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Abstract: The adsorption of three typical polycyclic aromatic hydrocarbons (PAHs), naphthalene,
phenanthrene, and pyrene with different ring numbers, on a common mesoporous material (MCM-41)
was simulated based on a well-validated model. The adsorption equilibriums (isotherms), states
(angle distributions and density profiles), and interactions (radial distribution functions) of three
PAHs within the mesopores were studied in detail. The results show that the simulated isotherms
agreed with previous experimental results. Each of the PAHs with flat molecules showed an
adsorption configuration that was parallel to the surface of the pore, in the following order according
to the degree of arrangement: pyrene (Pyr) > phenanthrene (Phe) > naphthalene (Nap). In terms of
the interaction forces, there were no hydrogen bonds or other strong polar forces between the PAHs
and MCM-41, and the O–H bond on the adsorbent surface had a unique angle in relation to the PAH
molecular plane. The polarities of different H atoms on the PAHs were roughly the same, while those
of the C atoms on the PAHs decreased from the molecular centers to the edges. The increasing area of
the π-electron plane on the PAHs with the increasing ring number could lead to stronger adsorption
interactions, and thus a shorter distance between the adsorbate and the adsorbent.

Keywords: polycyclic aromatic hydrocarbons (PAHs); molecular simulation; grand canonical Monte
Carlo (GCMC); adsorption; mesoporous material

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) generally refer to hydrocarbons that have two or
more benzene rings [1,2]. PAHs, commonly known as carcinogens, mutagens, teratogens, and
bioaccumulators, can cause great damage in humans and the environment [3–8]. They are also a
part of the atmospheric particulate pollutant PM2.5 [9]. In 1976, the United States Environmental
Protection Agency (EPA)’s list of 129 “priority pollutants” included 16 types of PAH compounds [10].
Low-ring PAHs such as naphthalene (Nap), phenanthrene (Phe) and pyrene (Pyr) are the main
components in the atmosphere [11]. The adsorption method has become one of the important ways
to purify PAHs due to its high efficiency and low energy consumption [12–14]. Ordered mesoporous
adsorbents have shown high adsorption capacities for their tailorable pore systems, especially in the
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adsorption of molecules such as PAHs [15,16]. Mastering the adsorption mechanism of PAHs on
mesoporous materials is critical to optimize the material’s performance. Molecular simulation has
obvious benefits in the adsorption isotherm calculation and adsorption state analysis of adsorption
molecules. It can analyze the adsorption mechanism [17,18] and the nature of action in depth, and it
has been widely used in adsorbent selection and design [19,20].

MCM-41 [21–23] is a typically ordered mesoporous adsorbent from a family of silicate and
alumosilicate solids that has been employed to investigate the adsorption phenomena on various
gases [24,25]. Since the emergence of MCM-41, a large number of adsorption-related material structures
and physical and chemical properties have been analyzed [23,26]. Molecular simulations with
MCM-41 have been conducted with the Monte Carlo (MC) method to calculate the various gas
adsorption conditions [27–31]. The MCM-41 model evolved from earlier simple models [32–36]
(e.g., single-layer cylindrical atomic wall, and the rough model of simple potential function), to later
all-atom models [37,38] (e.g., carving out models in amorphous silica, and ensuring the bonding
relationship between silicon and oxygen atoms), and recent templated synthesis models for restoring
real synthetic conditions [39,40]. Among them, the carving-out modeling method is easier to
implement, and calculations based on this model have been widely used for gas adsorption because
of the good agreement with experimental results. Jing et al. [41] discussed the adsorption effects
of two structural forms of unit cell models, and provided ideas for improving computational
efficiency. Ugliengo et al. [42] optimized the MCM-41 structure by the density functional method.
Pajzderska et al. [27] and Coasne et al. [43] studied the surface roughness, pore shape, and surface
undulation of mesoporous channels, and made corresponding structural improvements. The above
works have important significance in the improvement of the overall structure, surface morphology,
and adsorption sites of the MCM-41 model.

With the development of molecular simulation technology, MCM-41 has made great progress in
the field of adsorption separation as a typical mesoporous molecular sieve [28,29,44,45]. With regard
to small molecule gas adsorption, Bonnaud et al. [46] characterized and analyzed the adsorption state
and the diffusion phenomenon of water molecules in the pores of MCM-41 [46]. In the adsorption
simulation of low-volatility compounds and macromolecular organics such as drugs, the adsorption
characteristics of ibuprofen [47], tert-butanol [48], and neopentane [49] have been studied, as well
as the influence of water molecules on adsorption [50,51]. Coasne et al. [30,31,52] studied the role of
organic molecules such as benzene and toluene in the pores based on the combination of the angle
of the benzene ring plane and the density profile. Compared with common small molecular gases,
macromolecular organic compounds have more obvious molecular structures such as prominent
geometric skeletons, polypolar sites, and deformations. It is beneficial to grasp the distribution of
these properties in a spatial capacity to judge the state of the molecules in the pores and analyze
the adsorption mechanism. At present, there are few simulation studies on the adsorption of PAHs.
Analyses of the adsorption states and the adsorption mechanism are relatively lacking. Studying
the adsorption of typical PAHs such as Nap, Phe, and Pyr on mesoporous adsorbents is helpful to
understand the adsorption mechanism and its application in the removal of PAHs. Analysis of the
state of molecules inside the adsorbent is extremely important for research and the improvement of
adsorption efficiency.

In this paper, adsorption of the three PAHs Nap, Phe, and Pyr will be simulated based on the
grand canonical Monte Carlo (GCMC) method. The potential adsorption mechanism will be discussed
based on the adsorption states of the three molecules in the pores.

2. Results and Discussion

2.1. Adsorption Equlibrium

Figure 1 provides the GCMC simulation and experimental results [53,54] of the adsorption
isotherms of Nap, Phe, and Pyr on MCM-41 at 398 K (normal flue gas temperature). The isotherms
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from the simulation calculation were in good agreement with the experimental values, with the
following order according to the adsorption capacity: Pyr > Phe > Nap, corresponding to the inverse
sequence of the volatility of the PAH molecules. The results indicate that the current MCM-41 unit
cell model with the calculation condition was reasonable and can truly reflect the adsorption of PAHs
at low concentrations. The three isotherms of the PAHs belonged to Type I according to the IUPIC
classification [55]. Because the PAH concentrations were low, all of the isotherms did not reach the
saturated adsorption capacity. The adsorption capacity Q (mmmol·kg−1) can be determined with
the formula:

Q = 1000 ∗ NPAH/Madsorbent, (1)

where NPAH is the number of PAHs in the pores of MCM-41 and Madsorbent (g·mol−1) is the molar mass
of the adsorbent.
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Figure 1. Adsorption isotherms for Nap, Phe, and Pyr on the MCM-41 model compared with
experiment results at 398K. (a) Nap; (b) Phe; (c) Pyr; Key: red, grand canonical Monte Carlo (GCMC);
black, experiment.

Figure 2 presents a diagram of PAH adsorption as an instantaneous map under different pressures,
and it reflects the overall distribution state of PAH molecule adsorption in the cylindrical channel.
PAH pore adsorption was mainly based on single-layer adsorption, and this also indicated that the
isotherm belonged to Type I. It can also be observed that the PAHs were adsorbed on the surface of the
mesoporous channel in a tiled manner. This will be discussed in the following section.

2.2. Adsorption State

2.2.1. Angle Distribution

It was important to explore the angular distribution of PAH adsorption in the pores since the
PAHs exhibited a planar molecular structure. Thus, the adsorption state and configuration of PAHs
on the pore surfaces was statistically obtained. Here, the angle between the plane normal vector of
the adsorbed PAHs and the axis direction of the cylindrical channel was defined as θ (theta). Figure 3
provides the angle distributions of Nap, Phe, and Pyr adsorption on MCM-41. The θ of the three PAH
molecules as they adsorbed in the pore was mainly distributed between 80 and 90 degrees, and the
probability of θ between 0 and 15 degrees was close to zero. This indicates that there are no PAHs
perpendicular to the axial direction of the channel; that is to say, the PAHs are mainly adsorbed on the
surface of the mesoporous channel in a tiled manner, which is consistent with Figure 3. The degree of
the parallel distribution (θ tends to 90◦) of adsorbate over the channel surface increased with increasing
PAH weight, indicating a more stable interaction between the adsorbate and adsorbent.
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In order to explain the orientation of the adsorbate molecules in the pores of MCM-41, an order
index, S, was defined as follows [30]:

S =

(
3
2

cos2 θ − 1
2

)
(2)

where S tended to be −0.5 when the adsorbate molecules tended to be parallel to the surface, and S
tended to be 1 when the adsorbate molecules tended to be perpendicular to the surface. The statistical
results of the S values of the three PAHs are shown in Table 1. The S values of Phe and Pyr were close
to −0.4, indicating that the two molecular planes were close to being parallel to the axial direction of
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the channel. The S value of Nap was only −0.2, indicating that the tiling property of the adsorption
configuration on the surface was weak, and there was less molecular arrangement order compared to
that of Phe and Pyr. The S values of the three PAHs did not reach the ideal value of −0.5, probably
because the thermal motion of the molecule at a higher temperature of 398 K caused local perturbations
of the molecule at the adsorbed position. In this study, the adsorbates were at low gas concentrations,
and monolayer adsorption dominated. Three non-polar PAH molecules exhibited relatively weak
physical adsorption properties on the surface. Therefore, the angle and position of their distribution
may also be disturbed by the interaction of the surrounding adsorbate molecules.
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Figure 3. Angle distribution of Nap, Phe, and Pyr on the MCM-41 model. Key: black, Nap; red, Phe;
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Table 1. Order parameter (S) for the molecular direction of Nap, Phe, and Pyr.

Adsorbate S S Values Corresponding States

Nap −0.1843 0 disordered
Phe −0.3568 1 vertical
Pyr −0.3629 −0.5 parallel

2.2.2. Density Profile

The density profile can be used to infer the average spatial position of the molecules in the pores
by overlapping the profiles of the single-peak type, symmetric double-peak type, and irregular type,
which can be used to further analyze the adsorption. Figure 4 shows plots of the central density profile
of the three PAHs adsorbed on MCM-41. The abscissa indicated the radial direction of the mesoporous
cylindrical channel, and the origin represented the center of the channel. The maximum distance
was almost equal to the radius of the pores in the MCM-41 model (around 19 Å) in our simulation;
the further away the molecule was from the center of the pores, the closer it was to the edge of the
pores. For the special structure of the three PAHs (two or more benzene ring structures), the density
distributions of different geometric centers on Nap, Phe, and Pyr, as shown in Figure 5, were refined to
further gauge the state of adsorbed molecules.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 13 
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Figure 5. Graphical site description of polycyclic aromatic hydrocarbon (PAH) molecules. (a) naphthalene;
(b) phenanthrene; (c) pyrene; Key: CoreX, the benzene ring center (X is the number); yellow, symbol of
different atoms.

The molecules of Nap, Phe, and Pyr are stable planar molecules, and there are three special states
in the adsorption process [49], which are in parallel with the molecular plane, perpendicular to the
surface of the molecular sieve, and exist at a unique angle to the surface. These three different states
correspond to three different interactions: the weak interaction between the surface of the adsorbent
and the molecular plane, the strong interaction between the surface of the adsorbent and the polar
edges of the molecules, and the combination of the two effects.

Figure 4 shows that the density distributions of all centers did not exhibit obvious symmetrical
bimodal phenomena. The larger the molecular radius, the farther the distance of the density
distribution peak corresponding to the center of the pore (the corresponding distances from the
center of benzene rings to the central axis of the pore were 14.35 Å, 14.65 Å, and 14.75 Å), and the
stronger the interaction between the molecule and the surface. The peak position relationship of the
density profile between the adsorbate molecules Core and CoreX illustrates the following three points.
First, with increasing adsorbate molecular size, there was a greater coincidence that the peak position
of the density was located between the centers of the benzene ring and the center of the molecule.
This corresponded to an increase in the stability of the molecular plane with the edge of the PAHs likely
to be deflected by the surface polarity interaction. Second, the two sub-centers of the Nap molecule
were partially offset from the peak position of the density at the center, indicating that there was a
significant tilt angle between the Nap molecule and the surface of the pore. Third, the difference
between the density peak positions of the centers of the benzene ring and the center of the Phe and Pyr
molecules was small. It can be concluded from the statistical results of the previous angle distributions
that the parallelism between the molecular planes and the surface of the pore was satisfactory.

2.3. Adsorption Interactions

The radial distribution function (RDF, g(r)) is a function of the distance between different particles
(molecules or atoms). It is the ratio of the local density to the average density, which indicates the
density variation of the particle in space. The RDF method was employed to further analyze the
distribution distance between the adsorption sites of the PAHs (rings or atoms) and the active atoms
on the adsorbent surface, such as O and H. The RDF between the PAH molecules and different sites
of the mesoporous surface is shown in Figure 6. The distances corresponding to the RDF peaks are
summarized in Table 2.
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Table 2. Distances between the H or O atom of MCM41 model and CoreX of the three PAHs.

Type Distance (Å)

Nap Phe Pyr

OMCM41–HPAHs 3.43 3.63 3.53
HMCM41–CorePAHs 4.48 4.43 4.38
OMCM41–CorePAHs 4.92 4.83 4.83

OMCM41–HMCM41 0.94

Figure 6(1) shows that the H atoms on the PAHs at different positions were the same distance from
the O atoms on the surface of MCM-41. This indicated that the H atoms in the same PAH molecule
had similar weak activities. The peaks of the RDF distances corresponding to Nap, Phe, and Pyr were
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3.43 Å, 3.63 Å, and 3.53 Å, respectively (see Table 2), which were all larger than the common hydrogen
bond length (≤3.10 Å). This indicated that there could be limited hydrogen bonds produced between
PAH molecules and surface silanol groups (Si–OH).

Figure 6(2) shows there were large differences in the distances between the H atoms on MCM-41
and C atoms (HMCM41–CorePAHs) at different positions on the PAHs. The C atoms of the C–H bonds
on the PAH were close to H atoms on MCM-41, and C atoms near the center of the PAH were spaced
apart from the H atoms on MCM-41. This distribution and action was a result of the positive and
negative charges of the molecule. The H and O atoms on the PAHs or the surface of MCM-41 had
positive potential and negative potential electrical properties, respectively, while the electrical property
of C atoms on the PAHs was dependent on the positions. The central C atom was positively charged
while the outer C atom was negatively charged.

Table 2 shows that the difference in the distance between H and O atoms on MCM-41 and the
RDF peak of the PAH centers was 0.44 Å (Nap), 0.4 Å (Phe), and 0.45 Å (Pyr). They were smaller than
the average distance between H and O atoms in the surface silanol group (0.94 Å), indicating that
the molecular planes of the O–H bond and the PAHs were not perpendicular, but existed at a unique
angle. The spacing between the central PAH ring and the H and O atoms of the PAHs decreased with
increasing PAH molecular size. The C atoms near the center of the PAHs, which were negatively
charged, attracted Si and H atoms that were positively charged, and this led to a decrease in the
distance between the PAHs and the inner surface of the adsorbent. This result was consistent with the
density peak position results shown in Figure 4.

It can be concluded from the angular distribution and density peak position analysis that the
three PAH molecules were adsorbed in a flat position on the inner surface of the adsorbent tunnel.
The adsorbates possessed a stable planar structure with H atoms on the molecular edge, and there
was no strong polar force generated during the adsorption process that can result in the severe tilt or
deflection of the molecular plane. These findings were proved by RDF results, where the hydrogen
bonding was weak at the edge of the PAHs from the large distance between H atoms on PAHs and O
atoms on MCM-41. Additionally, there was no unique H atom, and the surface generated a prominent
force that tilted the PAH plane for the same activity of H atoms at the edge of the PAHs. As we know,
the current PAHs were formed by the combination of benzene rings, and large π bonds easily form
throughout the molecule. The potential and charge density distributions of Nap, Phe, and Pyr obtained
by the DFT simulations, shown in Figure 7, illustrated that the center of the ring on both sides of the
PAH molecular plane was negatively charged (red part in Figure 7), which is a neighboring π bond,
and the area of action of the π-electron plane increased when the number of rings increased. This led to
enhanced, or stronger, adsorption when the adsorption process was governed by dispersion forces [56].
Hence, the heavier the molecular weight of the PAHs, the stronger the interaction with the surface of
the pore and the shorter the distance between the adsorbate and adsorbent.
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3. Methods and Parameters

3.1. Model Structures

An all-atom model of MCM-41 was established with the carving-out method [36,37] based on
the rhombohedral cell model [57], as shown in Figure 8. The main mesoporous structure of the model
consisted of excavated cylindrical holes in amorphous silica. Each unit contained four cylindrical
channels. The atomic bonds in the whole unit cell were saturated by the connection of the oxygen
(O) and hydrogen (H) atoms to the unsaturated bonds from silicon (Si) and O atoms (the Si atoms
with three OH atoms were removed). The model was optimized and relaxed based on interactions
described by the Dreiding force field. The ESP charges were calculated according to the method from
Zhuo et al. [44] to finalize the structure of MCM-41. The model structure parameters are shown in
Table S1, and comparisons of the characterization results with experimental values [52] are shown in
Figure S1 in the Supplementary Material.
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molecules were regarded as rigid molecules. The Dreiding force field was used to describe the energy 
forms of the adsorbent–adsorbate and adsorbate–adsorbate interactions. The atomic force field form 
and interaction parameters are shown in Table S2. Electrostatic interactions are described in Ewald 
format with an accuracy of 10−4 kcal mol−1. The cutoff radii for the van der Waals interactions and 
hydrogen bonds were 15.5 Å and 4.5 Å, respectively. The total step number was 1 × 107, in which the 

Figure 8. The final structure of the MCM-41 model. (a) Ball-and-stick model; (b) CPK model; silicon
(Si), yellow; oxygen (O), red; hydrogen (H), white.

Nap, Phe, and Pyr are typical benzene-ring structures, as shown in Figure 9. The molecular models
of the three PAHs were determined with the density function theory (DFT) method, with all-electron
atomic charges obtained by the ESP method. In the DFT calculation, the Perdew–Wang method was
employed to exchange correlation functions in the calculation, where the base group used was double
numerical plus polarization (DNP). The distribution of the electrostatic potentials on the electron
isopycnic surface of the three PAHs is shown in Figure 7.
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3.2. Calculation Method

In the GCMC simulation, the adsorption temperature was fixed at 398 K, and the adsorbate
molecules were regarded as rigid molecules. The Dreiding force field was used to describe the energy
forms of the adsorbent–adsorbate and adsorbate–adsorbate interactions. The atomic force field form
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and interaction parameters are shown in Table S2. Electrostatic interactions are described in Ewald
format with an accuracy of 10−4 kcal mol−1. The cutoff radii for the van der Waals interactions and
hydrogen bonds were 15.5 Å and 4.5 Å, respectively. The total step number was 1 × 107, in which
the first 5 × 106 steps were used to balance the adsorption state, and the next 5 × 106 steps were
used to calculate the state average of the entire ensemble. The PAHs’ gas partial pressure in the
simulation was set at a lower level (~100 ppm) according to the common concentration ranges of
PAHs in actual situations [58]. The fugacity value required in the calculation process was obtained
by converting the pressure into the physical parameters of Nap, Phe, and Pyr by the Peng–Robinson
equation. The parameters such as critical temperature, critical pressure, and the eccentricity factor are
shown in Table S3.

The adsorption model results under the pressure of 0.8 Pmax were used to further analyze the
adsorption state of the three PAH molecules in the main channel of MCM-41. The adsorption states
including the angle distribution and the density peak were analyzed. The radius radial distribution
function representative of adsorbate–adsorbent mutual force was finally discussed.

4. Conclusions

Based on the GCMC simulation, the MCM-41 model was established, and the adsorption of Nap,
Phe, and Pyr on MCM-41 was simulated. The adsorption model was validated by use of experimental
adsorption isotherms. During the adsorption, no perpendicular state between the PAH molecular
plane and the central axis of the adsorbent channel was observed. The order according to the degree of
adsorption was: Pyr > Phe > Nap. The three PAHs were adsorbed in a flat position on the surface of
the pore, and the configuration planes of Phe and Pyr were more parallel to the surface compared to
Nap. The RDF curves indicated that there was no hydrogen bonding produced during the adsorption
process. The H atoms in the same PAHs had the same activity, but the adsorption activity of the C
atoms decreased from the central position, and the O–H bond on the adsorbent surface had a unique
angle with the plane of the PAHs. The area of action of the π-electron plane increased when the number
of rings increased, leading to enhanced, stronger adsorption, and thus, a shorter distance between the
adsorbate and adsorbent.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
665/s1.
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