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Abstract: Estrogen receptor (ER)-positive progesterone receptor (PR)-negative breast cancers are
infrequent but clinically challenging. Despite the volume of genomic data available on these tumors,
their biology remains poorly understood. Here, we aimed to identify clinically relevant subclasses of
ER+/PR− breast cancers based on their mutational landscape. The Cancer Genomics Data Server
was interrogated for mutational and clinical data of all ER+ breast cancers with information on PR
status from The Cancer Genome Atlas (TCGA), Memorial Sloan Kettering (MSK), and Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) projects. Clustering analysis was
performed using gplots, ggplot2, and ComplexHeatmap packages. Comparisons between groups
were performed using the Student’s t-test and the test of Equal or Given Proportions. Survival curves
were built according to the Kaplan–Meier method; differences in survival were assessed with the
log-rank test. A total of 3570 ER+ breast cancers (PR− n = 959, 27%; PR+ n = 2611, 73%) were analyzed.
Mutations in well-known cancer genes such as TP53, GATA3, CDH1, HER2, CDH1, and BRAF were
private to or enriched for in PR− tumors. Mutual exclusivity analysis revealed the presence of four
molecular clusters with significantly different prognosis on the basis of PIK3CA and TP53 status.
ER+/PR− breast cancers are genetically heterogeneous and encompass a variety of distinct entities
in terms of prognostic and predictive information.
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1. Introduction

Estrogen receptor (ER)-positive progesterone receptor (PR)-negative (ER+/PR−) breast cancers
are a subset of Luminal B tumors characterized by the strong and diffuse nuclear expression of
ER-alpha but not of PR [1]. They account for 5% of all invasive breast cancers and show a relatively
aggressive clinical course compared to ER+/PR+ neoplasms [1–5]. ER+/PR− invasive breast cancers
are described as larger in size than PR+ carcinomas and are generally of no special histological type
(i.e., ductal) [1,6]. Even though they preferentially affect postmenopausal women, these diagnoses
are not exceptional in younger patients [1,2,7]. As confirmed by several prospectively randomized
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controlled neoadjuvant trials, ER+/PR− breast cancers are associated with a higher response but also
worse long-term outcome after neoadjuvant therapy [5]. There are several lines of evidence to suggest
that the worse prognosis of ER+/PR− tumors may be related to the phenomena of hormone therapy
resistance [1–5]. However, a large adjuvant trial on the use of aromatase inhibitors in postmenopausal
women with early breast cancer revealed that the PR status has no effect on the relative efficacy of this
therapy [8]. For this reason, some authors have questioned the clinical utility of PR testing [9]. To date,
hormonal therapy remains recommended in ER+ tumors regardless of PR status [10]. All these diverse
correlations highlight the clinical challenges provided by ER+/PR− breast cancers.

A proportion of ER+/PR− neoplasms shows a remarkable degree of genomic instability, reaching
almost twice the DNA copy number variations and tumor mutational load than those of both ER+/PR+
and ER− breast cancers [1,8]. Furthermore, many growth factors were observed to be overexpressed
in these tumors, such as HER family, PI3K, Akt, and src [1,2,11–13]. These pathways, which can also
be altered in ER+/PR+ tumors, are known to be involved in ER phosphorylation, which may lead to
ligand-independent activation [14]. There is also evidence that the upregulation of Akt and HER1/2 is
implicated in tamoxifen resistance [1,2,11,12,15–18]. Recently, PR has been proposed as a surrogate
biomarker of altered growth factor signaling [5]. Due to these insights, and the substantial lack of
distinct biological properties identified to date in ER+/PR− breast cancers, it is becoming increasingly
clear that these tumors are clinically and biologically heterogeneous [19–25].

During the past few years, the Cancer Genome Atlas (TCGA) project has exposed the complexity
of the genome-wide genetic alterations in breast cancer [26]. On the other hand, the proper clinical
management of Luminal (i.e., ER+) breast cancers, particularly in intermediate-risk patients, remains a
matter of controversy. However, there is a limited understanding of how the mutational landscape
of these tumors, according to the PR status, can be exploited in the clinic to allow for more tailored
management schemes. In this study, we sought: (i) to characterize the mutational signatures of
ER+/PR− breast cancers; (ii) to compare the molecular landscapes of PR− and PR+ Luminal tumors;
and (iii) to define the prognostic value of the type and pattern of somatic genetic alterations in
these patients.

2. Results

A total of 3589 ER+ breast cancers from the publicly available datasets TCGA, Memorial Sloan
Kettering (MSK), and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
were identified. Among them, 3570 (99.5%) cases (2815 invasive ductal carcinomas and 755 invasive
carcinomas of any special type) had information on PR status (PR− n = 959, 27%; PR+ n = 2611, 73%)
and were included in the current study. The median age at diagnosis of PR− tumors was 59 years old
(range 24–92); for PR+ tumors, it was 57 years old (range 23–91). Taken together, 53,585 mutations
targeting 13,402 genes were identified, including 57,448 (99%), 6642 (90%), and 8905 (89%) mutations
that were private to only one sample in the TCGA, MSK, and METABRIC cohorts, respectively.
The number of samples, mutated genes, and mutations of the tumors included in the analysis are
summarized in Table 1 and Table S1.

Table 1. Number ER+ breast cancer samples, according to the PR status from the TCGA, MSK, and
METABRIC projects. PR, progesterone receptor.

TCGA (%) MSK (%) METABRIC (%)

PR− (n = 959) 110 (12) 396 (41) 453 (47)
PR+ (n = 2611) 608 (23) 1031 (40) 972 (37)
Total (n = 3570) 718 (20) 1427 (40) 1425 (40)

2.1. The Molecular Landscape of ER+/PR− Breast Cancers

The average number of mutations displayed by ER+/PR− breast cancers was 16 per sample,
whereas in PR+ tumors was 14. The two groups shared 5668 mutated genes, while approximately 1319
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(19%) genes were found to be privately altered in ER+/PR− breast cancers. Overall, the mutations
in PR− tumors were missense in 12,583 (78%), nonsense in 1250 (8%), frameshift deletions in 896
(5%), frameshift insertions in 616 (4%), splicing in 516 (3%), and in-frame indels in 261 (2%) cases.
Of note, fusion genes were detected in 69 ER+/PR− tumors. The mutational landscape and selected
clinicopathologic features in ER+/PR− and ER+/PR+ breast cancers are depicted in Figure 1 and
Figure S1, respectively.
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n = 1220, 47%; p < 0.01). In particular, the vast majority of PIK3CA mutations were missense and 
affected four hotspot regions of the gene, namely N345K, E542K, E545K, and H1047R (Figure 2). 
Notably, the H1047R and E545K mutations in PIK3CA were less frequent in PR− tumors (Table 2). 
The prevalence of samples showing mutations in TP53, which was the second most frequently 
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Figure 1. Oncoprint visualization of highly recurrent somatic molecular alterations in ER+/PR− breast
cancers (959 samples). Each row represents a gene, as reported on the right, and was sorted by gene
alterations frequency (bar plot on the right); types of alterations are color-coded on the basis of the
legend on the bottom. Each column represents a sample and was sorted to appreciate the mutual
exclusivity across genes. The bar plot on the top represents the number of samples showing alterations
in the displayed genes. Cluster analysis, human epidermal growth factor receptor (HER)2 status,
histological type, tumor stage, menopause status, and age at diagnosis are reported as rows at the
bottom of the figure. Clustering was performed according to the mutual exclusivity and patterns
of mutations.

The most frequently mutated gene in PR− tumors was phosphatidylinositol-4,5-bisphosphate
3-kinase, catalytic subunit alpha (PIK3CA), with lower prevalence than in PR+ tumors (n = 354, 37% vs.
n = 1220, 47%; p < 0.01). In particular, the vast majority of PIK3CA mutations were missense and affected
four hotspot regions of the gene, namely N345K, E542K, E545K, and H1047R (Figure 2). Notably, the
H1047R and E545K mutations in PIK3CA were less frequent in PR− tumors (Table 2). The prevalence of
samples showing mutations in TP53, which was the second most frequently mutated gene in both PR−
and PR+ Luminal tumors, was higher in PR− breast cancers (n = 312, 33% vs. n = 496, 19%; p < 0.01).
Furthermore, the nonsense mutation R342X and the missense mutations P728S, I195T, and H179R in
TP53 were enriched in PR− tumors (p < 0.05), as shown in Table 2. Taken together, PIK3CA and TP53
status allowed for the definition of four molecular clusters (Figure 1). Specifically, Cluster 1 included
all PIK3CA-mutant/TP53-mutant samples (n = 108, 11%), Cluster 2 all PIK3CA-mutant/TP53 wild-type
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samples (n = 246, 26%), Cluster 3 PIK3CA wild-type/TP53-mutant tumors (n = 204, 21%), and Cluster
4 encompassed all PIK3CA/TP53 wild-type cases (n = 401, 42%). Among the other recurrent gene
alterations, the hotspot mutation E17K in RAC-alpha serine/threonine-protein kinase (AKT1), which
was present in 3% and 5% of PR− and PR+ cases, respectively, was mutually exclusive with mutations
targeting PIK3CA, regardless of PR status (Figure S2). On the other hand, even if PIK3CA and AKT1
were observed to be recurrently mutated in both groups, the hotspot regions differed significantly on
the basis of PR activation (p < 0.05). Of note, GATA3 showed a high number of frame-shift indels and
nonsense mutations (Figure 2), consistent with its crucial role in the ER signaling pathway. One of
the most recurrently mutated genes was E-cadherin (CDH1), with the hotspot truncating mutation in
position 23 associated to the lobular histology (Figure 2). The prevalence of human epidermal growth
factor receptor (HER)2-mutant cases was higher in PR− breast cancers, albeit nonsignificant (n = 151,
16% vs. n = 389, 15%; p = 0.530). According to the Student’s t-test, the mutational profile of PR−
Luminal breast cancers was significantly different to that of PR+ tumors (p < 10−5), with 16 mutations
being restricted to the ER+/PR− group, including mutations in ARID1A, ATR, BCL6, BRAF, CARD11,
CDH1, AXIN2, GATA3, MUC16, CCDC82, RUNX1, and TBX3 (Table 2). No significant correlations
were observed between PR activation status and other clinicopathologic characteristics. The tumor
mutational burden (median of five mutations per sample for both PR+/−; mean 15.2 per sample for
PR+; mean 15.9 per sample for PR−; range 1–3474 in PR+; and range 1–2900 in PR−) of the cases
included in this study is shown in Figure S3.
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Table 2. The 37 recurrent mutations showing significant differences between ER+/PR− and ER+/PR+
breast cancers according to the test of Equal or Given Proportions.

Mutation PR+ (%) PR− (%) p Value

ARID1A_Q766SfsX67 0 2 (0.20) 0.019
ATR_A14S 0 2 (0.20) 0.019

BCL6_K474EfsX26 0 2 (0.20) 0.019
BRAF_V600E 0 2 (0.20) 0.019

CARD11_D200E 0 2 (0.20) 0.019
CDH1_R598X 0 2 (0.20) 0.019
CDH1_E138X 0 2 (0.20) 0.019

CDH1_E497RfsX25 0 2 (0.20) 0.019
AXIN2_S493L 0 3 (0.31) 0.004
GATA3_R364T 0 3 (0.31) 0.005

CDH1_V202CfsX7 0 3 (0.31) 0.006
MUC16_T7149A 0 3 (0.31) 0.007

CCDC82_E175del 0 3 (0.31) 0.008
RUNX1_D123GfsX15 0 4 (0.41) <0.001

TBX3_W113X 0 4 (0.41) <0.001
CDH1_T115NfsX53 1 (0.04) 3 (0.31) 0.029

FOXA1_D226N 1 (0.04) 3 (0.31) 0.029
FOXA1_I176M 1 (0.04) 3 (0.31) 0.029

GATA3_X444LfsX63 1 (0.04) 3 (0.31) 0.029
TERT_Promoter 1 (0.04) 3 (0.31) 0.029

TP53_P278S 1 (0.04) 3 (0.31) 0.029
SMAD4_Q245X 1 (0.04) 3 (0.31) 0.029

TP53_I195T 1 (0.04) 5 (0.52) 0.002
ERBB2_E770_A771insGIRD 1 (0.04) 8 (0.83) 0.003

ERBB2_S310F 2 (0.08) 4 (0.41) 0.027
MAP3K1_R364W 2 (0.08) 4 (0.41) 0.027

TP53_H179R 2 (0.08) 4 (0.41) 0.027
TP53_R342X 5 (0.19) 7 (0.72) 0.013

GATA3_D335GfsX17 16 (0.61) 13 (1.35) 0.028
TP53_R175H 21 (0.80) 18 (1.87) 0.006
ESR1_Y537S 29 (1.11) 3 (0.31) 0.024
ESR1_D538G 47 (1.80) 7 (0.72) 0.020
SF3B1_K700E 60 (2.29) 10 (1.04) 0.016

GATA3_X308_splice 70 (2.68) 9 (0.94) 0.002
AKT1_E17K 106 (4.05) 25 (2.60) 0.04

PIK3CA_E545K 251 (9.61) 68 (7.09) 0.019
PIK3CA_H1047R 482 (18.46) 134 (13.97) 0.002

2.2. The Prognostic Role of PIK3CA and TP53 in ER+/PR− Breast Cancers

Overall, the highest mortality was observed before 50 months from the diagnosis, regardless of
PR status, with a median survival of 76.9 months in PR− and 61 months in PR+ tumors. The most
recurrently mutated genes in ER+/PR− and ER+/PR+ breast cancers were used to define the survival
probability curves shown in Figures S4 and S5, respectively. Even though the log-rank p-values
were significant for TP53 and GATA3 mutations in both groups, survival analyses including tumors
harboring alterations only in each of the most frequently mutated genes, but not in the others, revealed
that in ER+/PR− breast cancers only TP53 mutations are related to a different prognosis (Figure 3).
The hotspot regions of TP53 that were significantly different in PR− tumors were not related to a
different outcome (Figure S6), similar to PIK3CA (Figure S7).
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Subsequently, survival curves were built according to the four molecular clusters identified on the
basis of PIK3CA and TP53 status. These analyses revealed the prognostic value of the combination and
mutual exclusivity of PIK3CA and TP53 mutations (Figure 4). Specifically, Cluster 4 showed in both
PR− and PR+ cases a good prognosis. Interestingly, the prognosis of Cluster 4 overlapped to that of
Cluster 3 in PR+ but not in PR− tumors. Hence, PR− breast cancers showed a different scenario, where
the long-term outcome of the patients was worse in the presence of PIK3CA and/or TP53 mutations
(i.e., Clusters 1, 2 and 3).
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3. Discussion

The precise risk stratification in Luminal breast cancer by means of immunohistochemistry
and/or prognostic genomic tests is a major limitation in defining the most appropriate management
scheme [27]. Patients with ER+ breast cancers are assumed to have a good prognosis, but the lack of PR
expression may contribute to their poor outcomes. This may be a result of the de-differentiation
of hormone-positive neoplasms and subsequent development of resistance phenomena to both
anti-estrogen therapy and chemotherapy. Studies aiming to explore the genetic alterations in ER+/PR−
breast cancers have been performed. However, the unique biology and challenging clinical course of
these tumors, particularly in long-term survivors, suggest that they warrant further characterization. In
this study, we analyzed a large cohort of PR− Luminal breast cancers with publicly available genomic
data and compared their molecular landscape and prognosis to those of PR+ tumors. Altogether, we
observed that several alterations in clinically actionable cancer genes are private to or enriched for in
PR− breast cancers, such as TP53 R342X, P728S, I195T, and H179R, GATA3, CDH1, HER2, CDH1, and
BRAF V600E. Furthermore, we identified four molecular clusters on the basis of PIK3CA and TP53
status with significantly different risk of death in PR− tumors.

Decreased expression and/or downregulation of PR in breast cancer leads to a subset of tumors
that is phenotypically ER+/PR−. Even though several hypotheses to explain this phenomenon have
been put forward, we are still far from fully understanding its biology. In a proportion of Luminal
tumors, ER, although expressed, is biologically nonfunctional and therefore it is unable to stimulate
PR production, particularly in postmenopausal women [1]. Another mechanism for PR loss is the
epigenetic inactivation of its promoter through hypermethylation [12]. Even though a genetic loss
of a PR gene locus has previously been observed [12], in our analysis, all ER+/PR− tumors are PR
wild-type, suggesting that PR downregulation may be determined by growth factor pathways, as
previously observed [2,11]. In particular, the HER2 activity may lead to the cytoplasmic sequestration
of ER, which alters a set of genes that are normally regulated by ER, including PR−related genes, such
as PIK3CA [11,28,29].

Taken together, we observed that the most frequently mutated genes in ER+/PR− breast cancers
are PIK3CA, TP53, GATA3, CHD1, KMT2C, MUC16, MAP3K1, ARID1A, AHNAK2, and SYNE2.
Interestingly, PIK3CA and TP53 show a mutational prevalence (37% and 33%, respectively) that
differs significantly to that of ER+/PR+ tumors (with PIK3CA mutated in 47% of cases and TP53 in
19%). Those aspects have already been described in the literature [30,31]. On the other hand, the
identification of a mutational profile specific to ER+/PR− cases, with 16 mutations being restricted
to this group, is a novel finding. In our study, we confirm the presence of highly recurrent molecular
alterations of the PIK3CA gene in position 1047, which likely constitute the driving genetic event in the
pathogenesis of a subset of ER+/PR− breast cancers. These data provide further credence to the notion
that inhibitors of this pathway (e.g., XL147) could reverse PR downregulation and overcome resistance
to anti-HER2 drugs [32]. In addition, the identification of the BRAF V600E as a private mutation of PR−
cases have possible therapeutic implications [33,34]. Recently, mutations in HER2 have been detected
in breast cancer patient samples which lack HER2 gene amplification. Thirteen HER2 mutations were
characterized from twenty-five patient samples which had HER2 mutations but lacked HER2 gene
amplification. Among them, seven mutations were activating and resulted from point mutations and
in-frame deletions. Some mutations (L755S) resulted in lapatinib resistance; however, this was not an
activating mutation. All of the cells containing the HER2 mutations were sensitive to the irreversible
HER2 kinase inhibitor, neratinib [35]. Our analysis corroborates the concept that mutations in GATA3
are associated with a better outcome in ER+ breast cancer patients [36]. After eliminating all cases with
concurrent mutations in the other top recurrently mutated genes, however, we were able to confirm
this notion only in PR+ tumors. These data suggest that GATA3 mutations are not an independent
good prognostic factor in ER+/PR− tumors. Given that GATA3 is frequently altered in Luminal A
breast cancers, our findings provide an additional molecular layer to the worse prognosis showed by
ER+/PR− breast cancers [19,37]. Furthermore, we confirmed that TP53 mutations are associated with
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PR negativity and with a shorter overall survival time in breast cancers [38]. Interestingly, this behavior
is unrelated to the specific regions of TP53 that are recurrently altered in this subset of patients, akin to
patients with PIK3CA-mutant tumors.

The patterns of mutations in TP53 with PIK3CA allowed us to identify four molecular
clusters in both PR− and PR+ Luminal breast cancers, namely PIK3CA/TP53-mutant (Cluster
1), PIK3CA-mutant/TP53 wild-type (Cluster 2), PIK3CA wild-type/TP53-mutant (Cluster 3), and
PIK3CA/TP53 wild-type (Cluster 4). Notably, the prognostic distribution of these clusters differed
substantially between ER+/PR− and ER+/PR+ breast cancers. Indeed, while in PR+ Luminal tumors
Clusters 2 and 4 were related to better survival, with overlapping curves, in PR− Luminal tumors
Cluster 2 followed into in an intermediate risk category for the first 16 years of follow-up, becoming
worse after that time. All these diverse correlations highlight the importance of PIK3CA and TP53
analysis in PR− Luminal breast cancer prognostication.

4. Materials and Methods

4.1. Case Selection and Definitions

We used the CGDS R package to interrogate the Cancer Genomics Data Server [39,40]
and download mutational and clinical data related to three breast cancer projects hosted at the
Memorial-Sloan-Kettering Cancer Center: the METABRIC project [41], containing 2509 breast cancers
samples; the MSK project [42] containing 1918 samples; and the TCGA project, containing 1105 samples.
Each sample has both somatic mutational profiles for selected genes, and clinical information. In
particular, the TCGA project contains mutational profiles for 20,461 genes, the METABTIC project
contains mutational profiles for 173 genes and the MSK project for 474 genes. Moreover, we used
gplots and ggplot2 packages [43,44] to perform the clustering analysis and visualize the data. We
collected all somatic mutations related to the projects and integrated them to the clinical information
and the treatment outcomes. Moreover, we selected all the estrogen receptor positive (ER+) samples
reducing our dataset to 3589 samples, and a total of 53,585 somatic mutations in 13,402 genes.

4.2. Statistical Analysis

Comparisons between groups were generally performed using the Student’s t-test and test of
Equal or Given Proportions. Event-free survival was expressed as the number of months from diagnosis
to the occurrence of distant or local relapse or death (disease-related death). Cumulative survival
probabilities were calculated using the Kaplan–Meier method. Differences between survival rates
were tested with the log-rank test (SPSS version 20.0; IBM). Survival data were censored at five years.
A p < 0.05 was considered statistically significant. Survival analysis and figures were developed using
the R survival and survminer packages [45], and the Kaplan–Meier non-parametric statistic [46].

5. Conclusions

We demonstrated that ER+/PR− breast cancers are biologically characterized by relevant
molecular characteristics in terms of prognostic and predictive information, which could be integrated
into the clinical setting to realize the potentials of precision medicine in these clinically, and
pathologically, challenging neoplasms.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
510/s1. Figure S1: Oncoprint visualization of highly recurrent somatic molecular alterations in ER+/PR+ breast
cancers (2611 samples). Each row represents a gene, as reported on the right and was sorted by gene alterations
frequency (bar plot on the right); types of alterations are color-coded on the basis of the legend on the bottom.
Each column represents a sample and was sorted to appreciate the mutual exclusivity across genes. The bar plot
on the top represents the number of samples showing alterations in the displayed genes. Cluster analysis, HER2
status, histological type, tumor stage, and menopause status are reported as rows at the bottom of the figure; age
at diagnosis is depicted in the top at the bottom. Clustering was performed according to the mutual exclusivity
and patterns of mutations. Figure S2: Recurrent somatic alterations in 959 ER+/PR− (A) and in 2611 ER+/PR+
(B) breast cancers (2611 samples). Each row represents an alteration, as reported on the right, each column a
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sample. Alterations were sorted by frequency, while the samples were sorted to appreciate the mutual exclusivity
across alterations. Figures report the 50 most frequent gene alterations. Figure S3: Total number of mutations
per samples in ER+/PR− (A) and ER+/PR+ (B) breast cancer patients. Each bar represents a sample; types of
alterations are color-coded on the basis of the legend on the left. Figure S4: Overall survival of ER+/PR− breast
cancer patients based on the most frequently altered genes. Survival curves (red, mutant; gray, wild-type) are
built according to the Kaplan–Meier method. For each analysis, all samples harboring mutations in one of the
other nine genes were excluded. Figure S5: Overall survival of ER+/PR+ breast cancer patients based on the
most frequently altered genes. For each analysis, all samples harboring mutations in one of the other nine genes
were excluded. Survival curves (red, mutant; gray, wild-type) are built according to the Kaplan–Meier method.
Figure S6: Overall survival of ER+/PR− breast cancer patients based on the most frequently altered regions in the
PIK3CA gene. Survival curves are built according to the Kaplan–Meier method. Figure S7: Overall survival of
ER+/PR− breast cancer patients based on the most frequently altered regions in the TP53 gene. Survival curves
are built according to the Kaplan–Meier method. Table S1: Mutations of the tumors included in the analysis.
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