance between streptomycetes
and Fusarium strain inoculum, timing of observation after pathogen inoculum, culture medium), it is
difficult to compare the results between studies. However, here we report some examples of the wide
range of activities recorded against mycelial proliferation. For instance, growth inhibition percentages
against F. graminearum and F. verticillioides ranged from the weakest (<20%) [84,89] up to 60–90% of
inhibition [87,90]. Yekkour et al. [91] obtained different levels of inhibition in dual culture for isolated
streptomycetes—indeed, only 6 out of 133 isolates displayed an anti-Fusarium activity and in particular
only F. culmorum was significantly inhibited (inhibition halo >20 mm). Less sensitive fungal species
were F. moniliforme, F. sporotrichoides, F. graminearum, and F. proliferatum [91].

3.3. Evaluation of Antifungal Mechanism of Action

The importance of the identification of any antifungal molecules involved in the bioactivity led
some researchers to achieve a complete characterization of the compounds involved. The fermentation
process and the optimization of all the parameters (e.g., medium, agitation rate, pH, temperature) were
strain- and laboratory-dependent [92–95]. For instance, it has been reported that some of the Streptomyces
strains which are active against F. moniliforme on solid media lack antibiotic production in submerged
liquid culture, highlighting the importance of an appropriate optimization of laboratory procedures and
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media in the stimulation of secondary metabolites [96]. The first attempt of compound purification is
commonly carried out by crude extract fractionation [97,98]. Often the bioactivity of the selected strain
is not related to a single mechanism, and different metabolites, enzymes, or volatile organic compounds
likely contribute to the overall antifungal activity. Many studies exploited the fermentation broth as
a source of bioactive compounds [99–101]. Therefore, several compounds were purified and tested
against toxigenic Fusarium spp. For example, strain PAL114 produced saquayamycins A and C which
inhibited the growth of F. culmorum at the minimum inhibitory concentrations of 75 ug/mL [102]. Three
allelochemicals (5,7-dihydroxyflavone, 5-hydroxy-7-methoxyflavone, and di-(2-ethylhexyl) phthalate)
able to inhibit mycelial growth of F. graminearum were isolated and purified from the fermentation
broth of Streptomyces sp. 6803 [103]. In vitro cultures of Streptomyces sp. 201 produced 2-methylheptyl
isonicotinate able to inhibit the growth of F. moniliforme more efficiently than a natural analogue
(isoniazid) [98]. On the other hand, modest activity was observed by the metabolites extracted from
Streptomyces LZ35 against F. verticillioides [104]. For several studies, chitinase activity, rather than
antibiotic production, was shown to play a role in the antifungal mechanism [105–108]. In addition,
new antifungal proteins have been characterized, such as the one isolated from Streptomyces sp. C/33-6
culture supernatants which displayed a fungicidal activity, determining complete inhibition of conidia
germination of F. graminearum [109].

Secondary metabolites exhibiting anti-Fusarium activity can also include volatile organic
compounds (VOCs). For example, Streptomyces alboflavus TD-1 was able to reduce the mycelial
growth of F. moniliforme when volatile metabolites were applied as fumigants [110]. Inhibition of
growth, sporulation, and conidial germination has been recorded when culturing this strain on
wheat seeds. In addition, the VOC activity increased the fungal membrane permeability as observed
by significant leakage of mycelial materials. Chemical analysis of these VOCs identified a high
quantity of 2-methylisoborneol and 2-methyl disulphide, which were further tested for their antifungal
activity [110,111]. VOC production was also linked to the antagonist activity of Streptomyces philanthi
RM-1-138 cultured on wheat seeds, which inhibited mycelium growth of F. fujikuroi by 50% [112].
Chemical analysis showed that a complex mixture of volatile metabolites was involved [112].

It is evident from our analysis that the biocontrol activity of Streptomyces strains involves a large
range of bioactive molecules. The exploitation of Streptomyces spp. has been, and will in future also
be, hindered by the variability of the production of these metabolites. Therefore, to exploit the huge
diversity of streptomycetes for successful disease management, different factors, such as the age of
the fungal colony, culture conditions, temperature, and other environmental parameters, will have to
be carefully studied, even at the very early stages of investigation. Transferring the outputs of these
laboratory studies to the field remains one of the major challenges in exploiting Streptomyces spp. as
BCAs for tackling toxigenic Fusarium spp.

3.4. Assessment of Streptomycete Effects in Planta

The literature reports a lack of durable and consistent effects when streptomycetes or commercially
available formulations have been applied in greenhouse experiments and field trials [40]. It is likely that
the ability to cope in a complex environment, which comprises the plant, the presence of the pathogens
as well as several abiotic factors, varies depending on the fitness of the strain and its formulation in the
field. For this reason, verifying the level of colonization achieved by the strain when used as BCA is
essential to confirming its ecological fitness. Only a few papers have addressed this question in detail.
It is notable that most of these were published recently, which indicates an increasing level of attention
regarding Fusarium–plant–Streptomyces interactions [113,114].

Moreover, in planta experiments are essential during the process of BCA selection to confirm their
ability to significantly decrease Fusarium spp. infections. Indeed, BCAs can influence crop growth and
disease severity, and can reduce Fusarium inoculum levels on stubble after harvest as well as ideally
the presence of mycotoxins [115]. However, only a limited number of studies (N = 16) performed
complete in planta studies. The application of streptomycetes was tested on seeds [84,116–118], on the
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main emerged spike [80,84,86,87] as well as wheat stubble [86]. Indeed, these bacteria can contribute
to the reduction of FHB on wheat at different times in the Fusarium spp. life cycle. In a research study
conducted by Palazzini et al. [80] in 2007, isolates from wheat anthers were applied to wheat heads
grown in greenhouse and, after 16 days, their influence on FHB severity was estimated. Despite the
slight reduction of disease symptoms in comparison to the control, streptomycete BRC 87B decreased
the DON content in spikes to below a detectable level. For this reason, in a subsequent study it was
tested in the field, showing the ability to decrease FHB severity and DON amounts, as well as the
F. graminearum inoculum on wheat stubble [86].

Testing the efficacy in the field also requires specific assessments of the way the strains are
inoculated. For example, the use of a Korean strain isolated from rice kernels led to a significant
reduction of the disease severity after its inoculation using a spore spraying method that was not
achieved using the point inoculation method on wheat heads [84]. This is actually the only study
where the influence of the BCA application method was taken into account, and shows that, depending
on the application of the BCA, different results can be obtained [47].

Differences in the level crop protection have also been reported against other Fusarium spp.
For instance, two Streptomyces strains designated as DAUFPE 11470 and DAUFPE 14632 were isolated
from maize rhizosphere in Brazil and tested against maize seed pathogenic fungi. Treatments
on seeds with biomass derived from streptomycete fermentation or with cell-free filtrate reduced
significantly Fusarium subglutinans incidence on stored maize seeds [119]. The same strains were
also tested as spore suspension to assess their effects on seedling blight caused by F. moniliforme in
greenhouse [120]. Bacterial treatments significantly reduced disease incidence compared with the
controls, with protection level variable according to the tested pathogen inoculum concentrations.
Indeed, the disease incidence was significantly reduced at low and high antagonist and pathogen
concentrations, respectively. Moreover, their ability to reduce chlamydospore germination was
assessed—the percentage of germinated propagules was evaluated after antagonist treatments in
sterilized soil added with glucose, to recreate the natural environment and enhance spore germination.
The addition of glucose increased propagule germination in all the treatments, but the presence of the
antagonists decreased this parameter up to 65%. This study stressed therefore the important influence
of both antagonist and pathogen concentrations and the presence of nutrients in the final biocontrol
efficacy obtained in planta [120].

Streptomyces strains, as reported above, can be helpful in reducing disease symptoms, acting also
as plant growth-promoting bacteria. Despite the wide range of metabolites produced by them, their
ability to influence plant development has been seldomly studied by the current literature addressing
the biological control properties of the strain. A few positive examples include the report of a negative
influence on seed germination and seedling development [91] as well as an improvement in plant
growth parameters [87].
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Table 1. Published studies regarding the efficacy of Streptomyces spp. (and derived molecules) against Fusarium toxigenic species in vitro, in planta, and under
different environmental conditions. The methods used for the identification of the Streptomyces strain are also reported. Data were obtained combining the results
of Scopus and Google Scholar searches with the following search words, “Fusarium” and “Streptomyces”, limiting the period of publication from 2000 to 2018.
Legend: M (Morphological identification), B (Biochemical identification), BCA/s (Biocontrol agent/s), GC (Growth chamber), G (Greenhouse), F (Field), * possibly
misleading identification.
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F. avenaceum x x x [95]
F. avenaceum x x [124]

F. avenaceum, F. oxysporum, F. solani x x [125]
F. coeruleum; Gibberella saubinetii 16S rRNA x x x [101]

F. crookwellense; F. oxysporum x x [107]
F. culmorum x x x [102]
F. culmorum M/B/16S rRNA x [126]
F. culmorum x x x [99]
F. culmorum M x x GC x x [116]
F. culmorum x x GC x x [114]

F. culmorum, F. moniliforme, F. sporotrichoides, F. graminearum, F. proliferatum 16S rRNA x GC x x [91]
F. culmorum, F. equiseti, F. proliferatum, F. graminearum, F. sporotrichioides, F. moniliforme,

F. oxysporum M/16S rRNA x x x [127]

F. culmorum, F. graminearum, F. proliferatum, F. oxysporum M/B/16S rRNA x x [128]
F. culmorum, F. oxysporum 16S rRNA x x x [108]
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F. graminearum M/B/16S rRNA x x x x x [113]
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F. graminearum M/B/16S rRNA x x x [131]
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F. graminearum x F x x x [86]
F. graminearum x F x x x x [88]
F. graminearum x x x x [85]
F. graminearum G; F x [132]
F. graminearum x x x G x x [87]
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F. graminearum F. culmorum 16S rRNA x [43]
F. graminearum, F. culmorum, F. oxysporum M/B x x x [133]

F. graminearum, F. oxysporum x x x x [134]
F. graminearum, F. oxysporum x x x [135]

F. graminearum, F. oxysporum, F. solani x x x [105]
F. graminearum, F. proliferatum, F. sporotrichioides, F. oxysporum x x x [109]

F. graminearum, F. verticillioides, F. culmorum M/16S rRNA x G x x [117]
F. graminearum, moniliforme, F. oxysporum, F. solani M/B/16S rRNA x x x [100]

F. graminearum; F. moniliforme M/B/16S rRNA x x x x [136]
F. moniliforme M/B x x [137]
F. moniliforme x G x [120]
F. moniliforme x x [119]
F. moniliforme 16S rRNA x [89]
F. moniliforme M/16S rRNA x x [138]
F. moniliforme M/B x x x [96]
F. moniliforme M/16S rRNA x x x [93]
F. moniliforme B x x [94]
F. moniliforme M/B/16S rRNA x x x [110]
F. moniliforme x x x [111]

F. moniliforme; F. oxysporum M/B/16S rRNA x x x x x [139]
F. moniliforme; F. oxysporum; F. semitectum M/B x x x [98]

F. moniliforme; F. oxysporum; F. semitectum; F. solani M/B/16S rRNA x x x x [97]
F. oxysporum *; F. solani* x x [123]

F. poae M/B x x x [140]
F. poae M/16S rRNA x [141]
F. poae,

F. avenaceum, F. culmorum x [142]

F. proliferatum M/B/16S rRNA x x [143]
F. subglutinans; F. sambucinum x [144]

F. verticillioides 16S rRNA x x x [92]
F. verticillioides x x x [104]
F. verticillioides 16S rRNA x x x x [121]
F. verticillioides x x x [122]
F. verticillioides 16S rRNA x x x [145]

F. verticillioides; F. oxysporum M/B/16S rRNA x x x [90]
Fusarium graminearum, F. culmorum, F. oxysporum, F. sporotrichiella, F. moniliforme x x F x x x [146]
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3.5. Evaluation of Streptomycete Activity against Mycotoxin Production

As noted above, it is essential to accurately determine the concentration of mycotoxins present
in grains destined for human or animal consumption. Similarly, verification of the toxin content
under experimental conditions is vital for the future of potential streptomycete biocontrol agents.
Indeed, it should be possible that the reduction of disease severity does not positively correlate with a
reduction of the mycotoxin content in grain samples. So far, only one research group has evaluated
the reduction of DON mycotoxins by Streptomyces strains isolated from wheat anthers, in comparison
to the level of infection, in vitro, in greenhouse, and in the field [80,86]. Indeed, they showed that
their streptomycete strains (BRC 87B and BRC 273) were able to significantly reduce DON levels on
wheat grains, without influencing disease severity caused by Fusarium infections [80]. This suggests
the existence of a specific mechanism of inhibition uncoupling fungal fitness and toxin production.
Follow-up research by the same group evaluated in the field the use of BRC 87B, which showed strong
inhibition of DON production in wheat spikes [86].

Preliminary in vitro studies have also been conducted to verify the ability of streptomycetes to limit
fumonisin accumulation. Strains isolated from soil samples amended with different organic manures
by Nguyen et al. were tested against fumonisins FB1 and FB2 production by F. verticillioides [121].
They significantly decreased (by up to 98.2%) the level of FB1 and FB2 in agar plate cultures [121].
Inhibition of FB1 accumulation on milled maize agar was also demonstrated in another in vitro study
using Streptomyces sp. AS1 [122], a strain isolated from peanuts in Egypt. Further, El-Naggar et al. [123]
showed the ability of Streptomyces isolates to reduce accumulation of a wide range of mycotoxins
including total aflatoxins, fumonisin, zearalenone, T-2 toxin, AOH, and AME. However, the identity of
the Fusarium spp. producers was based only on morphological characteristics and should be considered
with caution.

4. Patent Search

To have a complete overview of the work using Streptomyces against toxigenic fusaria, a research
of the major patent databases was carried out. Using both Espacenet and Orbit intelligence, a total of
233 results were obtained using the keywords “Fusarium” and “Streptomyces”. By manually screening
the titles and abstracts, a total of 25 patents were retained and added to Table 2. Given the use of different
languages (most not English), only certain abstracts could be accessed, and it was therefore not possible
to apply the same critical criteria used in our literature search. Most of the patents claimed general
activity of strains and derived molecules against a large set of microorganisms including toxigenic
fusaria. Only a single patent in its claim directly addressed the ability to limit F. graminearum growth
on cereals [147]. Two documents patented the antifungal metabolites isolated from streptomycete
strains and tested them against toxigenic Fusarium spp. [148,149]. The other patents are related to
specific formulation methods, using live streptomycetes, proposed as biocontrol products against plant
pathogens, among them Fusarium spp. of cereal crops.

Interestingly, most of the patents are concentrated in the last five years (Table 2), therefore further
developments could also be expected towards novel industrial applications in the near future.
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Table 2. Patent lists of Streptomyces spp. (and derived molecules) against Fusarium toxigenic species.
Data were obtained combining the results of Espacenet and Orbit Intelligence with the following search
words, “Fusarium” and “Streptomyces”, limiting the period of publication from 2000 to 2018.

Publication Number Publication Date Target Fusarium spp. Source Reference

RU2003100579 A 27/07/2004 F. moniliforme, F. sambucinum, F. avenaceum Espacenet [150]
KR100914225 B1 26/08/2009 F. graminearum Espacenet [151]

CN101698827 B; CN101698827 A 28/04/2010 F. moniliforme Espacenet [152]
CN101822272 A 8/09/2010 F. avenaceum, F. semitectum Orbit Intelligence [153]

KR101098280 23/12/2011 F. proliferatum Orbit Intelligence [154]
CN102433281 A; CN102433281 B 2/05/2012 F. graminearum Espacenet [155]

KR101211681 12/12/2012 F. fujikuroi Orbit Intelligence [156]
CN102835423 B; CN102835423 A 26/12/2012 F. nivale, F. graminearum Espacenet [157]
CN103114064 B; CN103114064 A 22/05/2013 F. moniliforme, F. graminearum Espacenet [158]
CN103820351 A; CN103820351 B 28/05/2014 F. moniliforme, F. graminearum Espacenet [148]

CN104130965 A 5/11/2014 F. moniliforme Espacenet [159]
CN104140982 A 12/11/2014 F. moniliforme Espacenet [160]
CN105060951 A 18/11/2015 F. moniliforme Espacenet [161]
EP3048890 A1 3/08/2016 F. culmorum Orbit Intelligence [162]

CN105886428 A 24/08/2016 F. verticillioides Espacenet [163]
CN106676040 17/05/2017 F. graminearum Orbit Intelligence [164]
CN107058131 18/08/2017 F. graminearum Orbit Intelligence [147]

CN107164259 A 15/09/2017 F. culmorum Espacenet [165]
CN107287130 A 24/10/2017 F. verticillioides Espacenet [166]

WO201553482 A1 16/04/2018 F. proliferatum Orbit Intelligence [167]
CN108048380 A 18/05/2018 F. graminearum Espacenet [168]
CN108102961 A 1/06/2018 F. graminearum Espacenet [169]

CN108165506 15/06/2018 F. graminearum Orbit Intelligence [170]
CN108208016 29/06/2018 F. graminearum Orbit Intelligence [149]
CN108587981 28/09/2018 F. graminearum Orbit Intelligence [171]

5. Conclusions and Perspectives

Our review of the literature and patents clearly identifies a growing interest in the use of
Streptomyces spp. as biological control agents against toxigenic Fusarium spp., both to inhibit growth
and to limit toxin accumulation (contamination). However, it is clear that for the majority of the
available studies, the findings are preliminary. In most cases, a clear understanding of the role of the
BCA, the identification of the molecules or mechanisms of inhibition, as well as the fungal targets
are lacking [172]. Moreover, most of the data are limited to laboratory in vitro experiments and lack
validation in planta or in the field.

The future of research on streptomycetes as biocontrol agents for Fusarium will need to integrate
diverse expertise and may profit from new methods able to better mimic in the laboratory interactions
occurring in the field [55]. Novel formulation and application techniques will be needed to enable
individual beneficial microbes and microbial consortia to exert their activity in a consistent manner for
different crops and soils [173]. For instance, one biocontrol approach to further investigate could be
combining multiple strains to build consortia able to exert complementary activities [174]. Indeed,
understanding the ecological role, including specific interactions with other microorganisms and the
host, is essential for developing effective and long-lasting approaches of biocontrol. Reaching a better
understanding of microbes–Fusarium interactions could help to provide effective biocontrol strains
among natural endophytes present in the wheat microbiome [175] and within graminaceous plant
rhizosphere [176]. The effect of specific interactions as well as the ability to shift metabolic profiles
within the same Streptomyces species, niche and also among individuals [177], suggest that studies
on the efficacy of strains should encompass a broad range of conditions mimicking the agricultural
milieu [55]. Appropriate fitness tests able to predict the behavior in the field are needed at the selection
level. Novel BCAs or their metabolites could also be identified and produced integrating appropriate
novel genome editing [178] as well as adaptive evolution techniques [179]. A better understanding of
secondary metabolite regulation during the interaction with fungi will help to increase their discovery
for agricultural purposes [53].

Our analysis of the literature leads to the observation that each single paper only addresses
a few aspects of the proposed criteria that would have to be evaluated in identifying effective
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Streptomyces-based BCAs. This review may serve as a proposal for future research efforts which will
likely profit from an integrated analysis of the different parameters that we have identified.

The increasing interest within industry, proven by the increasing number of patents that address
and refer to the use of Streptomyces spp. to limit Fusarium spp. in grains, is a further indication of the
potential role that this powerful group of microorganisms can play in the future of agricultural research.
In conclusion, by performing a complete analysis of the literature regarding the use of Streptomyces
spp. for the biological control of mycotoxigenic fusaria, we identified a set of parameters that we
consider essential for enabling their implementation for biological and toxin contamination control.
Our review suggests that streptomycetes have the potential to play a crucial role both as BCAs, and as
producers of novel inhibitory molecules, for the combined control of Fusarium infection and to limit
the accumulation of mycotoxins in crops [180,181].
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Methods; Kırmusaoğlu, S., Ed.; IntechOpen: London, UK, 2019.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41467-018-05683-7
http://dx.doi.org/10.1016/j.plantsci.2017.11.012
http://dx.doi.org/10.1007/s00248-019-01426-3
http://www.ncbi.nlm.nih.gov/pubmed/31448388
http://dx.doi.org/10.1007/s00248-016-0907-5
http://www.ncbi.nlm.nih.gov/pubmed/28058470
http://dx.doi.org/10.1371/journal.pone.0116457
http://www.ncbi.nlm.nih.gov/pubmed/25635820
http://dx.doi.org/10.1128/AEM.03115-16
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Critical Assessment of Literature 
	Literature Analysis 
	Streptomyces Identification 
	Screening for Antifungal Activity: In Vitro Tests 
	Evaluation of Antifungal Mechanism of Action 
	Assessment of Streptomycete Effects in Planta 
	Evaluation of Streptomycete Activity against Mycotoxin Production 

	Patent Search 
	Conclusions and Perspectives 
	References

