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Abstract: We have investigated structural changes of peptides related to antimicrobial peptide
Halictine-1 (HAL-1) induced by interaction with various membrane-mimicking models with the aim
to identify a mechanism of the peptide mode of action and to find a correlation between changes of
primary/secondary structure and biological activity. Modifications in the HAL-1 amino acid sequence
at particular positions, causing an increase of amphipathicity (Arg/Lys exchange), restricted mobility
(insertion of Pro) and consequent changes in antimicrobial and hemolytic activity, led to different
behavior towards model membranes. Secondary structure changes induced by peptide-membrane
interaction were studied by circular dichroism, infrared spectroscopy, and fluorescence spectroscopy.
The experimental results were complemented by molecular dynamics calculations. An α-helical
structure has been found to be necessary but not completely sufficient for the HAL-1 peptides
antimicrobial action. The role of alternative conformations (such as β-sheet, PPII or 310-helix) also
seems to be important. A mechanism of the peptide mode of action probably involves formation of
peptide assemblies (possibly membrane pores), which disrupt bacterial membrane and, consequently,
allow membrane penetration.
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1. Introduction

Antimicrobial peptides (AMPs) are important participants in the initial response of immune
systems and have been found in nearly all living organisms including bacteria, fungi, plants and
animals [1–4]. Potentially, they offer alternatives to disease treatment as a replacement for common
antibiotics, without disadvantages like resistance, allergies, etc. Many AMPs have been isolated
and subsequently synthesized together with their analogs. Their antibacterial activities have been
determined against Gram-negative and Gram-positive bacteria as well as against cancer cells [1,5–8].
A general lack of new antibiotics for the treatment of Gram-negative infections and a continuous
increase in multi-drug resistance has recently caused a wave of interest in possible mechanisms
of AMP action. One of the recognized effects is their ability to disrupt bacterial membranes via
non-specific electrostatic interactions with the membrane lipid components [1]. There are two
recognized common and important criteria for functionally active AMPs. These include a network of
cationic charges and the ability to adopt an amphipathic structure, where hydrophobic and hydrophilic
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parts form oppositely oriented domains upon interaction with negatively charged bacterial membranes.
The possible mechanisms of AMP action fall into two basic categories: (1) formation of pores in bacterial
membranes via transmembrane penetration (e.g., the barrel stave and toroidal pore models) or (2)
disruption of membranes (e.g., the carpet and detergent models) [1,8–11]. These then lead to the
breakdown of the transmembrane potential causing leakage of the cell contents and finally cell death.
The physico-chemical concept of such antibacterial action has been discussed and particular attention
has been paid to changes of the phase state of the membrane [12–14].

Quite importantly, AMPs exhibit high preference for bacterial over mammalian cells. This
is probably associated with known significant differences between mammalian and bacterial cell
membranes [5,6,12,15,16]. The type of mammalian cell membrane is represented by the plasma
membrane of red blood cells. This membrane consists of about 60% phospholipids and 25% cholesterol.
Distribution of phospholipids between outer and inner lipid leaflets of the bilayer is asymmetric with
neutral phospholipids phosphatidylcholine and sphingomyelin exposed to the extracellular matrix.
On the other hand, negatively charged lipids such as phosphatidylglycerol, diphosphatidylglycerol
or cardiolipin and the zwitterionic phosphatidylethanolamine are the main constituents of the
cytoplasmic membrane of both Gram-positive and Gram-negative bacteria (having an additional
layer of peptidoglycan and an outer membrane layer composed mainly of lipopolysaccharides). In a
simplified way, the AMPs are exposed to a neutral membrane surface in the case of mammalian cells
and to a negatively charged surface in the case of bacteria.

Within the last decade, several original discoveries of AMPs isolated from the venom of
Hymenoptera insects have been made and described by our collaborators [17–22]. Biological activities
of these new AMPs have been determined and compared to the activities of their synthesized
analogs to consider their eventual pharmacological application. Based on initial electronic circular
dichroism (ECD) investigations, the peptides may undergo substantial structural changes in the
presence of simple membrane-mimicking models such as 2,2,2-trifluoroethanol (TFE) and sodium
dodecyl sulfate (SDS). Moreover, peptide structural behavior can be substantially affected by primary
structure modifications. In our initial study of peptides related to Halictine-1 (HAL-1), a short linear
AMP containing 12 amino acids isolated from the venom of the eusocial bee Halictus sexcinctus,
we demonstrated that HAL-1 and its analogs are able to form amphipathic structures when in
α-helical conformation [19]. A subsequent detailed spectroscopic study of the natural HAL-1 [23]
resulted in a nontrivial picture involving not only a significant role of α-helical conformation but
also an important role of other arrangements including random coil, β-structure and/or polyproline
II (PPII) structures. Overall, the results presented overwhelming complexity and implied a need
for additional, more detailed studies. Here, we focus in detail on physico-chemical properties and
structure-activity relations of peptides related to HAL-1 including their geometries, conformation
and dynamic behavior in various situations like in solutions, or in interaction with different
membrane models. Conformational changes have been induced by an interaction with (a) TFE—an
α-helix forming solvent [24], (b) SDS micelles—a very simple bacterial membrane model [25,26]
and also by (c) liposomes of different phospholipid composition presented by a combination
of various concentration mixtures of 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (PC) and
1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (PG)—systems more accurately mimicking
mammalian and bacterial membranes [25,26].

Inspired by the already presented analogues with specific sequence modifications and their
known biological activities [19], here, we present a study of HAL-1 analogs (Table 1) with possible
therapeutic potential (i.e., the analogs exhibiting potent activities against various pathogens while
having substantially reduced hemolytic activity against red blood cells). Particularly, HAL-1/10 and
HAL-1/20 analogs look promising for potential therapeutic applications because these peptides lack
undesired hemolytic activities, while their antibacterial potencies, especially against P. aeruginosa, are
higher than for natural HAL-1. A combined use of infrared (IR), circular dichroism (electronic (ECD)
and vibrational (VCD)) and fluorescence spectroscopies allows us to obtain complex information about
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structural changes of the peptides upon interaction with model membranes. The set of IR, ECD, and
fluorescence spectroscopy experiments performed at room temperature is complemented by time- and
temperature-dependent ECD measurements, which allows us to distinguish and describe even subtle
conformational changes of the peptides in interaction with membrane-mimicking environments,
and by ECD and VCD study of a concentration dependency of HAL-1 analogs. Utilization of
these experimental methods might help us to better understand the relation between the peptide
primary/secondary structure changes and elucidate the mechanisms of the HAL-1 peptides action.
A correlation between the peptide structural changes and biological activities can be also determined.
The experimental data are compared to molecular dynamics (MD) simulations of HAL-1 in interaction
with model membranes.

Table 1. Amino acid sequences, physico-chemical and biological properties (µH is the hydrophobic
moment, and H represents the mean hydrophobicity, calculated according to [27]), of the studied
antibacterial HAL-1 peptides. Data were taken from ref. [19]. Point mutations with respect to the
natural HAL-1 peptide are underlined. The Schiffer−Edmundson wheel projection of the HAL-1 and
its analogs is depicted below the table.

Acronym Sequence MW (Da) Charge µH H
Antimicrobial Activity MIC (µM) Hemolytic

LC50 (µM)B.1 S.2 E.3 P.4

HAL-1 GMWSKILGHLIR 1408.9 +3 0.380 −0.004 0.8 7.7 3.8 45.0 82

HAL-1/2 GMWSKILGPLIR 1368.8 +3 0.361 +0.023 3.6 >100 30.0 >100 >200

HAL-1/6 GMWSKILGHLIK 1380.6 +3 0.323 +0.051 1.3 15.8 7.2 65.0 132

HAL-1/10 GMWKKILGKLIR 1440.9 +5 0.416 –0.133 0.8 15.0 2.3 13.1 >200

HAL-1/20 GKWSKILGKLIR 1396.9 +5 0.473 –0.176 1.7 21.7 2.3 28.3. >200
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2. Results and Discussion

In our study, we investigate effects of changes in ionicity, hydrophobicity, flexibility and/or
amphipathicity of the chosen peptides induced by an exchange of selected residues by Lys and Pro
residues (see Table 1) on their structural behavior in membrane-mimicking environments represented
by TFE, SDS micelles and phosphatidylcholine/phosphatidylglycerol-based liposomes. Based on the
simple peptide structural prediction [28], the substitution of amino acids Ser4 and His9 (HAL-1/10),
Met2 and His9 (HAL-1/20) or Arg12 (HAL-1/6) by Lys stabilizes the α-helical conformation, and the
replacement of two amino acids by Lys (HAL-1/10 and HAL-1/20) improves the helical amphipathicity
of the peptides (see Table 1). On the contrary, insertion of Pro9 (HAL-1/2) may cause structural
irregularity, as Pro often breaks regular structures.

2.1. Structural Changes Followed by ECD

2.1.1. Structural Changes Due to the Presence of TFE and SDS

Native HAL-1 in the aqueous environment, as well as all HAL-1 analogs, show a predominantly
unordered structure, characterized by a negative ECD band at ~198 nm [29] (Figure 1). Upon addition
of TFE, ECD spectra undergo a shape change. Formation of double negative minima at ~205 and 222 nm
indicates a gradual appearance of an α-helical component (an isodichroic point at 202 nm suggests
a two-state conformational change) (not shown). According to the two-state model [30] (Table A1),
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the presence of 30% TFE (v/v) causes a ~20−30% increase in the α-helical content, depending slightly
on the particular primary structure. In the presence of SDS, the spectral changes appear more
complex (Figure 1). The process conditioned by SDS is contributed not only by unordered and
α-helical conformations, but also by secondary structures like a β-sheet or PPII helix [31]. Interaction
with various proportions of SDS occurs in several stages, and a simple process of the two-state
equilibrium does not describe sufficiently all the observed structural changes (Tables A1 and A2).
At low concentrations (less than 2 mM, i.e., below critical micelle concentration (cmc)) SDS causes
an intensity decrease of ECD curves. In the case of HAL-1/6 (Arg12 replaced by Lys), this process
causes even a sign flip. At low concentrations SDS does not act as a membrane model but serves as a
denaturation agent [32], thus the ECD curves under such conditions offer two possible explanations:
either the original unordered/PPII structure adopts a conformation with a higher β-sheet content, or
it becomes a truly statistical random conformation due to an interaction with SDS molecules. These
two structures can hardly be distinguished on the basis of ECD. Rather different spectral behavior
is observed for the analog HAL-1/20, for which the formation of a positive band at 194 nm and
negative bands at 208 and 222 nm typical for α-helical conformation is observed even for 0.16 mM SDS
concentration (i.e., far below cmc). Moreover, the ECD bands at 194 and 222 nm exhibit, under these
conditions, the highest spectral intensities. Formation of the α-helical conformation for HAL-1/20
below cmc could be due to the substitution of Met2 by Lys which favors interaction with anionic SDS
molecules and increases the peptide polarity and amphipathicity (see Table 1) [27]. For all the analogs
except for HAL-1/20, with the increase of SDS concentration above cmc (i.e., when SDS starts acting as
a crude membrane model) [33], we observe a pronounced increase of the α-helical content (formation
of negative maxima at 208 and 222 nm and an increase of overall spectral intensity; Figure 1). For these
peptides, additional spectral changes appear with a further increase of SDS concentration above 8 mM.
At first the negative maximum at 208 nm shifts to 205 nm with the preserved band intensity, and the
intensity of the negative maximum at 222 nm discernibly decreases. Then, an overall ECD intensity
decreases and the maxima at 205 nm and 222 nm shift to 206 nm and 219 nm, respectively. This could
be due to an additional formation of 310-helix, PPII or β-structure [34]. For HAL-1/20 such spectral
changes are observed for SDS concentration above 4 mM SDS.
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HAL-1/6 and HAL-1/10 the maximal α-helical content is achieved in 2 mM SDS while for HAL-1/20, 
it is maximal in 0.16 mM SDS. For SDS concentration above 4 mM, numerical analysis indicates a 
slight decrease of the α-helical and unordered structure content and a subtle increase of β-structures 

Figure 1. ECD spectra of HAL-1 and its analogs (0.125 mg/mL) in aqueous solution and in the presence
of SDS (0.16, 2, 4, 8, and 16 mM).

The numerical ECD analysis confirms these qualitative findings (Table A1). As for HAL-1, for
HAL-1/6 and HAL-1/10 the maximal α-helical content is achieved in 2 mM SDS while for HAL-1/20,
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it is maximal in 0.16 mM SDS. For SDS concentration above 4 mM, numerical analysis indicates a slight
decrease of the α-helical and unordered structure content and a subtle increase of β-structures (β-sheet
and β-turn) for all the peptides except for HAL-1/20. For 16 mM SDS, the α-helical structure still
dominates at the expense of other structures (Table A2). As expected, the substitution of His9 by Pro in
HAL-1/2 decreases the ability of the peptide to form an α-helix (the α-helical fraction does not exceed
50%). However, the numerical ECD data analysis, even with included PPII and the 310-helical structure,
can provide only a rough estimation of observed spectral changes depending on the available reference
set [35–38].

We have previously suggested that, for natural HAL-1, additional spectral changes in the presence
of SDS could originate in an alternation of the PPII structure content [23]. In order to recognize the PPII
structure in ECD spectra of HAL-1 analogs in SDS solution, we have combined differential ECD spectra
with ECD spectra of the thermal denaturation (Figures 2 and 3) [31,39,40]. For all the studied peptides,
differential ECD spectra indicate that a temporary increase of the α-helical content is followed by an
additional structural reorganization—probably either a PPII structure formation or a decrease of a
β-sheet content characterized by a positive band at ~225 nm, whose intensity increases with increasing
SDS concentration (Figure 2). HAL-1/2 undergoes these changes only moderately, probably due to the
presence of Pro residue, which may cause conformational stiffness. The temperature-dependent ECD
spectra of HAL-1 analogs exhibit similar features. At low temperature (5 ◦C) they show the negative
band at ~199 nm and the weaker positive band at ~220 nm (Figure 3). With a temperature increase,
both of these bands decrease in intensity. An isodichroic point at ~210 nm indicates a two-state
transition with decreasing PPII structure content [31,39]. At low temperature (5 ◦C), distinct spectral
intensities of the analogs’ ECD curves indicate differences in peptide structural arrangement. While
HAL-1/10 seems to have the highest portion of PPII structure and higher flexibility, HAL-1/20 appears
to possess the highest fraction of unordered structure and less flexibility in its arrangement. Principal
component analysis (PCA) indicates that thermal denaturation of the peptides probably leads to an
increase of the β-structure content at the expense of decreasing percentage of unordered and/or PPII
conformations [39] (Figure A1). Higher temperature seems to have similar effects on the peptides’
secondary structure if SDS acts as a denaturant (i.e., below cmc). The observed trends support the
assumption that PPII conformation allows the polypeptide chain to switch easily to an α-helical or
β-sheet and β-turn conformation [31,39].
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Figure 2. Difference of ECD spectra of HAL-1 and its analogs (0.125 mg/mL) in 8 mM SDS and in
16 mM SDS. ECD spectrum of the sample with the highest α-helical content in SDS solution (4 mM SDS
peptide solution for HAL-1/2, HAL-1/6, HAL-1/10, and 0.16 mM SDS peptide solution for HAL-1/20
is taken as a reference). ECD spectra of the peptides in aqueous solution are depicted for comparison.
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2.1.2. Structural Changes Due to the Presence of LUVs

Neutral large unilamellar vesicles (LUVs) composed of PC were used as simple models of
mammalian membranes. Similar to the natural HAL-1 [23], only subtle structural changes are observed
in the ECD spectra of all the HAL-1 analogs upon addition of PC-based LUVs (Figure 4, Table A3).
Slight conformational changes observed for HAL-1/2 and HAL-1/20 (Figure 4) likely correspond to
an increase of β-sheet proportion. For HAL-1 and in part also for HAL-1/6, an α-helical structure
can be induced when very high lipid/peptide (L/P) ratios (~600) are used (not shown). However,
under such conditions, thorough analysis of ECD data is rather difficult due the limitations of ECD
experiments (at high lipid concentrations, ECD spectra may be obscured due to light scattering on
liposome molecules). The ability of all HAL-1 peptides to form the α-helical structure is enhanced in
the presence of negatively charged PG-containing LUVs, representing a simple bacterial membrane
model. Similar to HAL-1, for the proline-containing analog HAL-1/2, this enhancement is maximized
with liposomes containing the highest fraction of PG (PC/PG = 1:4). For the other analogs, the maximal
α-helical content is observed for the liposomes having the same fraction of PC and PG (PC/PG = 1:1)
while an additional formation of β-structure occurs in the presence of the liposomes with the highest
fraction of PG (PC/PG = 1:4) (Table A3). In order to obtain additional information about the structural
stability of the peptides in the presence of PC/PG liposomes (composed of PC/PG in the 1:4 ratio),
a time dependence of ECD spectra in the 280-min time interval has been studied for HAL-1 and its
analogs HAL-1/2, HAL-1/6 and HAL-1/20 (Figure 5). The most pronounced spectral changes with
time have been observed for HAL-1/20. This peptide shows the highest tendency to form a β-structure
immediately upon interaction with PC/PG liposomes. A portion of the α-helical structure increases
with time to a similar degree as for HAL-1/2. Following the PCA results (Figure A2), this structural
change is compensated by a continuous β-structure content decrease. The structural behavior of
HAL-1 seems to be comparable to HAL-1/6, with relatively small structural changes represented by a
slight increase of the α-helical content. As expected, only minor structural changes are observed for
HAL-1/2 (Figure 5).
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Since the liposomes composed of PC/PG in various ratios roughly simulate bacterial and
mammalian membranes, an attempt can be made to correlate the secondary structure changes inferred
from the experimental ECD spectra with the peptide biological properties. The observed very limited
interactions of HAL-1 analogs with the mammalian membrane (PC-based) models seem to correlate
with their low (or none) hemolytic activities. Rather hemolytic analogs HAL-1 and HAL-1/6 show
some reduced tendency to form the α-helical structure but such conformational change is induced only
by a significant increase in lipid concentration. This is probably caused by the fact that the peptide
activity against mammalian cells is much lower (~10–100×) than against bacterial cells, and the peptide
propensity to interact with mammalian membrane model is therefore notably reduced. Behavior of the
HAL-1 peptides towards PG-containing LUVs is very different. According to our data, all the HAL-1
analogs show a tendency to become α-helical upon this interaction. As the highest α-helical fraction is
observed for HAL-1/6, which is less active than the native HAL-1, it seems that biological activities
of the peptides are not solely determined by their propensity for forming an α-helical structure. The
spectral changes observed for the HAL-1 analogs in interaction with liposomes of various PC/PG
compositions indicate that, similar to the peptide behavior in the presence of SDS micelles (see above),
an additional formation of β-structure and/or PPII conformation cannot be excluded and could be
also important for their biological activities.
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2.2. Structural Changes Followed by Infrared Spectroscopy

IR spectroscopy is sensitive to the β-sheet and β-turn structure and its combination with ECD
may provide further conformational details. IR experiments can be carried out in aqueous solution
(H2O or D2O), and the structure assignment is based on band positions within the amide I region
(1600−1700 cm−1). For the peptides measured in H2O, it is usually difficult to distinguish between
the α-helical and disordered structures because the corresponding amide I bands can occur in the
same spectral range. This problem may be partially solved using hydrogen/deuterium exchange,
which significantly reduces the α-helix and disordered structure amide I band overlaps [41]. For the
natural HAL-1 measured in H2O, the amide I band positioned at ~1646 cm−1 indicates that the peptide
is mainly in a random coil conformation [42] with a minor contribution of β-turns (a shoulder at
~1682 cm−1) [43]. Such assignment is confirmed by the IR measurements in D2O, where a band
at ~1641 cm−1 (Figure 6, Table A4) can be again assigned to the random coil structure and bands
at ~1658 and 1675 cm−1 to β-turns [41]. Upon addition of TFE (10–50% v/v), IR spectra of HAL-1
exhibit a blue shift of the amide I band from ~1646 to ~1656 cm−1 (Figure 6, Table A4), suggesting
a secondary structure change from the random coil to the α-helical structure [42,43]. An additional
band at ~1630 cm−1 suggests an occurrence of a β-sheet structure, and a band at ~1621 cm−1 indicates
formation of intermolecular hydrogen bonds, typical for peptide aggregation [42,44]. The band at
~1683 cm−1, due to the β-turn structure, remains at the same position. A similar spectral shift of the
band at ~1645 cm−1 to 1657 cm−1 indicating a conformational change from the random coil to the
α-helical structure is observed in the IR spectra of HAL-1 interacting with SDS (2–8 mM). In 8 mM
SDS, the presence of a shoulder at ~1686 cm−1 together with a spectral band at ~1631 cm−1 suggests
formation of the β-sheet structure [23,41]. Spectral shift of the band at ~1646 to 1657 cm−1 can be
interpreted in terms of a formation of the α-helical structure. This assumption is confirmed by an
analogous measurement of the same concentration dependence in D2O (Figure 6, Table A4) where the
main spectral component shifts from 1641 cm−1 (a disordered structure) in D2O to ~1650 cm−1 (an
α-helical structure [42]) in SDS at a concentration above cmc (8 mM). The high-frequency component
at ~1682 cm−1 downshifts to 1676 cm−1, most probably due to a β-sheet structure formation [42].
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IR spectrum of HAL-1/2 in H2O is dominated by a band at ~1648 cm−1 due to the presence of a
random coil structure. An additional band at ~1684 cm−1 and a shoulder at ~1636 cm−1 indicate a
minor portion of β-turn and β-sheet conformation [42]. Upon addition of SDS, the band at 1648 cm−1

diminishes and a dominant component at ~1655 cm−1 shows prevailing α-helical structures. Addition
of SDS again seems to cause a change in the β-structure arrangement, as in 8 mM SDS, there are only
two corresponding bands at ~1686 and 1639 cm−1. Formation of a low-frequency band at ~1623 cm−1

indicates a partial peptide aggregation. Similar to HAL-1, IR spectrum of HAL-1/6 in water (Figure 7)
is dominated by an amide I band at ~1646 cm−1 indicating prevailing random coil structure, and a
lower-intensity component at ~1682 cm−1 assigned to β-turns [42]. Upon addition of SDS, the main
amide I component shifts to ~1655 cm−1 (in 8 mM SDS), again hinting at a transition from a random coil
to an α-helical structure. This process is accompanied by diminishing of the β-turn band at ~1682 cm−1

and formation of a band at ~1694 cm−1, implying a conformational change from the β-turn to β-sheet
conformation [42]. IR spectrum of HAL-1/10 (Figure 7, Table A4) in H2O has the main feature at
~1643 cm−1 which can be assigned either to the random coil, or the β-sheet structure [41,42]. As for
HAL-1, a lower-intensity band at ~1681 cm−1 suggests the presence of β-turns [42]. Conformational
behavior of HAL-1/10 upon addition of SDS is practically the same as for HAL-1/6 (not shown). While
the IR spectrum of HAL-1/20 (Figure 7, Table A4) in H2O is (similar to HAL-1/10) dominated by a
band at ~1642 cm−1 due to either random coil, or β-sheet structure [41,42], a shoulder at ~1656 cm−1

indicates, in this case, a minor contribution of the α-helical structure [42]. Upon addition of SDS, the
band at ~1642 cm−1 diminishes and a new band at ~1651 cm−1 is formed, indicating a conformational
change to α-helical and/or random coil structure. The higher-frequency component, which shifts to
~1659 cm−1, can be assigned to a 310-helix [45]. In addition, we observe a new band at ~1692 cm−1,
reflecting the β-sheet structure formation [42].
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(10 mg/mL) in the presence of SDS (0, 2, 4, and 8 mM).

We have already shown that the secondary structure of HAL-1 in interaction with LUVs depends
on LUV composition [23]. In the presence of neutral PC-based liposomes (a model of a mammalian
membrane [1]), the dominant amide I band shifts to ~1652 cm−1 probably due to the simultaneous
presence of a random coil and an α-helical structure. Bands at ~1686 and 1619 cm−1 relate to the
formation of β-turns and β-sheet aggregates (Table A3). With an increasing fraction of negatively
charged PG in the liposomes, the β-aggregates (the band at ~1619 cm−1) almost disappear and the
α-helical structure content increases (formation of a band at ~1655 cm−1) with a continuous diminishing
of the β-turn content (the band at ~1686 cm−1). IR spectra of HAL-1/2 (Figure 8, Table A4) display
a notable spectral shift of the amide I band (from ~1648 to 1656 cm−1) already in the presence of
neutral PC-based liposomes indicating a conformational change from an unordered to the α-helical
structure. The highest α-helical fraction is observed for HAL-1/2 interacting with negatively charged
liposomes composed of PC/PG in a 1:4 ratio. An increase in α-helical structure content is accompanied
by diminishing of the β-sheet bands (at ~1640 and 1690 cm−1) and also some minor changes in the
β-turn arrangement (a slight shift of the band at ~1685 cm−1 to 1681 cm−1). Similar to HAL-1/2,
the formation of a band at ~1657 cm−1, indicating an increase in the α-helical structure content, is
observed also for HAL-1/6 upon addition of neutral PC-based liposomes (Figure 8). An additional
band at ~1639 cm−1 is probably due to the β-sheet structure formation.
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Figure 8. IR spectra (top) and their second derivatives (bottom) of HAL-1 and its analogs (10 mg/mL)
in the presence of LUVs having different composition: in aqueous solution and in the presence of LUVs
prepared from PC and PC/PG mixtures: 1:1 and 1:4.

For HAL-1/10 in the presence of LUVs, with an increasing fraction of PG in the liposomes, we
observe diminishing of the band at ~1643 cm−1 and formation of a band at ~1656 cm−1, indicating
again a transition from β-sheet and/or random coil structure to α-helical structure. This process
is accompanied by diminishing of the band at ~1681 cm−1 assigned to β-turns and formation of a
band at ~1690 cm−1 probably due to β-sheet structure occurrence [41,42] (Figure 8, Table A4). FTIR
spectra of HAL-1/20 in the presence of neutral PC-based liposomes indicate the formation of β-sheet
aggregates (band at ~1626 cm−1). A dominant spectral component at ~1663 cm−1 can be probably
assigned to the 310-helical structure. These two spectral features disappear with an increasing fraction
of PG in the liposomes and we observe formation of a band due to the α-helical structure (positioned
at ~1658 and 1654 cm−1 in the presence of liposomes composed of PC/PG in the 1:1 and 1:4 ratio,
respectively). For this analog, bands assigned to the β-sheet (at ~1634 and 1694 cm−1) and β-turn
structures (at ~1681 cm−1) can be observed even in the presence of liposomes with the highest PG
fraction (PC/PG in the 1:4 ratio).

IR spectroscopy confirms induced conformational change from the random coil to the α-helical
structure in the biologically active HAL-1 analogs upon interaction with the bacterial membrane
models and complements ECD results by providing information about the β-structure formation.
Based on the results of IR analysis, spectral changes in ECD curves observed for the peptides interacting
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with SDS in concentration far above cmc and for PG-containing LUVs are probably due to changes
in the β-sheet content. Behavior of HAL-1 peptides towards LUVs reveals (a) in accordance with
biological data, the most active natural HAL-1 shows the lowest tendency to form β-aggregates and
the β-sheet structure upon interaction with PG-containing LUVs; (b) contrary to the ECD results,
all HAL-1 analogs adopt some portion of the α-helical structure already in the presence of neutral
liposomes (representing a crude model of mammalian cells, against which the peptides have no
or very low activity). This rather surprising conformational behavior could be caused by different
experimental conditions used for the measurements of IR and ECD spectra (IR experiments require
~100× higher peptide concentration than ECD measurements, see experimental conditions for ECD
and IR measurements in the Materials and Methods section). It seems that under such conditions, the
peptides tend to form specific assemblies, adopting a conformation with a high α-helical content.

2.3. Concentration Dependence Measurements

In order to clarify the discrepancy between the results of the peptide conformational analyses
obtained by ECD and IR, we have complemented our study by a measurement of concentration
dependencies of ECD spectra of the HAL-1 peptides (Figure 9). Our ECD data indicate that with
increasing peptide concentration, the unordered/PPII conformation changes to a partially α-helical
conformation for all the studied analogs except for HAL-1/2, which seems to form β-aggregates when
its concentration reaches 100 mg/mL. In order to determine the peptide conformational change induced
by its high concentration more specifically, we have performed measurements of VCD spectra of the
peptides (Figure 10) using the highest peptide concentration studied by ECD (i.e., 100 mg/mL). VCD
measurements supported the results of ECD analysis, confirming that at high peptide concentration,
HAL-1 and its analogs HAL-1/6, HAL-1/10, and HAL-1/20 spontaneously form the α-helical structure,
indicated by a negative/positive VCD couplet in the amide I region [46–48]. On the contrary, the
HAL-1/2 analog (Figure 10b) seems to undergo a distinct conformational change, forming highly
organized β-sheet aggregates (β-sheet fibrils) characterized by an intense five-peak VCD signal with
the (−/−/+/−/−) sign pattern in the amide I and II region [49–51]. Interestingly, a tendency to form
the α-helical structure at high peptide concentration is common for all the HAL-1 analogs except
for HAL-1/2, which exhibits the most reduced biological activity. It is therefore possible that for
the peptide biological action, formation of specific assemblies with a high α-helical content might be
also important.
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2.4. Structural Changes Followed by Fluorescence Spectroscopy

Participation of the tryptophan residue in the interaction of HAL-1 peptides with SDS and LUVs
can be monitored selectively on the basis of fluorescence spectra. The observed fluorescence signals are
assigned to the Trp3 residue. In aqueous solutions, the peptides exhibit fluorescence maxima at 360 nm
(HAL-1), 356 nm (HAL-1/2), 361 nm (HAL-1/6) and 359 nm (HAL-1/20) (Table 2), i.e., the typical
values for Trp residue in a hydrophilic environment. Upon interaction with LUVs, these maxima shift
to about 330 nm (Table 2) indicating that tryptophan is not fully immersed in the lipophilic part of the
liposome, but it is still in a close proximity of liposome phosphate heads [52]. In the case of HAL-1/2,
the fluorescence maximum shifts only to 350 nm. Hence, it is probable that HAL-1/2 while interacting
with LUVs, does not incorporate itself into the liposome despite the fact that parallel ECD experiments
indicate a formation of some α-helical secondary structure. This result confirms our assumption
that the α-helix formation is an important but not a sufficient condition for the efficient functioning
of our AMPs. This conclusion is further supported by the results shown by HAL-1/6. Although
HAL-1/6 readily interacts with LUVs by forming the α-helical structure, its biological activity is
smaller than the activity of the natural HAL-1. Fluorescence spectroscopy shows that HAL-1 peptides
are attached to the membrane surface with little penetration, indicating that the HAL-1 peptide mode
of action probably involves either (a) dissolving the membrane in a detergent-like manner (the carpet
model) or (b) formation of toroidal-type trans-membrane pores (lined both by peptide molecules and
phospholipid headgroups) [53].
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Table 2. Tryptophan fluorescence maxima of HAL-1 and its analogs (0.125 mg/mL—identical as for
the ECD experiments) in aqueous solution and in the presence of LUVs (L/P = 20).

Solution HAL-1 HAL-1/2 HAL-1/6 HAL-1/20

Water 360 nm 356 nm 361 nm 359 nm
PC 356 nm 362 nm 356 nm 359 nm

PC/PG (1:1) 331 nm 350 nm 336 nm 333 nm

2.5. Molecular Dynamics

As follows from the fluorescence spectroscopy measurements, HAL-1 peptides seem to bind
to the outer leaflet of our model membranes. In order to better understand the mechanism of
peptide-membrane interaction, we performed MD simulations of HAL-1 in water and in the presence
of PC and PG-based model membranes. According to our results, HAL-1 in water is in a random
coil conformation (Figure 11). When in the vicinity of a PC containing membrane, HAL-1 does not
immerse into the membrane and it seems to have no defined orientation with regards to the membrane.
HAL-1 does not change its structure and it still adopts a random coil conformation. The result of this
simulation might seem rather surprising: Although the peptide exhibits hemolytic activity, we do
not observe any peptide-membrane interaction. However, as follows from our spectroscopic results
(see Section 2.3), HAL-1 structural behavior is concentration dependent and it is therefore probable
that for its full activity, it is necessary to exceed a certain peptide threshold concentration. Under
such conditions, the peptide might form specific assemblies (e.g., pores) that would allow for the
peptide-membrane interaction [54].
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When put into interaction with the PG based membrane, HAL-1 is anchored to the membrane
by the terminal amino acid Arg. The peptide does not penetrate into the membrane and for the
simulation time (110 ns) it stays in the vicinity of the membrane (Figure 11), which is in agreement
with the fluorescence spectroscopy results, showing that tryptophan is in close proximity to the
liposome phosphate heads (see Section 2.4). Based on the MD simulations, HAL-1 in a bacterial
membrane-mimicking environment adopts mostly a 310-helical structure with a minor portion of the
β-turn structure (Figure 11). Such a result does not contradict the ECD and IR data (suggesting under
such conditions, formation of the α-helical conformation), as it was shown that the 310-helix is an
important intermediate along the α-helix folding/unfolding pathway [55].

Based on the results of our spectroscopic investigation and MD simulations, we suggest
a mechanism of HAL-1 interaction with model membranes: HAL-1 as a cationic peptide is
mostly attracted to the negatively charged leaflets of the PG based model membranes, adopting
predominantly a 310-helical conformation—an intermediate conformation and/or a precursor of
the α-helical structure [55]. Since the peptide in such conformation already adopts an amphipathic
structure, formation of peptide assemblies (most probably membrane pores), where the peptides
are predominantly in the α-helical conformation, seems favorable. However, for the formation of
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such assemblies, it is necessary to exceed a specific threshold concentration of the peptide in a close
proximity or in an immediate contact with the membrane. The proposed mechanisms of action
are inspired by the molecular mechanisms of cooperativity of antibacterial peptides proposed by
Huang et al. [54,56], and correspond to the mechanism and dynamics of AMP channel formation
monitored in situ, where at least a three-step procedure of AMP insertion was suggested and the
importance of the peptide–peptide interaction was demonstrated [57]. Several steps need to be taken
to confirm this hypothesis: (1) It would be beneficial to perform more profound MD simulations of
all HAL-1 analogs interacting with membranes of different composition. A peptide concentration
dependency should be studied, investigating two or more peptides that interact on a membrane
surface; (2) this computational study should be complemented by experiments allowing detailed study
of peptide orientation with respect to the membrane such as oriented ECD [54], surface-enhanced
infrared absorption spectroscopy [57], or oriented solid-state NMR measurements [58]. This will be a
matter of further investigation.

3. Materials and Methods

3.1. Materials

The phospholipids, PC, and PG (sodium salt), were purchased from Avanti Polar Lipids (Alabaster,
AL, USA). TFE was purchased from Merck (Darmstadt, Germany) and SDS from Sigma (Darmstadt,
Germany). The peptides (see Table 1) were prepared by the standard procedures of solid phase peptide
synthesis [19]. All the peptides were delivered as TFA salts (with TFA counterions bonded to the
free amino termini and side chains of positively charged amino acids). For the natural HAL-1, it was
possible to remove TFA counterions using a standard procedure [59] as there was a sufficient amount
of the sample available.

3.2. Preparation of Vesicles

The phospholipids PC, PG or their mixtures (at 1:4, 1:1 or 4:1 molar ratios) were dissolved in
chloroform/methanol (3:1) mixture and dried under vacuum. The dry lipid layer was hydrated with
distilled water and gently stirred. LUVs with an approximate diameter of 0.1 µm were formed by
extrusion through polycarbonate membranes (pore size 0.1 µm, a total of 30 passages through the
membrane) using Mini-Extruder (Avanti Polar Lipids, Alabaster, AL, USA). The temperature of the
lipid suspension was kept above the phase transition temperature Tm of the lipid with the highest Tm

within the whole hydration and extrusion process. A liposome size of 0.1 µm was selected in order
to avoid artifacts due to light scattering (especially in ECD experiments). The shapes and sizes of
liposomes were checked by cryo-electron microscopy. Liposome stabilities and size distributions were
verified by light scattering using Zetasizer Nano (Malvern Panalytical, Malvern, UK).

3.3. Electronic Circular Dichroism

ECD experiments were carried out on J-815 spectropolarimeter (Jasco, Tsukuba, Japan) equipped
with the Peltier type temperature control system PTC-423S/L. The spectra were collected from 180 to
300 nm at room temperature in 0.1 cm quartz cells (0.125 mg/mL peptide concentration, 2 scans, 0.5 nm
steps, 20 nm/min speed, 8 s time constant, 1 nm spectral bandwidth). For the measurements in high
liposome concentration (L/P concentration ratio higher than 100), the cell with 0.02 cm path length and
appropriate experimental conditions (5 nm/min speed, 32 s response time and 1 nm bandwidth) were
used. After baseline subtraction, the final data were expressed as molar ellipticities θ (deg·cm2·dmol−1)
per residue. All samples were prepared by dilutions of a stock peptide solution (1 mg/mL) to a final
peptide concentration 0.125 mg/mL, followed by adding an appropriate aliquot of TFE (final TFE
concentration 10–50% v/v), SDS (stock solution 32 mM, final SDS concentration 0.016–16 mM, i.e.,
below and above cmc; cmc ≈ 4 mM for the SDS-peptides solution [60]), or LUVs (stock solution
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200 mg/mL). SDS measurements below and above cmc enable investigating the effects of SDS acting
both as (a) a denaturation agent (below cmc) and (b) a simple membrane model (above cmc).

Concentration dependence was measured for all the peptides at the given concentrations: 0.1, 10,
and 100 mg/mL. The spectra were collected from 180 to 300 nm at room temperature in 0.1 cm quartz
cells for the 0.1 mg/mL peptide concentration, and in 6 µm homemade CaF2 cells for 10 mg/mL and
100 mg/mL peptide concentration with the following setup: 2 scans, 0.5 nm steps, 20 nm/min speed,
8 s time constant, 1 nm spectral bandwidth. The α-helical fraction was calculated using a two-state
model [30,61]. For the more detailed analysis of secondary structure, we used the CDPro software
package [36,62].

3.4. Principle Component Analysis

Analysis of temperature- and time-dependent ECD spectra was performed using principal
component analysis (PCA) based on a singular value decomposition algorithm applied to reduce
spectral series {Yi(ν), i = 1, . . . , n} to their lowest dimension without the loss of spectroscopic
information. Each spectrum of the matrix Yi(ν) can be unambiguously expressed as:

Yi(ν) =
M

∑
j=1

VijWjSj(ν) (1)

where Wj is the diagonal matrix of singular values, S(ν) corresponds to the matrix of the orthonormal
subspectra (eigenvectors) and Vij is the unitary square matrix of coefficients (representing the influence
strength of the subspectrum Sj). M represents a number of independent “spectral species”, distinct
from the spectral noise, found in the analyzed data set. The number of independent subspectra can
be estimated from residual errors or from singular values. A detailed explanation of PCA can be
found in [63]. The calculation of PCA was done using our own software programmed in Matlab™
(MathWorks®, Natick, MA, USA).

3.5. Infrared Spectroscopy

IR spectra in the transmission mode were recorded on Nicolet 6700 spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) using standard mid-IR source, KBr beamsplitter and DTGS detector
(2 cm−1 spectral resolution, Happ–Genzel apodization function, 2000 scans) in the 4000–1000 cm−1

spectral range. The cell compartment was purged by dry nitrogen during all the measurements.
Aqueous solutions (10 mg/mL peptide concentration) were measured at room temperature in
homemade CaF2 cells with 6 µm path length (cell volume 1 µL). In our experiments involving
peptide-membrane interaction, the L/P was always equal to 8 (LUVs stock solution 200 mg/mL).
Numerical data treatment was carried out using Grams/AI software (Thermo Electron, Waltham, MA,
USA). The spectral contribution of water was eliminated using a standard algorithm [64]. The IR signal
of phospholipids was subtracted from spectra of peptide/phospholipid mixtures. Subsequently, the
spectrum of water vapors was subtracted and the baseline was linearly corrected. Final IR spectra
were normalized to amide I intensity maxima. The IR spectra of HAL-1 analogs were obtained by
additional subtraction of trifluoroacetate signals, which were present due to a standard cleavage
from the resin by TFA [65]. Such subtraction was not needed for the natural HAL-1 as for this
peptide, the TFA counterions were successfully removed (see Section 3.1). The secondary structure
analysis [41] was aided using second derivatives Savitzky−Golay algorithm (Grams/AI software,
Thermo Electron, Waltham, MA, USA) and a band fitting procedure (Gaussian−Lorentzian band
shape—OMNIC Thermo Fisher Scientific, Waltham, MA, USA).

3.6. Vibrational Circular Dichroism

VCD spectra were measured on a dual source [66] and dual photo-elastic modulator [67] VCD
spectrometer ChiralIR-2X™ (BioTools, Jupiter, FL, USA) at room temperature in CaF2–BioCell™ with
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6 µm path length (BioTools, Jupiter, FL, USA). The data were collected for ~12 h (12 blocks of 6000
scans each at 8 cm−1 resolution). The spectra were processed in Grams/AI software (Thermo Electron,
Waltham, MA, USA). Solvent scans were subtracted as background. Baseline was corrected using a
linear function. The spectra were smoothed with a second-order Savitzky-Golay filter using a 9 point
window and normalized to amide I maxima in the corresponding IR spectra.

3.7. Fluorescence Spectroscopy

Steady-state fluorescence spectra were measured on Fluoromax Z (Jobin-Yvon, Chilly-Mazarin,
France) fluorimeter in a 10 mm quartz cell. Excitation at 280 nm was used to induce fluorescence of the
tryptophan residue. The emission was collected from 300 to 450 nm with the 1.5 s integration time.
The emission and excitation slits were chosen as 2 nm. The peptide concentration of 0.125 mg/mL
was chosen identical as for the ECD experiments in order to maintain mutual compatibility. At this
low concentration, there is no danger of Trp residues self-quenching. L/P = 20 was used for all the
fluorescence measurements (2 mg/mL lipid concentration).

3.8. Molecular Dynamics

An all-atom structure model of the peptides was created using the tLEaP program from the
AmberTools (San Francisco, CA, USA) [68] suite and the force field Amber FF99SB [69] PC and
PG membrane models were created using program VMD [70] and its membrane plugin. PC and
PG parameters were generated using programs Antechamber and Parmchk from the AmberTools
suite. In total, three systems were created, a peptide in water and the peptide with PC and PG
membranes. Each system was solvated in TIP3P water and neutralized using K+ and Cl− ions. The
initial equilibration of systems was performed using NAMD 2.9 [71] with a time step of 1 fs and rigid
bonds in water molecules using Settle algorithm [72]. Systems were minimized for 1000 steps, warmed
to 310 K and equilibrated for 1 ps. The system without a membrane was simulated for 10 ps, and the
systems with membranes were simulated for 110 ps.

4. Conclusions

The combined use of the methods of molecular spectroscopy (ECD, IR absorption, VCD and
fluorescence spectroscopy) together with MD simulations allowed us to follow secondary structure
changes of HAL-1 and its analogs induced by an interaction with artificial membrane models. On the
basis of the obtained results, formation of the α-helical structure appears important for the activity
of the HAL-1 peptides. However, peptide biological activities seem to be determined not only by
their propensity to form the α-helical structure. Additional factors like the ability of the peptides to
adopt alternative conformations (such as β-sheet, PPII conformation or 310-helix) cannot be excluded
and have to be considered for their biological activity as well. For biologically active analogs, the
concentration-dependence ECD measurements together with VCD data suggest a possible formation
of peptide assemblies high in α-helical content (most probably membrane pores), which might enable
membrane penetration. Following our spectroscopic results, we can propose that HAL-1 structural
behavior is concentration dependent and for its full activity, certain peptide threshold concentration
should be exceeded. Under such conditions, the peptides might form specific assemblies (e.g., pores)
that would allow for the peptide-membrane interaction and complete their task as antimicrobial agents.
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Abbreviations

AMPs Antimicrobial peptides
cmc Critical micelle concentration
ECD Electronic circular dichroism
HAL Halictine
IR Infrared
L/P Lipid/peptide ratio
LUV Large unilamellar vesicle
MD Molecular dynamics
PC 1,2-Dimyristoyl-sn-glycerol-3-phosphatidylcholine
PCA Principal component analysis
PG 1,2-Dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol)
PPII Polyproline II
SDS Sodium dodecyl sulfate
TFE 2,2,2-Trifluoroethanol
VCD Vibrational circular dichroism

Appendix A

Table A1. Helical fraction for HAL-1 and its analogs in aqueous solution and in the presence of TFE
(concentration expressed in volume percent (v/v)) and SDS (in mM) calculated using a two-state model
from ECD spectra [30,61].

Solution Hal-1 Hal-1/2 Hal-1/6 Hal-1/10 Hal-1/20

Water 14% 14% 13% 15% 15%

TFE 30% 32% 32% 37% 36% 36%
TFE 50% 32% 32% 40% 42% 36%

SDS 0.016 mM 13% 13% 3% 14% 14%
SDS 0.16 mM 14% 14% 3% 18% 52%

SDS 2 mM 46% 46% 66% 63% 36%
SDS 4 mM 51% 51% 46% 63% 32%
SDS 8 mM 37% 37% 46% 50% 31%

SDS 16 mM 31% 31% 36% 36% 42%

Table A2. Estimation of the secondary structure content calculated from ECD spectra using the CDPro
package [62,73] for HAL-1 and its analogs in aqueous solution, and in the presence of SDS.

Structure
Sodium Dodecyl Sulfate

0 mM 0.016 mM 0.16 mM 2 mM 4 mM 8 mM 16 mM

HAL-1
α-helix 12% 12% 14% 61% 61% 53% 53%
β-sheet 50% 50% 44% 6% 6% 10% 10%
β-turn 16% 16% 16% 12% 12% 17% 17%
Other 22% 22% 26% 22% 22% 21% 21%
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Table A2. Cont.

HAL-1/2
α-helix 12% 11% 14% 14% 47% 47% 44%
β-sheet 53% 54% 45% 44% 13% 13% 15%
β-turn 16% 16% 16% 16% 18% 18% 18%
Other 19% 19% 25% 25% 22% 22% 24%

HAL-1/6
α-helix 12% 13% 11% 82% 85% 70% 60%
β-sheet 52% 42% 37% 2% 2% 4% 9%
β-turn 16% 16% 14% 9% 9% 14% 19%
Other 20% 29% 38% 6% 4% 11% 14%

HAL-1/10
α-helix 11% 12% 13% 80% 79% 72% 70%
β-sheet 52% 51% 43% 2% 2% 4% 5%
β-turn 16% 16% 16% 10% 10% 14% 15%
Other 21% 21% 27% 8% 9% 10% 10%

HAL-1/20
α-helix 12% 13% 66% 42% 39% 37% 60%
β-sheet 52% 42% 5% 13% 17% 18% 18%
β-turn 16% 13% 12% 17% 18% 18% 17%
Other 20% 32% 18% 28% 27% 27% 15%

Table A3. Estimation of the secondary structure content calculated from ECD spectra using the CDPro
package [62,73] for HAL-1 and its analogs in aqueous solution, and in the presence of LUVs.

Structure
LUV

0 mM PC
(L/P = 20)

PC
(L/P = 100)

PC/PG (4:1)
(L/P = 20)

PC/PG (1:1)
(L/P = 20)

PC/PG (1:4)
(L/P = 20)

HAL-1
α-helix 12% 12% 18% 35% 45% 61%
β-sheet 50% 51% 38% 17% 10% 7%
β-turn 16% 16% 18% 18% 17% 12%
Other 22% 21% 26% 30% 22% 21%

HAL-1/2
α-helix 11% 11% 17% 37% 47% 69%
β-sheet 53% 53% 40% 17% 10% 5%
β-turn 16% 16% 18% 17% 16% 14%
Other 19% 21% 25% 29% 28% 13%

HAL-1/6
α-helix 12% 12% 14% 60% 79% 60%
β-sheet 52% 50% 45% 7% 1% 6%
β-turn 16% 16% 17% 8% 5% 12%
Other 20% 22% 24% 25% 14% 21%

HAL-1/10
α-helix 11% 12% 13% 35% 69% 36%
β-sheet 52% 52% 51% 18% 3% 38%
β-turn 16% 16% 17% 17% 9% 14%
Other 21% 20% 19% 30% 7% 13%

HAL-1/20
α-helix 12% 12% 14% 25% 80% 46%
β-sheet 52% 50% 46% 24% 2% 13%
β-turn 16% 16% 17% 18% 10% 18%
Other 20% 21% 22% 34% 7% 24%
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Table A4. Estimation of the secondary structure content from IR spectra, using a bandfitting procedure
for HAL-1 and its analogs in aqueous solution (H2O and D2O), in the presence of SDS, TFE, and LUVs.
The numbers in parentheses correspond to percentages of each fitted band in the amide I region.

Solvent Amide I (cm−1)
Second Derivative Decomposition of Amide I (cm−1)

aggregate β-sheet α-helix 310-helix coil β-turn β-sheet

HAL-1
H2O 1646 — — — — 1648 (88) 1683 (12) —
D2O 1647 — — — — 1642(69) 1667 (31) —
TFE 1655 — 1633 (26) 1656 (63) — — 1680 (11) —

SDS 8 mM/H2O 1655 1621 (12) 1635 (16) 1656 (63) — — 1682 (9) —
SDS 8 mM/D2O 1649 — — 1649 (95) — — 1676 (5) —

PC 1656 1619 (5) — 1656 (63) — — 1688 (33) —
PC/PG 1:1 1655 — 1634 (29) 1656 (52) — — 1680 (19) —
PC/PG 1:4 1656 — 1633 (6) 1655 (58) — — 1678 (36) —

HAL-1/2
H2O 1649 — 1637 (29) — — 1650 (56) 1684 (14) —

SDS 8 mM/H2O 1655 — 1635(38) 1657 (58) — — 1685 (4) —
PC 1657 — 1642 (32) 1657 (32) — — 1680 (35) —

PC/PG 1:1 1647 1628 (34) 1642 (28) 1658 (24) — — 1676 (13) —
PC/PG 1:4 1657 — 1632 (15) 1656 (43) — — 1680 (41) —

HAL-1/6
H2O 1646 — — — — 1647 (92) 1682 (8) —

SDS 8 mM/H2O 1654 1629 (29) — 1655 (69) — — — 1695 (2)
PC 1654 1621 (7) 1639 (29) 1657 (59) — — 1680 (5) —

PC/PG 1:1 1656 1626 (9) 1642 (18) 1657 (62) — — 1682 (11) —

HAL-1/10
H2O 1647 — — — — 1647 (82) 1681 (18) —

PC/PG 1:1 1655 1625 (12) 1640 (21) 1657 (57) — — 1681 (10) —
PC/PG 1:4 1656 — — 1656 (80) — — 1688 (20) —

HAL-1/20
H2O 1644 — 1643 (93) — — — 1676 (7) —

SDS 8 mM/H2O 1650 1629 (9) — 1653 (83) — — 1685 (9) —
PC 1649 1625 (36) 1639 (13) 1654 (28) — — 1685 (22) —

PC/PG 1:1 1650 1628 (29) 1642 (16) 1659 (49) — — 1685 (6) —
PC/PG 1:4 1654 1621 (19) 1634 (14) 1655 (43) — — 1678 (24) —
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