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Abstract: The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune
diseases. While multiple mechanisms are involved, the immune system clearly plays a special role.
Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis,
which is then able to enhance inflammation and to influence gene expression. At the same time,
there is an intense cross-talk between the microbiota and the immunological niche in the intestinal
mucosa. These interactions may pave the way to the development, growth and spreading of cancer,
especially in the gastro-intestinal system. Here, we review the changes in microbiota composition,
how they relate to the immunological imbalance, influencing the onset of different types of cancer
and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.
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1. Introduction

Mounting evidence has conclusively established that the gut microbiota is involved in the
pathogenesis of several medical conditions, such as inflammatory [1,2], liver [3,4], pancreatic [5],
and pulmonary diseases [6], neurological [7] and skin disorders [8], and cancer [9–11].

Gut microbiota comprises all of the microorganisms residing in the human intestine,
including bacteria, viruses, fungi, archea and protozoa. It contains more than 1000 different bacterial
species, over 100 times more than the total number of host cells [12].

Germ-free mice models have shown that the gut microbiota plays some pivotal functions in the
development and modulation of several organs and systems, such as the immune and endocrine
system, blood, liver and lungs [13]. In the intestine, gut microbiota is able to maintain epithelial
homeostasis to support the development of gut associated lymphoid tissue (GALT). Microbiota also
enhances epithelial cytokine production, which regulates the action of T and B lymphocytes,
macrophages and polimorphs [14,15]. Cytokines, such as interleukin (IL)-1β, tumor necrosis factor
(TNF)-α, IL-2, IL-6, IL-15, IL-21, IL-23, can determine an inflammatory response, while others, such as
IL-10 and transforming growth factor (TGF)-β, have anti-inflammatory effect. The balance between
these two classes is responsible for the overall inflamed or homeostatic status of the gut [16].
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In a healthy state, there is a perfect balance between gut microbiota and immune system at gut
interface [17]. The breakdown of this physiological balance in microbial composition precipitates a
pathological state known as ‘gut dysbiosis’, contributing to the overgrowth of pathogen bacteria in the
intestinal lumen. Dysbiosis is considered a common effector in the different pathogenetic pathways
involved in several human diseases [18–20]. Many factors, such as age, hormonal perturbations,
diet composition and supplement intake, antibiotic therapies, lifestyle and physical activity exert
an impact on gut microbiome and equilibrium [21,22]. Dysbiosis can also be a consequence of an
inflammatory status: In genetically susceptible patients, dietary compounds, toxins and antibiotics
can start a low-grade inflammation, leading to dysbiosis. In patients suffering from IBD, for example,
high calorie and high fat diets, typical of the western world, have been shown to determine a worsening
of the inflammatory status of the gut [23].

There appears to be a bidirectional relationship between host immunity and gut microbiota.
On one hand, the development of host immunity is mediated by microbiota but, on the other hand,
the microbiota itself is constantly modulated by host immunity. This permanent cross-talk between
mucosal immunity and gut microbiota is responsible, for example, for the anergy of host immune cells
against its own antigens and dietary ones. In fact, microbiota-driven dendritic cells (DC), particularly
the CD103+ subset, can induce expression of a subset of T cells with regulatory functions (T-regs)
and their related anti-inflammatory cytokines. As well, B-regulatory cells (B-regs) take part in this
process, suppressing effector T cells and contributing to the overall process of immune tolerance to
food antigens [24].

Here, we review the complex interaction between immune system and microbiota at the gut
‘immunological niche’ interface and its role in development, growth and spreading of different types
of gastro-intestinal cancers.

2. Immune System and Cancer

Cancer and the immune system are inextricably linked. A similar strong interaction between
gut microbiota and innate and adaptive immunity has also been established. A complex network of
cytokines regulates the interplay between bacteria, viruses, parasites and fungi and mucosal immune
cells [12] (Figure 1).

Toll like receptors (TLRs) are a component of innate immunity. They are germline-encoded
type I transmembrane receptors, expressed on epithelial cells (e.g., intestinal cells) and on various
immune system-related cells (e.g., T-lymphocytes, macrophages and dendritic cells, DCs). TLRs serve
as pathogen recognition receptors (PRRs) and recognize pathogen-associated molecular patterns
(PAMPs) that are specific and essential for microbes [25]. Among the different TLRs, TLR3 and TLR4
are able to activate both the transcription nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) and the interferon regulatory factor 3 (IRF3) that induces interferon-beta (IFN-beta)
production [26]. Many others TLRs also lead to the activation of mitogen-activated protein (MAP)
kinases p38. This, in turn, increases the expression of many pro-inflammatory genes, via adaptor
molecules, such as Myeloid differentiation primary response gene 88 (MyD88), which is able to recruit
IRAKs (IL-1R-associated kinase family). The activation of MAP3 kinases follows and determines the
activation of NF-κB, c-Jun N-terminal kinase (JNK) and MAP kinases p38.

Studies on MyD88-deficient mice have documented that TLRs’ response to PAMPs of commensal
bacteria plays a fundamental role in epithelial cell homeostasis [27], induction of antimicrobial
peptides [28,29], and in the modulation of the adaptive immune response [30,31]. In contrast,
bacteria-activated TLRs may mediate inflammation and carcinogenesis. Indeed, cancer cells present
high expression of TLRs [32], while, MyD88-deficient mice are less prone to develop tumors [33].
In this respect, several recent studies [34,35] have pointed towards a tumor promoting function, due to
the activation of pro-oncogenic Ras by JNK signaling. This inhibits apoptosis and enhances expression
of metallo-proteinases [36].
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Figure 1. The complex interplay among gut lumen environment, mucosal barrier, immunological 
niche in oncogenesis. The failure of maintaining homeostatic equilibrium between commensals and 
pathogens at gut lumen level leads to dysbiosis. The bacterial products enhance the gut permeability 
leading to bacterial and toxins translocation. Toll-like receptors (TLRs) expressed on activated 
dendritic cells (aDC) are able to recognize pathogen-associated molecular patterns (PAMPs) and can 
activate the NF-κB, JNK and p38 mitogen-activated protein kinases. JNK promotes the activation of 
pro-oncogenic Ras. Other receptors situated on several types of immune cells are represented by 
nucleotide-binding oligomerization domain-like receptors (NLRs), which are pattern recognition 
receptors (PRRs) that can activate NF-κB and promote inflammasomes. Other carcinogenetic agents, 
like nitrous compounds and secondary bile acids, can act respectively as alkylating mediators or via 
reactive oxygen species at a DNA level. Furthermore, high doses of butyrate inhibit histone 
deacetylase (HDAC) that is able to inactivate many oncogenic signaling pathways. The presence of 
pro-inflammatory T-cells can induce pro-inflammatory cytokines at tumor site. The concomitant 
action of T-regs creates a state of immunosuppression at tumor level. 

In the 1800s, Virchow described for the first time a large number of lymphocytes (lymphocytes 
infiltrating tumor or TILs), present at the tumor site [37]. Based on this observation, he hypothesized 
a role of the immune system in cancer development, growth and spreading. 

Only many years later, thanks to technological advances, it was possible to isolate TILs and CD8+ 
cytotoxic T-lymphocytes (CTLs) from peripheral blood in neoplastic patients. CD8+ CTLs play a 
pivotal role against cancer because they are able to kill malignant cells upon recognition by T-cell 
receptor (TCR) of specific antigenic peptides present on the surface of target cells [16]. The existence 
of a tumor-specific CTLs response was further supported by the identification of tumor-associated 
antigens (TAA) and by the detection of TAA-specific CD8+ T-cells in spontaneously regressing 
tumors. Moreover, it has been recently demonstrated that, in colorectal cancer, TILs are 
predominantly CD4+ T cells and produce pro-inflammatory cytokines, such as IFNγ and IL-17. On 
the other hand, there is also a subset of CD4+ cells producing IL-4, which appear to favor Th2 
phenotype, which seems to favor oncogenesis [38]. Another subset of immune cells presents itself at 
tumor a site in longer surviving neoplastic patients and is represented by natural killers (NK). These 
cells are able to trigger tumor apoptosis and inhibit cell proliferation [39]. 

Figure 1. The complex interplay among gut lumen environment, mucosal barrier, immunological
niche in oncogenesis. The failure of maintaining homeostatic equilibrium between commensals and
pathogens at gut lumen level leads to dysbiosis. The bacterial products enhance the gut permeability
leading to bacterial and toxins translocation. Toll-like receptors (TLRs) expressed on activated dendritic
cells (aDC) are able to recognize pathogen-associated molecular patterns (PAMPs) and can activate the
NF-κB, JNK and p38 mitogen-activated protein kinases. JNK promotes the activation of pro-oncogenic
Ras. Other receptors situated on several types of immune cells are represented by nucleotide-binding
oligomerization domain-like receptors (NLRs), which are pattern recognition receptors (PRRs) that can
activate NF-κB and promote inflammasomes. Other carcinogenetic agents, like nitrous compounds
and secondary bile acids, can act respectively as alkylating mediators or via reactive oxygen species
at a DNA level. Furthermore, high doses of butyrate inhibit histone deacetylase (HDAC) that is
able to inactivate many oncogenic signaling pathways. The presence of pro-inflammatory T-cells can
induce pro-inflammatory cytokines at tumor site. The concomitant action of T-regs creates a state of
immunosuppression at tumor level.

In the 1800s, Virchow described for the first time a large number of lymphocytes (lymphocytes
infiltrating tumor or TILs), present at the tumor site [37]. Based on this observation, he hypothesized
a role of the immune system in cancer development, growth and spreading.

Only many years later, thanks to technological advances, it was possible to isolate TILs and CD8+
cytotoxic T-lymphocytes (CTLs) from peripheral blood in neoplastic patients. CD8+ CTLs play a
pivotal role against cancer because they are able to kill malignant cells upon recognition by T-cell
receptor (TCR) of specific antigenic peptides present on the surface of target cells [16]. The existence
of a tumor-specific CTLs response was further supported by the identification of tumor-associated
antigens (TAA) and by the detection of TAA-specific CD8+ T-cells in spontaneously regressing tumors.
Moreover, it has been recently demonstrated that, in colorectal cancer, TILs are predominantly CD4+ T
cells and produce pro-inflammatory cytokines, such as IFNγ and IL-17. On the other hand, there is also
a subset of CD4+ cells producing IL-4, which appear to favor Th2 phenotype, which seems to favor
oncogenesis [38]. Another subset of immune cells presents itself at tumor a site in longer surviving
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neoplastic patients and is represented by natural killers (NK). These cells are able to trigger tumor
apoptosis and inhibit cell proliferation [39].

On the other hand, many studies have shown that at the site of the tumor there is an overall
immunosuppressed state. Such condition is obtained by cancer cells themselves through the
production of immunosuppressive factors (e.g., TGF-β) and/or by recruiting regulatory immune
cells with immunosuppressive functions (e.g., T regulatory cells, T-regs). The prevalence of T-regs
and the prognosis of tumors are inversely correlated [40]. T-regs modulate tumor-specific effector
T-lymphocytes by producing immunosuppressive cytokines, such as IL-10 and TGF-β, consuming IL-2
or expressing the inhibitory molecule cytotoxic T-lymphocyte associated protein 4 (CTLA-4 or CD 152).
T-regs can also inhibit the proliferation of pro-inflammatory subsets of CD4+-T lymphocytes (T-helper
or Th) and stimulate B lymphocytes to produce specific immunoglobulins. Th17 and signal transducer
and activator of transcription 3 (STAT3) have been implicated in carcinogenesis of various human
systems [41,42] by increasing cell proliferation and inhibiting apoptosis [16,43,44]. Th17 produces
pro-inflammatory cytokines, such as IL-17 and IL-23 that promote tumor growth [45]. Moreover, Th17
can induce production of Th1-related pro-inflammatory cytokines, chemokine (C-X-C motif) ligand
9 and 10 (CXCL9 and CXCL10), at the tumor site. Th17 cells have similar characteristics to stem cells
and are able to renew themselves and, at the same time, they can stimulate the production of Th1-like
effectors. The cytokinic environment present at the tumor site influences the different patterns of
expression of Th17 cells: In colorectal, hepatocellular and pancreatic cancers, Th17 is associated to a
worse prognosis, as it favors immune tolerance towards the tumor, while in ovarian cancer it improves
patients’ life expectancy [40,46]. In cancer patients, T cells, persistently stimulated by tumor antigens,
tend to lose their ability to express cytokines or attack target cells. This phenomenon is known as T-cell
exhaustion and is probably the most common mechanism of immune escape [47]. When such condition
ensues, the tumor is able to continue growing regardless of the initial immune response [48,49].

3. The Role of Gut Microbiota in Cancer

A growing body of evidence supports the notion that gut microbiota is able to interfere both with
cancer development and with response to anti-cancer therapies (Table 1).

Gut microbiota can generate signaling molecules and microbial products, which are potentially
toxic for the intestinal mucosal surface [15]. These products increase gut permeability to foreign
antigens [5], and a leaky gut facilitates carcinogenesis, mainly, by enhancing inflammation and by
influencing gene expression [32]. There is evidence, for example, that the quantity and quality of gut
microbial species changes in genetically-predisposed individuals and/or in individuals affected by
pre-neoplastic inflammatory disorders [50]. Furthermore, a gut dysbiosis has been documented in
association to several tumors. On the other hand, germ-free animal models display a noteworthy
reduced cancer incidence and this seems related to the absence of gut dysbiosis and mucosal
inflammation [51].

Another important mechanism through which microbiota exerts an anti-neoplastic action is
through dietary fibers. Dietary fibers are not metabolized and represent the substrate of saccharolytic
fermentation with production of short/chain fatty acids (SCFAs), such as butyrate, propionate
and acetate. SCFAs are able to suppress inflammation and expression of pro-carcinogenics and
to downregulate tumor growth [52,53]. Lactobacilli and bifidobacteria maintain homeostasis in the
gastrointestinal tract [54] and are the principal actors in the fiber fermentation process [55].

Yet, SCFAs are able to bind other bacterial metabolites, like secondary bile acids, that can promote
and/or enhance the inflammation, oxidative DNA damage and subsequent carcinogenesis [56] and
cancer growth. The different effects of butyrate are determined by its concentration. When present in
large quantities, it is able to inhibit cancer cell proliferation, independently from the Warburg effect,
through inhibition of histone deacetylase (HDAC), that is able to inactivate many oncogenic signaling
pathways [15] and lower doses of butyrate are, instead, capable of inducing histone acetylation and
not act as a HDAC inhibitor. Humphreys et al. [57] have demonstrated that butyrate supplementation
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reduces the level of pro-oncogenic miRNA, such as miR-17-92, in rectal biopsies. Moreover, it promotes
the expression of TLR4, MAPK and NF-κB phosphorylation [58]. Butyrate is also linked to the capability
to promote the T-regs proliferation and has an immune-modulating role [59,60], overall leading
to some controversy on its effect [15]. Other data suggest that colonic cell response to SCFAs
may be determined by the expression of caspase and peroxisome proliferator-activated receptor
γ (PPARγ), implying that interactions between gut microbiota and the host are heavily influenced by
the individual’s genetics [61].

Microbiota and host genetics undergo a complex cross-talk, which determines for example that
patients with a genetic predisposition may more easily face dysbiosis and have fewer SCFAs-producing
bacteria [62].

Gut microbiota composition varies largely with age, lifestyle and lifelong dietary intake but it
also modified by medications, especially antimicrobials [63]. The relation between use of antibiotics
and development of cancer remains quite controversial. In fact, in an experimental murine model,
antibiotics have been shown to arrest tumor progression [32]. On the contrary, recent data lends
support to the hypothesis that repeated antibiotic use leads to alteration in microbiota composition,
with subsequent pro-carcinogenetic modifications [64] in the gut, mostly pancreas and intestine,
but also elsewhere. Penicillin use, in particular, appears to be a risk factor for the insurgence of
esophagus, stomach and pancreas malignancies [65].

4. Esophageal and Stomach Cancer

The microbiota of the esophagus is more similar to the oral microbiota than to the intestinal
one. In physiological conditions, the esophageal microbial population is characterized by Firmicutes,
Bacteroides, Actinobacteria, Proteobacteria, Fusobacteria and TM7 and is dominated by the genus
Streptococcus. Instead, in patients with gastro-esophageal reflux and Barrett esophagus, for example,
there is a higher presence of Bacteroides, Proteobacteria and Fusobacterium, and an overall increased
diversity, finally resembling more the stomach microbiome [66].

Helicobacter pylori (Hp) is considered a class 1 human carcinogen for gastric adenocarcinoma [67].
In gastric samples and in the serum of mice with Hp associated gastric cancer, there are increased levels
of IL-1, IL-17 and TNF-α, highlighting an enhanced Th17 response [40]. Hp has also been associated to
low grade gastric mucosa associated lymphoid tissue (MALT) lymphoma and it seems that treating
Hp in patients with a MALT lymphoma can determine a remission of the lymphoma itself [68,69].
Bacterial overgrowth is typically present in gastric tumors not Hp-related [70]. In these patients the
continuous cross-talk between different species, particularly Pasteurella stomatis, Dialister pneumosintes,
Slakia exigua, Parvimonas micra and Streptococcus anginosus, probably plays a key role in disease
progression [71]. Surprisingly, Hp exerts a protective action in esophageal cancer [69]. Although not
conclusively explained, this protection could be due to the reduced gastric acid secretion it induces [72].

In general, patients suffering from esophageal and gastric cancer present higher amount of T-regs
compared to healthy subjects, especially among patients at advanced stage of disease or with the
worst prognosis [73,74]. A recent study has shown that Enterobacteriaceae, in particular Ruminococcus,
are significantly higher in patients with stomach cancer [56], and it could represent the initial trigger
for the altered immunologic status in these patients.

5. Colorectal Cancer

Chen et al. have reported that an imbalance in gut microbiota composition is associated with
colorectal cancer [75].

For example, Lactobacillaceae decrease in number in colon cancer patients, while they increase
after anti-neoplastic treatment [56]. Indeed, Lactobacilli have been shown to block the growth of colon
carcinoma [76]. Bifidobacteriaceae are also reduced in patients with rectal tumor and this could lead
to a reduced folate synthesis, possibly favoring chromosomal instability. In addition, Bifidobacterium
exerts a competitive action against pathogens and regulate immune system cells [77].
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The pathogens that appear to be primarily involved in the pathogenesis of colorectal cancer [78]
are Streptococcus bovis (S. bovis) [79], Hp [80], Bacteroides fragilis (B. fragilis) [81], Enterococcus faecalis
(E. faecalis) [82], Clostridium septicum (C. septicum) [83], Fusobacterium spp. [84] and Escherichia coli
(E. coli) [85]. Some of these bacteria have a direct carcinogenic effect. This is true for Hp or for some
strains of Escherichia coli that produce colibactin, a genotoxin implicated in the onset of colorectal
cancer [86]. Other microbial species act in more subtle ways. Enterotoxigenic B. fragilis, for example,
appears to play a role in the development of colorectal carcinoma through immune-modulation via
Th17. On the other hand, B. fragilis can determine metaplasia through the STAT-3 pathway and the
strain that produces the B. fragilis toxin (BFT) activates the WNT and NF-κB signaling pathways,
leading to a chronic inflammatory status [87,88]. S. bovis increases the tumors capacity of immunologic
escape but it also creates a symbiotic relationship with neoplastic cells, favoring their growth [89].
The role of E. faecalis in cancerogenesis is ambiguous: On the one hand it reportedly increases in
patients with colorectal cancer [90] and causes an inflammatory status that benefits the tumor through
production of ROS, which has a damaging effect on the DNA [91]. On the other hand, it has recently
been suggested that the association between colorectal cancer and E. faecalis is prevalently due to
an altered intestinal environment in patients with colorectal cancer. In this scenario, E. faecalis may
benefit from an already compromised situation, which allows it to grow undisturbed and uncontrolled,
determining an increased virulence, which can further damage the epithelial tissue [92].

Overall, gut dysbiosis acts as a colorectal cancer promoter through a series of mechanisms,
which involve immune-modulation, toxins production, metabolic activities and increased oxidative
stress and inflammation in the intestinal environment [78].

6. Hepatocellular Carcinoma

The liver does not have its own microbiome and is influenced by gut microbiota metabolites
through the entero-hepatic circulation [93].

Although it cannot be formally described as liver microbiota, there are microbial species capable
to colonize it, most specifically hepatotropic viruses, such as hepatitis B virus (HBV) and hepatitis C
virus (HCV). Such viruses increase considerably the risk of developing hepatocellular carcinoma [94].
At least part of this increased risk is explained by a direct action on liver cells through epigenetic
mechanisms. HBV modifies methylation on p16 (INK4A), glutathione S-transferase P 1 (GSTP1),
CDH1 (E-cadherin), Ras association domain containing protein 1 (RASSF1A), p21 (WAF1/CIP1) genes,
while HCV alters methylation on suppressor of cytokine signaling 1 (SOCS-1), growth arrest and
damage inducible beta (Gadd45β), O6-alkylguaniline DNA alkyltransferase (MGMT), STAT1 and
antigen presenting cells (APC). As well, effects on histone proteins, chromatin, and noncoding RNAs
have been described [95]. In addition, HCV is a well-known immune-modulator; in murine models,
for example, it increases FAS-mediated apoptosis of T lymphocytes [96]. At the same time, both HCV
and HBV appear to determine gut dysbiosis, that contributes to disease progression [97].

Hepatocellular carcinoma is often a late evolution of a chronic liver disease. Certain gut microbial
species seem to either facilitate or slow down such process [98,99]. Bacteria belonging to the Helicobacter
spp (pylori and hepaticus, in particular) have been linked to an increased risk of liver cancer. There appear
to be various mechanisms through which H. hepaticus is able to determine a carcinogenic effect. Not only
it can directly damage DNA, activating the WNT and NF-κB signaling pathways in tumor cells, but it
also appears to be able to suppress intra-tumor immunity in aflatoxin- and hepatitis C virus-induced
HCC [100,101]. Escherichia coli has also been linked to the development of hepatocellular carcinoma;
cirrhotic patients who developed a hepatocellular carcinoma have a microbiome enriched with E. coli,
when compared to those who did not develop the tumor [102].

It is noteworthy that a leaky gut increases the number of toxins and bacteria potentially reaching
the liver. The related state of chronic inflammation can promote non-alcoholic liver disease and fibrosis
and could trigger the development of tumors [103]. For example, in obese patients the microbiota is
characterized by an increase in Firmicutes/Bacteroidetes ratio and by an overall reduction of the number
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of bacterial species [104,105]. This dysbiosis favors fat storage, leading to a fatty liver and a metabolic
syndrome, both established risk factors for hepatocellular carcinoma [106,107].

One of the most studied risk factors for hepatocellular carcinoma is alcohol consumption.
Alcohol has a direct toxicity on the liver, but it also has important effects on gut microbiome [108].
Some studies even suggest that restoring and maintaining a normal eubiosis is able to, at least,
slow down the progression of alcohol-related liver disease [109]. Yet, evidence is still scarce and
further investigations are necessary. On the other hand, Lactobacillus species, Bifidobacterium species,
Parabacteroides species, and Oscillibacter species, appear to have a protective effect on the liver,
through their immune-modulating properties [110].

7. Pancreatic Cancer

Pancreatic adenocarcinoma remains one of the most lethal tumors overall. Several reports have
proposed a pathogenetic role of Helicobacter pylori in pancreatic cancer [111]. Helicobacter seems to
activate the NF-κB pathway and its lipopolysaccharide triggers KRAS gene mutation, which is present
in 90% of pancreatic adenocarcinomas [112–114]. As well, Hp may enhance the activator of signal
transducer and activator of transcription3 (STAT3) implicated in carcinogenesis through its capacity
to promote cellular proliferation and, conversely, inhibit apoptosis [115,116]. Despite this supportive
evidence, a recent meta-analysis, based on prospective epidemiologic studies, has not documented a
strong association between Hp infection and pancreatic cancer [117].

As for the liver, the pancreas does not have its own microbiota. As such, it is foreseeable that the
pancreas is influenced by the gut and oral microbiota [118].

In colon samples of patients with pancreatic carcinoma, for example, Youssef et al. have
found reduced levels of Lactobacilli and Parabacteroides [56]. These species have a proven anticancer
function, as they reduce TLR4 signaling pathway [119]. Moreover, levels of Lactobacilli are restored
after anticancer treatment. Another study has linked pancreatic adenocarcinomas to decreased gut
microbiota diversity, caused by an increase of LPS-producing bacteria and a decrease of both alpha
diversity and butyrate-producing bacteria [63].

Geller et al. found increased levels of Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae
and Enterococcaceae in pancreatic cancer tissue [120]. Furthermore, Mei et al. studying the
duodenal microbiota of patients with pancreatic cancer identified mostly Acinetobacter, Aquabacterium,
Oceanobacillus, Rahnella, Massilia, Delftia, Deinococcus, and Sphingobium, while healthy controls harbored
Porphyromonas, Escherichia, Shigella and Pseudomonas [111].

More recently, pancreatic cancer has been associated to a particular salivary microbiota.
The presence of periodontal pathogens, such as Porphyromonas gingivalis (strain ATCC 53978) has been
associated with an increased risk of pancreatic cancer, while the opposite is true for the presence of
Neisseria elongate and Streptococcus mitis [121]. Furthermore, Gammaproteobacteria have been linked to
pancreatic cancer and when transferred to mice, these bacteria induced gemcitabine resistance [122].

8. The Role of Microbiota in Cancer Therapy

The ability of gut microbiota to modulate the response to cancer chemotherapy and
immunotherapy has been first observed in mice [123]. Recently, evidence has emerged revealing
that certain clusters of gut microbiota may be related to chemotherapy outcome in several human
epithelial solid tumors, such as lung and renal carcinomas, and melanoma [123]. The effects of
microbiota on cancer treatment are unlikely due to a single specie but rather to changes in the ecology
and metabolism of gut microbiota impacting cancer immunity altogether [124].

Patients who undergo chemotherapy have a higher risk of developing a leaky gut as a direct
consequence of chemotherapy itself [125]. Leaky gut and dysbiosis appear to decrease the efficacy
of platinum compounds [126]. As well, the effect of other anti-neoplastic agents is modified by gut
microbiota composition. Mycoplasma hyorhinis and cytidine-deaminase-positive Proteobacteria are able
to metabolize and modify gemcitabine, impairing its anti-tumor action and such effect is reversed with
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antibiotic therapy [120,127]. Likewise, the action of cyclophosfamide is influenced by gut microbiota
composition. Bacterial translocation creates an inflamed environment that promotes IFN-γ-producing
γδ-T-cells migration in the tumor area [128].

Microbiota appears to also modulate the response to radiotherapy as germ free mice are less
susceptible to the toxicity of radiation than conventionally raised mice [126]. Gut microbiota might
influence the outcomes of cancer patients who are treated surgically with effects ranging from altered
wound healing to permanent dysbiosis, to selection of resistant and virulent microbial species [129].

Anti-neoplastic immunotherapies have been successfully used in melanoma and aim at
activating and expanding tumor-specific CTLs, with the goal of destroying primary cancer cells and
metastases [130]. The most promising current cancer immunotherapies, utilized not only in melanoma
but in several solid epithelial tumors, act on immune checkpoint molecules anti-programmed death
1 (PD-1) and anti-CTLA-4 immunotherapies. PD-1 is an immuno-inhibitory lymphocyte receptor
involved in the maintenance of peripheral tolerance to self. The interaction of PD-1 with its ligands,
above all PD-L1 (CD274), causes the inhibition of CD8+T cell proliferation, survival and effector
functions, and induces the CD4+ to Foxp3 T-cell differentiation increasing immune tolerance. CTLA-4,
on the other hand, binds to CD80 or CD86 expressed on the surface of T-lymphocytes, and it causes a
state of anergy in these cells. Some tumors (e.g., melanoma, prostate, kidney, lung) have the capacity
to stimulate the exhaustion and anergy pathways, which is the main cause of immunologic escape
capacity of these malignancies [131]. The PD-1/PD-L1 and the CTLA-4/B7 blockade has been shown
to at least partly reverse immune alterations that determine T-cells exhaustion and anergy [132].

Even though these therapies are extremely promising, not all patients respond and some even
experience severe side effects [133]. One of the main suspects of the very high variability in patient
response is gut microbiome [134]. Marinelli et al. [135] have suggested that different bacterial species
are involved in patients’ response to immunotherapy. In this respect, germ free mice, for example,
are not able to respond to CTLA-4 blockage [136].

Another aspect that needs to be considered is host genetics, which is an important element
in determining whether the patient will respond or not to immunotherapy. Patients with a
genetically determined T-cell impairment, for example, do not respond well to immunotherapies [137].
Polymorphysms of TLR4 are linked to different outcomes in patients with breast tumors, while other
immune-related loci (e.g., TNF-α, NF-κB, Janus kinases (JAK)/STAT proteins, Fc receptors FcγRIII
(CD16), nucleotide-binding oligomerization domain-containing protein 2 (NOD2), autophagy related
protein 16 (ATG16) and inflammasome pathway proteins) have also been linked to differences in the
response to immunotherapy against cancer. Overall, the immune status of the host proves to be the
primary factor in determining the response to all anti-neoplastic therapies, both directly and also
indirectly through alterations of the gut microbiota [138].

Immunotherapy can increase potentially dangerous bacterial species. Most specifically, it appears
to increase the number of Clostridiales, and to decrease the number of Bacteroidales and Burkholderiales,
which play a pivotal role in a correct response to therapy. Another central role played by gut microbiota
is in the modulation of side effects from immunotherapy. For example, the presence of Bacteroidetes
phylum appears to have a protective effect against checkpoint-blockade-induced colitis [139].
Overall, CTLA-4 blockage requires the presence of specific bacteria to work, while anti-PD-1 drugs
appear to interact only partially with gut microbiota [140].

9. Conclusions

A healthy gut microbiota is fundamental in maintaining homeostasis in the immune system,
which is also key in cancer development and response. Still, the full extent of the actions of gut
microbiota is not yet completely understood. As we have reported in our review, there are both
immune-modulated and direct effects it plays in carcinogenesis of the gastro intestinal tract, not only
in districts such as the intestine, but also in the liver and the pancreas, which are not directly colonized
by the various microbial species. While some microbial species promote a healthy gut and the correct
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development of the various components of the immune system, others are even capable of determining
malignancies. The importance of gut microbiota has also been demonstrated in the response to therapy,
as the metabolic pathways it favors or suppresses can severely affect patients’ outcomes. Many studies
underline the importance of microbiota in modulating different drugs’ effects and, in some cases, being
necessary for the chemotherapy agent to have any effect whatsoever. Therapeutic strategies such as
surgery and radiotherapy are also influenced by the presence of a healthy gut microbiota.

Overall, modulating the gut microbiota could be beneficial not only for those patients who have
cancer, but also as a preventive strategy in the general population. Gut microbiota is a key player in
many different diseases and could be targeted specifically in each patient through a precision medicine
approach, so to maximize individual benefit, choosing the best therapeutic strategy and taking into
account host and tumor characteristics [141].

Table 1. An overview on the most studied gut microbioma species involved in GI cancer.

Site Effect Mechanism References

Neisseria elongate Oral ↓↓↓ pancreatic tumor Promotes oral homeostasis. [121]

Streptococcus
mitis Oral ↓↓↓ pancreatic tumor Promotes oral homeostasis. [121]

Porphyromonas
gingivalis (strain

ATCC 53978)
Oral ↑↑↑ pancreatic tumor Promotes oral dysbiosis and

inflammation. [121]

Helicobacter
pylori

Stomach,
liver,

intestine

↑↑↑ gastric liver
pancreatic colorectal

tumor;
↓↓↓ esophageal tumor

Immune-modulating effect through
Th17 pathway; promoting factor for

dysbiosis; not clear protective
properties in esophageal tumor.

[67,80,97,111,142]

Helicobacter
hepaticus Liver ↑↑↑ liver tumor

Directly damages DNA, through
WNT and NF-κB signaling

pathways in tumor cells; suppresses
intra-tumor immunity in aflatoxin-

and hepatitis C virus-induced HCC.

[97,100,101]

Streptococcus
bovis Intestine ↑↑↑ colorectal tumor Immune-modulating effect;

symbiotic relation with tumor cells. [79,89]

Bacteroidesfragilis Intestine ↑↑↑ progression
colorectal tumor

Immune-modulating effect through
TH17 pathway; promotion of WNT,
NF-κB and STS-3 pathways; direct

effect of BFT toxin.

[87,88,134,143]

Enterococcus
faecalis Intestine ↑↑↑ colorectal tumor

Inflammatory effect through ROS
production; increases risk of

epithelial damage
[82,92]

Clostridium
septicum Intestine ↑↑↑ colorectal tumor Inflammatory effect; increases risk

of infectious complications. [83]

Fusobacterium
spp. Intestine ↓↓↓ colorectal tumor;

↑↑↑ esophageal tumor.
Immune-modulating effect.

Esophageal dysbiosis marker. [66,84,144]

Escherichia coli Intestine,
pancreas

↑↑↑ colorectal and liver
tumor;

↓↓ pancreatic tumor

Direct epithelial invasion;
production of nitrous compounds

through eme-metabolism; promotes
dysbiosis.

[85,86,102,145]

Lactobacillum spp.
Gastro

intestinal
apparatus

↓↓↓↓malignancies Promotes gut homeostasis;
anti-inflammatory effects. [54–56,76,110]

Bifidobacter spp.
Gastro

intestinal
apparatus

↓↓↓↓malignancies;
↓↓ immunotherapy

side-effects

Promotes gut homeostasis through
competition with pathogens;

anti-inflammatory effects.
[54,55,77,110]

Clostridium
cluster IV

Gastro
intestinal
apparatus

↓↓↓↓malignancies Promotes gut homeostasis;
anti-inflammatory effects. [55]
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