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Abstract: Zearalenone (ZEN), an important environmental pollutant, can cause serious harm to
human and animal health. The aim of our study was to examine the effect of zearalenone (ZEN) on
miRNA expression profiles in the mouse Leydig cell line (TM3 Leydig cell line) by miRNA sequencing.
The effect of ZEN on the viability of TM3 Leydig cells was verified by Cell Counting Kit-8 (CCK-8).
MiRNA sequencing was performed 24 h after the exposure of TM3 Leydig cells with 50 µmol/L
of ZEN. Bioinformatics predicted the miRNA target genes, performed Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and conducted miRNA-gene-pathway
mapping to show the relationship between miRNA, the target gene, and the signalling pathway.
The expression levels of miRNA and the miRNA target genes associated with ZEN toxicology were
verified by quantitative real-time polymerase chain reaction. The miRNA sequencing revealed a
significant change (p < 0.05) in the 197 miRNAs in the ZEN-treated and control groups, among
which 86 were up-regulated and 111 were down-regulated. GO analysis of the target genes of these
miRNAs indicated various biological functions. KEGG analysis showed that the predicted miRNA
target genes were involved in signalling pathways, such as cancer, apoptosis, and oxidation, namely,
the Ras signalling pathway, Rap1 signalling pathway, PI3K-AKT signalling pathway, Foxo signalling
pathway, and AMPK signalling pathway. These results suggest that ZEN, as an estrogen-like toxin, is
regulated by microRNAs. Our results can help to examine the toxicological effects of ZEN-regulated
miRNAs on germ cells.

Keywords: zearalenone; microRNA; toxicology; TM3 Leydig cell; reproductive health

1. Introduction

Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi [1,2]. The structure of ZEN is
similar to that of 17β-oestradiol: ZEN competitively binds to estrogen receptors and activates the
transcription of estrogen-responsive genes [3,4]. Therefore, ZEN plays a role by interfering with the
physiological estrogen signalling pathway. ZEN may cause reproductive problems, such as ovarian
dysfunction, decreased fertility, early abortion, reduced litter size, lower testicular weight, decreased
motility of spermatozoa, and a lower total motile sperm count [5–7]. These reproductive toxicities
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are all related to the ZEN interference with the binding site of estrogen. However, some of the toxic
effects of ZEN in an animal’s body cannot be explained simply by affecting the estrogen binding site.
Some reports indicate that ZEN can cause oxidative stress and inflammation in animals. For example,
studies showed that vitamin C could protect the liver of piglets by regulating the expression of nuclear
receptors PXR and CAR and their target genes to prevent ZEN-induced oxidative stress [8]. Fan et al.
demonstrated that ZEN-induced intestinal inflammation was mediated by NLRP3 and that ZEN could
also affect cell apoptosis and autophagy by regulating target genes and signalling pathways [9]. These
studies revealed that SIRT1 protects cardiac cells against apoptosis induced by ZEN or its metabolites α-
and β-zearalenol through an autophagy-dependent pathway [10]. Long Miao found that procyanidins
protect ZEN-induced apoptosis in mice through the Nrf2/ARE signalling pathway [11]. Therefore, the
toxic effects of ZEN on animal organisms, such as oxidative stress, inflammatory response, apoptosis,
and autophagy, need to be explained further by toxicological mechanisms.

MicroRNA (miRNA) is an 18–26 bp non-coding nucleotide sequence that affects the
post-transcriptional gene expression by the specific base pairing of the 5’ (the seed) with the 3’
untranslated region of the target mRNA [12,13]; miRNAs are considered to act primarily by disrupting
the cytoplasmic mRNA and regulating the mRNA translation (about 80%). A previous study reported
that miRNAs could up-regulate the target mRNA during cell cycle arrest and inhibit translation
in proliferating cells [14]. The miRNA maturation process involved in the nuclear processing of
primary miRNA by DROSHA, nuclear export of precursor miRNA (pre- miRNA) by exportin 5, and
cytoplasmic processing of pre- miRNA by DICER [15]. Recent studies showed that the differential
expression of miRNAs in mouse Leydig cells was discovered by the addition of the brain-derived
neurotrophic factor and luteinizing hormone during the cultivation of TM3 cells [16,17]. These studies
show that miRNAs may be involved in the regulation of hormones in certain physiological functions
of mouse Leydig cells. As a special type of estrogen, ZEN can compete with estrogen in vivo and cause
reproductive damage to the body [3,4]. Whether the miRNAs after ZEN exposure to TM3 cells are
involved in the regulation of germ cell toxicology is unclear.

Clinical studies should determine whether and how miRNAs participate in the toxicological
processes of germ cells by miRNA sequencing. Therefore, this study provides a theoretical basis for the
molecular toxicological studies of ZEN. At present, ZEA has been thoroughly explained to have many
toxic effects at the mRNA level, but whether miRNA is involved in the toxicological effects of ZEA and
the mechanism of the toxicological action of miRNA in ZEA have not been elucidated. Only a relatively
few studies have been conducted on these issues, and further research is needed. Thus, on the basis of
the ZEA-infected cell model, we searched for differentially expressed miRNAs and combined them
with biological information technology to analyze the relationship between differentially expressed
miRNAs and ZEA-induced cytotoxicity. We aimed to provide a theoretical basis for future molecular
studies on the toxicology of ZEN.

2. Results

2.1. Effect of ZEN on the Proliferation of TM3 Leydig Cells

After 24 h of incubation, ZEN treatment markedly inhibited the cell viability in a dose-dependent
manner (Figure 1A).

2.2. Differential Expression of miRNAs in the ZEN Exposure Groups

The miRNA deep sequencing analysis was used to identify the differential expression of miRNAs
in the TM3 Leydig cells between the ZEN-treated and control groups. In the miRNA sequencing
results, 197 miRNAs changed significantly (fold change > 1.5, p < 0.05), with 86 miRNAs up-regulated
and 111 miRNAs down-regulated (Figure 1B).
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Figure 1. (A) Effect of zearalenone (ZEN) on the proliferation of TM3 Leydig cells. Cytotoxic effects 
of ZEN on TM3 Leydig cells. Cells were treated with increasing concentrations (0–90 μmol/L) of ZEN 
for 24 h and then processed for the CCK-8 assay. Data are expressed as the mean ± S.E.M. of three 
independent experiments. * p < 0.05; ** p < 0.01. (B) Differential expression of miRNA in the ZEN 
exposure groups. 
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miRNAs in the TM3 Leydig cells between the ZEN-treated and control groups. In the miRNA 
sequencing results, 197 miRNAs changed significantly (fold change > 1.5, p < 0.05), with 86 miRNAs 
up-regulated and 111 miRNAs down-regulated (Figure 1B). 

2.3. Prediction and Functional Classification of Target Genes 

For the target animal species, Target Gene and MiRanda software were used to perform target 
gene predictions for miRNAs with significant differences. The predicted genes were classified into 3 
Gene ontology (GO) categories and 50 terms were enriched from gene ontology analysis (Figure 2). 
Twenty-five terms were enriched to the biological process category, including “biological process” 
and “regulation of transcription”. Fifteen terms were enriched to the cellular component category, 
including “cytoplasm”, “nucleus”, and “integral components of membrane”. Ten terms were 
enriched to the molecular function category, including “protein binding”, “molecular function”, and 
“metal ion binding”. 

Figure 1. (A) Effect of zearalenone (ZEN) on the proliferation of TM3 Leydig cells. Cytotoxic effects of
ZEN on TM3 Leydig cells. Cells were treated with increasing concentrations (0–90 µmol/L) of ZEN
for 24 h and then processed for the CCK-8 assay. Data are expressed as the mean ± S.E.M. of three
independent experiments. * p < 0.05; ** p < 0.01. (B) Differential expression of miRNA in the ZEN
exposure groups.

2.3. Prediction and Functional Classification of Target Genes

For the target animal species, Target Gene and MiRanda software were used to perform target
gene predictions for miRNAs with significant differences. The predicted genes were classified into 3
Gene ontology (GO) categories and 50 terms were enriched from gene ontology analysis (Figure 2).
Twenty-five terms were enriched to the biological process category, including “biological process”
and “regulation of transcription”. Fifteen terms were enriched to the cellular component category,
including “cytoplasm”, “nucleus”, and “integral components of membrane”. Ten terms were enriched
to the molecular function category, including “protein binding”, “molecular function”, and “metal
ion binding”.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 15 

 

 

Figure 2. Gene ontology (GO) term enrichment of the predicted targets of differentially expressed 
miRNAs. GO term enrichment showed that the putative targets of the differentially expressed 
miRNAs were associated with diverse functional terms, including binding, membrane, and 
reproduction. 

Pathway significance enrichment analysis revealed that the ZEN-affected miRNA target genes 
have a close relationship with signal pathways, such as the Ras signalling pathway, the pathway in 
cancer, Foxo signalling pathway, and endocytosis. The number of miRNA target genes in these 
pathways is significant. These pathways have a regulatory effect on germ cell apoptosis, autophagy, 
oxidative stress, cancer development, invasion, and differentiation. The above signal pathways were 
the focus of the research on the effects of ZEN on germ cells (Figure 3). Some miRNAs likely to be 
associated with ZEN toxicology were screened by GO and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis. The results are shown in Table 1. 
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miR-146b-3p −2.5 3.01×10-3 9.29×10-3 
miR-3098-5p −2.26 8.57×10-3 3.38×10-2 
miR-185-3p −2.12 5.42×10-4 1.11×10-3 
miR-467e-3p −2.09 3.24×10-3  2.43×10-3 
miR-411-5p −1.95 6.82×10-18 1.09×10-17 
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miR-96-5p 1.47 3.67×10-47 1.28×10-49 
miR-221-5p 2.0 1.63×10-62 2.13×10-68 

miR-3057-5p 2.01 4.49×10-11 8.80×10-12 

Figure 2. Gene ontology (GO) term enrichment of the predicted targets of differentially expressed
miRNAs. GO term enrichment showed that the putative targets of the differentially expressed miRNAs
were associated with diverse functional terms, including binding, membrane, and reproduction.

Pathway significance enrichment analysis revealed that the ZEN-affected miRNA target genes
have a close relationship with signal pathways, such as the Ras signalling pathway, the pathway
in cancer, Foxo signalling pathway, and endocytosis. The number of miRNA target genes in these
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pathways is significant. These pathways have a regulatory effect on germ cell apoptosis, autophagy,
oxidative stress, cancer development, invasion, and differentiation. The above signal pathways were
the focus of the research on the effects of ZEN on germ cells (Figure 3). Some miRNAs likely to be
associated with ZEN toxicology were screened by GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis. The results are shown in Table 1.
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Figure 3. Pathway enrichment of the predicted targets of the differentially expressed miRNAs. KEGG
pathway analysis showed that the predicted targets were involved in cancer, apoptosis, and signalling
pathways, such as the rat sarcoma signalling pathway (Ras signalling pathway), Ras-related protein1
signalling pathway (Rap1 signalling pathway), Phosphatidylinositide 3-kinases/AKT signalling
pathway (PI3K-AKT signalling pathway), Forkhead boxo signalling pathway (Foxo signalling
pathway), Adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK signalling pathway),
and mitogen-activated protein kinase signalling pathway (MAPK signalling pathway).
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Table 1. The miRNAs associated with ZEN toxicology.

miRNA Name log2 (Fold Change) a p Value (Chi_Square_2×2) p Value (Fisher Test)

miR-146b-3p −2.5 3.01 × 10−3 9.29 × 10−3

miR-3098-5p −2.26 8.57 × 10−3 3.38 × 10−2

miR-185-3p −2.12 5.42 × 10−4 1.11 × 10−3

miR-467e-3p −2.09 3.24 × 10−3 2.43 × 10−3

miR-411-5p −1.95 6.82 × 10−18 1.09 × 10−17

miR-301a-5p −1.71 2.14 × 10−6 3.17 × 10−6

miR-210-5p −1.61 1.23 × 10−10 3.57 × 10−10

miR-326-3p −1.30 2.59 × 10−4 6.30 × 10−4

miR-615-5p −1.23 9.62 × 10−51 2.25 × 10−49

miR-410-3p −1.17 8.96 × 10−4 1.79 × 10−3

miR-96-3p −1.06 5.13 × 10−3 1.04 × 10−2

miR-19a-3p 1.21 1.02 × 10−7 6.96 × 10−8

miR-96-5p 1.47 3.67 × 10−47 1.28 × 10−49

miR-221-5p 2.0 1.63 × 10−62 2.13 × 10−68

miR-3057-5p 2.01 4.49 × 10−11 8.80 × 10−12

Note: a log2 (fold change) refers to the relative expression levels between ZEN-exposed to control groups generated
by sequencing data. Positive Expressions Up and Negative Expressions Down.

We mapped the miRNA-gene-pathway interaction map based on the GO and KEGG analyses
(Figure 4). One miRNA can regulate multiple target genes, and one target gene is regulated by
multiple miRNAs. The target genes regulated by miRNAs regulate the corresponding pathways.
Through the miRNA-gene-pathway interaction map, the relationship between the miRNA, target
genes, and signalling pathways can be clearly seen. However, these signalling pathways are closely
related to the toxicological mechanisms of ZEN.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 15 
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Figure 4. The miRNA-gene-pathway interactive map. Red indicates miRNA, light green indicates
target gene, and purple indicates signal pathway. The signal path uses the following ko codes:
ko04014 (Ras signalling pathway), ko04015 (Rap1 signalling pathway), ko04151 (PI3K-AKT signalling
pathway), ko04068 (Foxo signalling pathway), ko04152 (AMPK signalling pathway), and ko04010
(MAPK signalling pathway).
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2.4. Validation of the Differentially Expressed miRNAs

From the references and miRNA targets, 16 differentially expressed miRNAs, namely,
miR-146b-3p, miR-3098-5p, miR-185-5p, miR-467e-3p, miR-441-5p, miR-301a-5p, miR-210-5p,
miR-195a-3p, miR-326-3p, miR-615-3p, miR-410-3p, miR-96-3p, miR-96-5p, miR-467e-3p, miR-19a-3p,
and miR-221-5p, were selected for qRT-PCR analysis. Compared with those in the control group,
miR-96-5p, miR-467e-3p, miR-19a-3p and miR-221-5p exhibited a significantly increased expression.
By contrast, miR-146b-3p, miR-3098-5p, miR-185-5p, miR-467e-3p, miR-441-5p, miR-301a-5p,
miR-210-5p, miR-195a-3p, miR-326-3p, miR-615-3p, miR-410-3p, and miR-96-3p showed a significantly
decreased expression in the ZEN-treated group (p < 0.05) (Figure 5A). These results showed that
the expression levels of all 16 miRNAs analyzed by qRT-PCR were in accordance with the deep
sequencing data.
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 15 
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genes. The qRT-PCR analyses of the mRNA expression levels ofmiR-146b-3p, miR-3098-5p, miR-185-3p,
miR-467e-3p, miR-411-5p, miR-301a-5p, miR-210-5p, miR-326-3p, miR-615-5p, miR-410-3p, miR-96-3p,
miR-19a-3p, miR-96-5p, miR-221-5p, miR-3057-5p, PTEN, AKT1, AKT2, AKT3, H-ras, N-ras, K-ras,
Rap1a, Rap1b, Foxo1, Foxo3, Foxo4, and Foxo6 in the control and ZEA-exposed TM3 Leydig cells.
The gene expression levels represent the mRNA expression levels relative to the control levels (the
values represent mean ± SD). The asterisks are used to indicate a statistically significant difference:
* p < 0.05; ** p < 0.01.

2.5. Verification of the miRNA Target Genes

As shown in Figure 5B, we verified the expression levels of the miRNA target genes in the Ras
signalling pathway, Rap1 signalling pathway, PI3K-AKT signalling pathway, Foxo signalling pathway,
AMPK signalling pathway, and MAPK signalling pathway by qRT-PCR. The findings are consistent
with the sequencing results.

3. Discussion

The mechanism of ZEN toxicity to humans and animals is complicated. Elucidating the
mechanism of ZEN toxicity to humans and animals is of great clinical significance to prevent and treat
ZEN. Recent studies have shown that the addition of reproductive hormones to TM3 cells affects the
expression of miRNAs in TM3 Leydig cells [17]. Therefore, we speculate that miRNAs are involved in
the regulation of ZEN toxicology after ZEN is exposed to TM3 cells.

GO enrichment analyses were performed for the miRNA target genes. The results showed that a
lot of GO terms were enriched. Specifically, the GO term “cytoplasm”, “nucleus”, “integral component
of membrane”, and “protein binding” were the most significantly enriched. Coincidently, ZEN can
affects the cellular structure and cellular connections of germ cells [18]. Therefore, we hypothesized a
correlation between the toxicological effects of ZEN and these GO terms.

We selected some signalling pathway related to ZEN toxicology through GO and KEGG analyses.
The Ras signalling pathway, Rap1 signalling pathway, PI3K-AKT signalling pathway, Foxo signalling
pathway, AMPK signalling pathway, MAPK signalling pathway, and other signalling pathways were
used to map the miRNA-gene-pathway interaction. The miRNA-gene-pathway interaction map clearly
showed the mutual regulation among these six signalling pathways. As indicated by the KEGG
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analysis, miRNA could be involved in the regulation of target genes in these six signalling pathways
by ZEN and affect the cell phenotype of germ cells.

Ras oncoprotein plays a key role in the development and maintenance of many tumor types [19,20].
Rap1 and Ras have a high degree of sequence similarity, have overlapping binding partners and have
been shown to antagonize and mimic the Ras-driven cancer phenotype [21]. Studies have shown
that ZEN, as a natural female-like toxin, mainly produces carcinogenic effects by interfering with
endocrine balance [22]. In our results, the results of the KEGG analysis were significant in the Ras
and Rap1 signalling pathways; the expressions of H-ras, K-ras, Rap1a, and Rap1b genes in the Ras
and Rap1 proteins were significantly regulated, and H-ras, K-ras, Rap1a, and Rap1b were regulated.
The expression of the isogenic miRNA (Figures 4 and 5) was also significant. This finding suggests
that miRNAs may be involved in the toxicological process of ZEN carcinogenesis through the Ras and
Rap1 signalling pathways. In addition, some scholars reported that ZEN influences the tumorigenic
mechanism of TM3 Leydig cells by affecting proto-oncogenes [23]. Our research provides a new idea
for the tumorigenic mechanism of ZEN.

The PI3K-AKT signalling pathway is an anti-apoptotic pathway that regulates the expression
of downstream target proteins, such as Bax and Bcl-2, and thus participates in the regulation of cell
growth, apoptosis, differentiation, migration, invasion, and angiogenesis [24,25]. The PTEN protein
upstream of the PI3K-AKT signalling pathway can dephosphorylate phosphatidylinositol triphosphate
to phosphatidylinositol diphosphate, thereby negatively regulating the PI3K-AKT signalling pathway
and playing an important role in apoptosis [26,27]. The Foxo signalling pathway is located downstream
of the PI3K-AKT signalling pathway and is regulated by the PI3K-AKT signalling pathway. The Foxo
signalling pathway is closely related to apoptosis and oxidative stress [28,29]. A large number of
studies have shown that ZEN can produce toxicological effects, such as oxidative stress and apoptosis,
on germ cells. Long et al. investigated the oxidative damage of testis induced by ZEN in male mice
and the apoptosis of ZEN induced by the Nrf2/ARE signalling pathway [11,30]. ZEN is known to
cause changes in cell phenotypes, such as oxidative stress and apoptosis, in germ cells through the
signalling pathways. In our experiments, genes such as PTEN, AKT2, AKT3, Foxo1, Foxo3, and Foxo6
were significantly expressed in the PI3K-AKT signalling pathway and the Foxo signalling pathway.
The expression of miRNAs (Figures 4 and 5) regulating PTEN, AKT2, AKT3, Foxo1, Foxo3, and other
genes was significant. This finding suggests that ZEN may cause germ cell apoptosis through the
PI3K-AKT signalling pathway and the Foxo signalling pathway, and that miRNA may participate in the
regulation of germ cell apoptosis through ZEN by affecting the target genes in the PI3K-AKT signalling
pathway and the Foxo signalling pathway. Although no studies have shown that ZEN induces germ
cell apoptosis through the PI3K-AKT signalling pathway and the Foxo signalling pathway, our study
provides strong evidence of ZEN being able to induce germ cell apoptosis through the PI3K-AKT
signalling pathway and the Foxo signalling pathway.

In the AMPK signalling pathway, the expression of the Prkaa2 genes that regulate the AMPK
protein is significant, and the differential expression of the miRNAs that regulate the Prkaa2 genes
(Figures 4 and 5) is also significant. Currently, studies have shown that in addition to the classical
pathway of endoplasmic reticulum-induced apoptosis, the ATP/AMPK signalling pathway is regulated
by endoplasmic reticulum stress during apoptosis induced by ZEN [31]. Therefore, through our
experimental results, we boldly speculate that miRNA may be involved in the regulation. In addition,
Pistol et al. [32] verified by transcriptome sequencing that the ZEN inflammatory stimuli and
immunotoxicity in pig spleen cells could be the result of the JNK pathway activation but not that of
the p-38/MAPK and NF-kB genes and proteins. On the basis of their results, we validated the JNK
and JUN genes Mapk-8 and Mapk-10 as well as the JUN genes and their miRNAs (Figures 4 and 5)
in the MAPK signalling pathway, and the results were all significant. This outcome suggests that the
inflammatory stimuli and immunotoxicity produced by the ZEN activation of the JNK pathway may
involve miRNAs. Our research provides a theoretical basis for this assumption.
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Our results of this study reveal a complex network of miRNA associated with diverse molecular
functions, which may be engaged in cellular response to ZEA exposure. However, more detailed
aspects of these findings should be elucidated in future research, such as luciferase assay or gene
knockout experiment, for better characterization of genes selected in this study.

4. Materials and Method

4.1. Cell Culture and ZEN Exposure

Mouse TM3 Leydig cells were obtained from the American Type Culture Collection (Beijing,
China). The cells were seeded as monolayer cultures in Dulbecco’s modified Eagle ‘s medium/F-12
(HyClone, Logan, UT, USA) with 10% (v/v) inactivated fetal bovine serum and 1% (v/v)
penicillin/streptomycin incubated at 37 ◦C with 5% CO2. When the volume of adherent cells
occupied 80% of the dish, the cells were treated with 50 µmol/L of ZEN for 24 h. Each treatment was
replicated thrice.

4.2. Cell Viability Assay

The cytotoxic effects of ZEN on TM3 cells were determined using a Cell Counting Kit-8 (CCK-8)
(Solarbio, Beijing, China) assay. Cells were plated at a density of 2 × 105 per well in 96-well plates.
After treatment with 0–90 µmol/L ZEN for 24 h, 10 µL of CCK-8 was added to each well, and the cells
were incubated for 2 h at 37 ◦C. Non-treated cells served as a negative control. The absorbance was
determined at a wavelength of 450 nm using a microplate reader (Infinite 200 PRO, ABI, New York,
NY, USA). The results are presented as percentage of the values measured for untreated control cells.
It has been reported that the IC50 of ZEN-treated TM3 cells is 50 µmol/L [33].

4.3. Small RNA Sequencing and Bioinformatics Analysis

Total RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s procedure. The total RNA quantity and purity were analyzed by Bioanalyzer 2100
and RNA 6000 Nano LabChip Kit (Agilent, Palo Alto, CA, USA) with RIN number greater than 7.0.
Approximately 1 µg of the total RNA was used to prepare a small RNA library according to the
protocol of TruSeq Small RNA Sample Prep Kits (Illumina, San Diego, CA, USA). We performed
single-end sequencing (36 bp) on an Illumina Hiseq2500 in the Lianchuan Biotechnology (Hangzhou,
China) following the vendor’s recommended protocol.

Raw reads were subjected to an in-house program, ACGT101-miR (LC Sciences, Houston, TX,
USA) to remove adapter dimers, junk, low complexity, common RNA families (rRNA, tRNA, snRNA,
snoRNA), and repeats. Subsequently, unique sequences with length in 18~26 nucleotide were mapped
to specific species precursors in miRBase 21.0 (http://www.mirbase.org/) by BLAST search to identify
known miRNAs and novel 3p- and 5p- derived miRNAs. Length variation at both 3′ and 5′ ends and
one mismatch inside of the sequence were allowed in the alignment. The unique sequences mapping
to specific species mature miRNAs in hairpin arms were identified as known miRNAs. The unique
sequences mapping to the other arm of the known specific species precursor hairpin opposite to the
annotated mature miRNA-containing arm were considered to be novel 5p- or 3p- derived miRNA
candidates. The remaining sequences were mapped to other selected species precursors (with the
exclusion of specific species) in miRBase 21.0 by BLAST search, and the mapped pre-miRNAs were
further BLASTed against the specific species genomes to determine their genomic locations. The above
two were defined as known miRNAs. The unmapped sequences were BLASTed against the specific
genomes, and the hairpin RNA structures containing sequences were predicated from the flank 80 nt
sequences using RNAfold software (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).

To predict the genes targeted by the differentially expressed miRNAs, two computational target
prediction algorithms (TargetScan 50 and miRanda 3.3a) were used to identify the miRNA binding sites.
The data predicted by both algorithms were then combined, and the overlaps were calculated. The GO

http://www.mirbase.org/
http://rna.tbi.univie.ac. at/cgi-bin/RNAfold.cgi
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terms and KEGG pathway of these differentially expressed miRNA targets were also annotated. Then,
we mapped the predicted target genes to map the miRNA-gene-pathway interactions.

4.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s procedure. The total RNAs from each sample were reverse-transcribed to cDNA
using the miRNA first-strand cDNA synthesis kit (by stem-loop) (Vazyme, Nanjing, China). The qRT-
PCR was performed using the miRNA Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China).
Reverse transcription reactions were performed at the following parameters: 25 ◦C (mRNA) for 5 min,
50 ◦C for 15 min, and 85 ◦C for 5 min. PCR reactions were performed at the following parameters:
95 ◦C for 5 min followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. A U6 small nuclear RNA was
used as the endogenous control for the data normalization of miRNAs, and β-actin was then adopted
as the internal control of mRNA expression. The relative expression was calculated by the comparative
threshold cycle method. The sequences of the primers used for reverse transcription and qRT-PCR
were purchased from Sangon Biotech Company, Shanghai, China (Tables 2 and 3).

Table 2. Primer sequences of mRNA used in this study for quantitative real-time RT-PCR.

Gene Primer Sequence (5′-3′) Accession No

β-actin Forward: CTGTCCCTGTATGCCTCTG
Reverse: TTGATGTCACGCACGATT BC_138614.1

N-ras Forward: GGTTGGAGCAGGTGGTGTT
Reverse: TTTCGGTAAGAATCCTCTATG NM_010937.2

K-ras Forward: TGCCTTCTAGAACAGTAGACAC
Reverse: CTTTGCTGAGGTCTCAATGAAC NM_021284.6

H-ras Forward: GCATCCCCTACATTGAAACATC
Reverse: CAATTTATGCTGCCGAATCTCA NM_001130443.1

Pten Forward: TGGATTCGACTTAGACTTGACC
Reverse: TCACTTAGCCATTGGTCAAGAT NM_008960.2

Akt1 Forward: TGCACAAACGAGGGGAATATAT
Reverse: CGTTCCTTGTAGCCAATAAAGG NM_001165894.1

Akt2 Forward: TCGATTATCTCAAACTCCTCGG
Reverse: CGACTTCATCCTTTGCAATGAT NM_001110208.2

Akt3 Forward: GGGGTGGAACAGTAAAGACA
Reverse: GCATTATGAGCAGTGGAGG NM_011785.4

Rap1a Forward: ATTCCTACAGAAAGCAAGTCGA
Reverse: ATCTTCTGTGTCTTTAACCCGT NM_145541.5

Rap1b Forward: AAGCAAGTTGAAGTAGATGCAC
Reverse: CATCATCAGTGTCTTTAACCCG NM_024457.2

Foxo1 Forward: GATCTACGAGTGGATGGTGAAG
Reverse: GACAGATTGTGGCGAATTGAAT NM_019739.3

Foxo3 Forward: TCACTGTATTCAGCTAGTGCAA
Reverse: ATGATGGACTCCATGTCACATT NM_019740.2

Foxo4 Forward: GAATCCTGGGGGCTGTAAC
Reverse: GCTGATGAGTTCTGCATATGAC NM_018789.2

Foxo6 Forward: GAAAGCGAAGAGCTCCCGAC
Reverse: GTGCCGAATGGAGTTCTTCCAG NM_194060.1

Prkaa1 Forward: GGACTTACTTGTTGGATTTCCG
Reverse: CCTTTGGCAAGATCGATAGTTG NM_001013367.3

Prkaa2 Forward: GTGGTGACCCTCAAGACCAG
Reverse: GTGGTTTCAAGCCTGGAGGA NM_001356568.1

Mapk8 Forward: TTGAAAACAGGCCTAAATACGC
Reverse: GTTTGTTATGCTCTGAGTCAGC NM_001310452.1

Mapk9 Forward: GTGGAAAACAGACCAAAGTACC
Reverse: CATGCTCTCTTTCTTCCAACTG NM_001163671.1

Mapk10 Forward: CACGAGCGGATGTCTTACT
Reverse: TTGACTACAATGTTACTGGGTT NM_001081567.2
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Table 3. Primer sequences of miRNA used in this study for quantitative real-time RT-PCR.

miRNA Primer sequence (5′-3′)

U6
RT: CGCTTCACGAATTTGCGTGTCAT

Forward: GCTTCGGCAGCACATATACTAAAAT
Reverse: CGCTTCACGAATTTGCGTGTCAT

miR-146b-3p
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCAGA

Forward: GCGGCCCTAGGGACTCAGT
Reverse: AGTGCAGGGTCCGAGGTATT

miR-185-3p
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCAGA

Forward: CGAGGGGCTGGCTTTCC
Reverse: AGTGCAGGGTCCGAGGTATT

miR-3098-5p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAGCTCCTAC

Forward: GGGTCCTAACAGCAGGAGTA
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-467e-3p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAATATAGGTG

Forward: GGGATATACATACACACAC
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-411-5p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCACGTACGCT

Forward: GGGTAGTAGACCGTATAGC
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-326-3p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAACTGGAGG

Forward: GGGCCTCTGGGCCCTTCCT
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-615-5p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAGATCCGAG

Forward: GGGGGTCCCCGGTGCT
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-410-3p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAACAGGCCA

Forward: GGGAATATAACACAGATGG
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-96-3p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAATATTGGC

Forward: GGGCAATCATGTGTAGTGC
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-19a-3p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCATCAGTTTTG

Forward: GGGTGTGCAAATCTATGCAA
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-3057-5p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCAATCCCGCA

Forward: GGGATTGGAGCTGAGATTCTG
Reverse: TATGGTTGTTCACGACTCCTTCAC

miR-301a-5p
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTAGT

Forward: CGCGGCTCTGACTTTATTGC
Reverse: AGTGCAGGGTCCGAGGTATT

miR-221-5p
RT: GAGGTATTCGCACTGGATACGACACAGAA

Forward: GCGACCTGGCATACAATGTAGAT
Reverse: AGTGCAGGGTCCGAGGTATT

miR-96-5p
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCAAA

Forward: GCGTTTGGCACTAGCACATT
Reverse: AGTGCAGGGTCCGAGGTATT

miR-210-5p
RT: TGACCGTCTGTATGGTTGTTCACGACTCCTTCACCCTATCCAACCATACAGACGGTCACAGTGTGC

Forward: GGGAGCCACTGCCCACCGC
Reverse: TATGGTTGTTCACGACTCCTTCAC

4.5. Statistical Analysis

The experiments of cell growth analysis and qRT-PCR were performed with three technical
replicates. All values are presented as mean ± SEM. For the small RNA sequencing data, the threshold
values we used in choosing the differentially expressed miRNAs were a fold change greater than 1.5 and
a p value less than 0.05. For the qRT-PCR data, statistical analysis was performed using the Statistical
Package for Social Sciences version 22.0 (IBM, Armonk, NY, USA). The fold changes were calculated
through the relative quantification with 2−∆∆CT. A p value less than 0.05 was considered significant.
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5. Conclusions

In summary, differentially expressed miRNAs in TM3 Leydig cells after ZEN exposure were
identified. Sixteen miRNAs and target genes were identified to exhibit differential expression. GO
enrichment analysis and pathway interaction analysis showed that miRNA and target genes are closely
related to the toxicological mechanism of ZEN. QRT-PCR analysis of representative genes indicated
that Ras signalling pathway, Rap1 signalling pathway, PI3K-AKT signalling pathway, Foxo signalling
pathway, AMPK signalling pathway, and MAPK signalling pathway lead to oxidative stress, apoptosis,
and carcinogenesis of germ cells. This study provides a molecular basis and new insights into the
toxicological mechanisms of ZEN.
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