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Abstract: Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is considered a major
wheat leaf disease in the main wheat producing regions of the world. Although many resistant wheat
cultivars to this disease have been developed, little is known about their resistance mechanisms. Pm40
is a broad, effective resistance gene against powdery mildew in wheat line L699. The aim of this study
was to investigate the resistance proteins after Bgt inoculation in wheat lines L699, Neimai836, and
Chuannong26. Neimai836 with Pm21 was used as the resistant control, and Chuannong26 without any
effective Pm genes was the susceptible control. Proteins were extracted from wheat leaves sampled 2,
4, 8, 12, and 24 h after Bgt inoculation, separated by two-dimensional electrophoresis, and stained
with Coomassie brilliant blue G-250. The results showed that different proteins were upregulated
and downregulated in three wheat cultivars at different time points. For the wheat cultivar L699,
a total of 62 proteins were upregulated and 71 proteins were downregulated after Bgt inoculation.
Among these, 46 upregulated proteins were identified by mass spectrometry analysis using the NCBI
nr database of Triticum. The identified proteins were predicted to be associated with the defense
response, photosynthesis, signal transduction, carbohydrate metabolism, energy pathway, protein
turnover, and cell structure functions. It is inferred that the proteins are not only involved in defense
response, but also other physiological and cellular processes to confer wheat resistance against Bgt.
Therefore, the resistance products potentially mediate the immune response and coordinate other
physiological and cellular processes during the resistance response to Bgt. The lipoxygenase, glucan
exohydrolase, glucose adenylyltransferasesmall, phosphoribulokinase, and phosphoglucomutase are
first reported to be involved in the interactions of wheat-Bgt at early stage. The further study of these
proteins will deepen our understanding of their detailed functions and potentially develop more
efficient disease control strategies.

Keywords: Blumeria graminis f. sp. tritici; protein two-dimensional electrophoresis; mass
spectrometry; Pm40

1. Introduction

Wheat powdery mildew caused by the obligate fungus Blumeria graminis f. sp. tritici (Bgt) is a
major wheat leaf disease in the main wheat producing regions of world, leading to significant yield
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loss each year [1]. Agricultural and chemical methods are widely used to combat the disease. Wheat
powdery mildew is an airborne disease and the chemical control methods for Bgt seriously pollute
environments. Therefore, planting resistant cultivars is the most economical, most effective, and safest
method to control wheat powdery mildew [2]. To date, approximately 90 formally designated powdery
mildew resistance genes (Pm genes) are catalogued at 58 loci (Pm1–Pm62, Pm18 = Pm1c, Pm22 = Pm1e,
Pm23 = Pm4c, Pm31 = Pm21) with the loci of Pm1, Pm3, Pm4, Pm5, and Pm24 having 5, 17, 4, 5, and 2
alleles, respectively [3–13]. However, resistance genes often become ineffective due to the enrichment
and variation of virulent races, particularly when a single resistance gene is used in large areas for
long periods of time. Therefore, it is very important to identify effective resistance genes and develop
multiple resistance cultivars in wheat breeding [14].

The resistant mechanisms of wheat cultivars against Bgt are not well-known. Bread wheat
(Triticum aestivum L.) is a hexaploid (2n = 42; AABBDD) with a 17-gigabase genome that contains 124
201 genes [15]. Due to this complexity, cloning wheat genes by the standard map-based cloning
strategy remains challenging. Although many powdery mildew resistance genes were identified and
mapped in wheat, to date, only five genes, Pm2, Pm3, Pm8, Pm21, and Pm60 have been cloned [9,16–20].
The resistance gene Pm40 was transferred from Elytrigia intermedium into wheat line GRY19 and
mapped on chromosome arm 7BS [21]. Pm40 is flanked by Xwmc335 and BF291338 at genetic distances
of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27 [22]. Wheat line L699, which is the
high generation of wheat line GRY19, carries the resistance gene Pm40 and confers resistance to all
available isolates of Bgt in China [23].

Proteins are not only the final executant of life functions but also the key to understanding
physiological, pathological, and pharmacological functions of plants [24]. Therefore, it is difficult to
thoroughly explain the powdery mildew resistance mechanism using genomic and transcriptomic
methods. Proteomic approaches have been extensively applied in plant pathology research [25,26].
However, only a few studies examined the changes of plant proteome in response to Bgt. Wheat
cultivars Bainong/W2132 (Pm21), JD8/JD8-Pm30, N8038 (PmG25), N9134 (PmAS846), and Xinong979
(without effective Pm genes) were used to analyze the effect of Bgt on wheat protein expression.
These studies showed that most of the upregulated proteins were involved in stress responses and
primary metabolic pathways [24,27–30]. However, there is no such study investigating the differences
of protein expressions in the period before Bgt haustoria formation, which is very critical for us
to better understand the interactions of this pathogen with different wheat cultivars at early stage.
To understand the molecular recognition of wheat-Bgt during the contact period and penetration period,
we identified a set of proteins in wheat inoculated with Bgt using two-dimensional electrophoresis
(2-DE). The possible roles of the identified proteins in the defense response at early interaction stage
were discussed according to their functional implications. This study deepens and extends our
knowledge on the interactions of wheat with Bgt and allows us to further understand the wheat
immune systems against Bgt. All these will facilitate the development of more efficient strategies to
control this devastating pathogen for enhancing wheat production, which can also potentially provide
insights for the control of different plant diseases caused by diverse powdery mildew pathogens.

2. Results

2.1. Phenotypic Differences of Leaves Affected by Bgt

The bioassay revealed differences in resistance to Bgt among L699, Chuannong26 and Neimai836
(Figure 1). The susceptible cultivar Chuannong26 was covered by a high number of sori and had
the white powdery appearance due to the abundant conidia and conidiophores production on the
leaf surface after 6 days of Bgt infection, with the infection type (IT) = 9 (Figure 1a). Meanwhile,
the resistant wheat lines L699 and Neimai836 were observed to be healthy without any epidermal
cell necrosis, chlorotic patches, and powdery appearance on the leaf surface, with the IT = 0 (L699:
Figure 1b, Neimai836: Figure 1c) [23].
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effectively suppressed the development of haustoria and hyphae [31]. In addition, the appressoria of 
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Figure 1. Different responses of wheat leaves to Blumeria graminis f. sp. tritici (Bgt) infection after six
days. (a) Susceptible wheat cultivar Chuannong26. (b) Resistant wheat cultivar L699. (c) Resistant
wheat cultivar Neimai836.

2.2. Estimation of Wheat-Bgt Interactions

To examine the development of Bgt and immune responses of wheat at 2, 4, 8, 12, and 24 h
post-inoculation (hpi), the cytological observations of wheat samples were carried out. Bgt conidia
successively formed primary germ tubes, appressorium germ tubes, appressoria, penetration pegs,
and haustoria at 2, 4, 8, 12, and 24 hpi in susceptible wheat cultivar Chuannong26. However, in resistant
wheat cultivars L699 and Neimai836, only a small number of conidia successfully penetrated the
epidermal cells at 24 hpi, and the hypersensitive reaction (HR) and formation of papilla (PA) effectively
suppressed the development of haustoria and hyphae [31]. In addition, the appressoria of some conidia
sprouted another lobe and stopped growing because of the lack of nutrition at 24 hpi (Figure 2).
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Figure 2. Microscopic observations of wheat-Bgt interactions on the leaf surface. The development
of Bgt at 2, 4, 8, 12, and 24 hpi in wheat cultivars Chuannong26 (A), L699 (B), and Neimai836 (C).
PGT: primary germ tube, AGT: appressorium germ tube, APP: appressorium, PP: penetration peg,
H: haustorium and L: lobe. Scale bar: 20 µm.
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2.3. Detection of Differential Proteins by 2-DE

Approximately 500 protein spots were detected in all gels in this study. Using a twofold
change cutoff, we found wheat cultivars L699, Neimai836, and Chuannong26 all had upregulated
and downregulated proteins affected by Bgt. The numbers of upregulated proteins were seven (spot 01,
02, 24, 27, 45, 46, 50), five (spot 12, 17, 36, 37, 44), 18 (spot 11, 13, 29, 30, 32–35, 38–46, 55), 26 (spot 02–06,
08–12, 14–16, 18–28, 48, 56), and 18 (spot 07, 31, 47–62). The numbers of downregulated proteins were
four (spot 68–71), 12 (spot 45, 48, 58–67), 12 (spot 09, 12, 14, 49–57), 10 (spot 39–48), and 38 (spot 01–38)
in wheat cultivar L699 at 2, 4, 8, 12, 24 hpi, respectively (Figures 3 and 4). The numbers of upregulated
proteins were 10 (spot 14, 19, 20, 22, 58–63), 13 (spot 32, 46–57), 15 (spot 31–45), 23 (spot 1–23), and
nine (spot 19, 21, 24–30). The numbers of downregulated proteins were 11 (spot 01, 36, 43, 52, 69–75),
11 (spot 23, 28, 31, 50, 62–68), 11 (spot 50, 52–61), 35 (spot 1–35), and 16 (spot 36–51) in wheat cultivar
Neimai836 at 2, 4, 8, 12, 24 hpi, respectively (Figures 3 and 5). The numbers of upregulated proteins
were three (spot 71, 109–110), nine (spot 33, 101–108), seven (spot 33, 34, 66, 97–100), 25 (spot 23, 34,
59, 75–96), and 74 (spot 1–74). The numbers of downregulated proteins were four (spot 42–45), 13
(spot 04, 25, 31–41), nine (spot 16, 19, 24–30), 7 (spot 01, 04, 19–23), and 18 (spot 1–18) in wheat cultivar
Chuannong26 at 2, 4, 8, 12, 24 hpi, respectively (Figures 3 and 6).
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Figure 3. Number of proteins differentially expressed after powdery mildew infection at different
time points.

2.4. Protein Identification

Sixty-two upregulated proteins in L699 at five different inoculation time points were eluted from
representative 2-DE gels for identification, and 46 were successfully identified. Bioinformatics analysis
of the identified proteins revealed that these proteins were putatively involved in diverse biological
processes including stress and disease resistance, photosynthesis, signal transduction, carbohydrate
metabolism, energy pathway, gene expression, protein turnover, and cell structure (Table 1). Five
proteins (approximately 16.5% of the total differentially expressed proteins (DEPs)) were unnamed or
hypothetical proteins. The largest category of these upregulated proteins was protein turnover (28%,
thirteen), followed by carbohydrate metabolism (22%, ten), stress and disease resistance (13%, six),
photosynthesis (13%, six), energy pathway (6.5%, three), signal transduction (2%, one), gene expression
(2%, one), and cell structure (2%, one).
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Figure 4. Differences in protein expression between resistant wheat cultivar L699 wheat with and
without powdery mildew infection. (a) Upregulated proteins are labeled in the representative 2-DE gel
of Bgt-inoculated L699 wheat at 24 hpi. (b) Downregulated proteins are labeled in the representative
2-DE gel of mock-inoculated L699 wheat at 24 hpi. Red, 2 hpi; purple, 4 hpi; green, 8 hpi; yellow, 12 hpi;
black, 24 hpi.
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Figure 5. Differences in protein expression between resistant wheat cultivar Neimai836 wheat with
and without powdery mildew infection. (a) Upregulated proteins are labeled in the representative
2-DE gel of Bgt-inoculated Neimai836 wheat at 12 hpi. (b) Downregulated proteins are labeled in the
representative 2-DE gel of mock-inoculated Neimai836 wheat at 12 hpi. Red, 2 hpi; purple, 4 hpi; green,
8 hpi; yellow, 12 hpi; black, 24 hpi.
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Figure 6. Differences in protein expression between susceptible wheat cultivar Chuannong26 wheat
with and without powdery mildew infection. (a) Upregulated proteins are labeled in the representative
2-DE gel of Bgt-inoculated Chuannong26 wheat at 24 hpi. (b) Downregulated proteins are labeled in the
representative 2-DE gel of mock-inoculated Chuangnong26 wheat at 24 hpi. Red, 2 hpi; purple, 4 hpi;
green, 8 hpi; yellow, 12 hpi; black, 24 hpi.
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Table 1. Identification of differentially upregulated proteins in wheat resistance cultivar L699 by MALDI-TOF-MS.

Spot Protein Name Accession Matched
Peptides MW/PI Score Time (h)

Proteins involved in disease defense response
3 Lipoxygenase 2.1, chloroplastic gi|473948122 21 105625.33/5.70 185 12
4 Lipoxygenase 2.1, chloroplastic gi|473948122 41 105625.33/5.70 591 12
5 Lipoxygenase 2.1, chloroplastic gi|473948122 17 105625.33/5.70 196 12
29 Lipoxygenase 1 gi|474399175 16 96333.65/5.91 299 8
32 Heat shock cognate 70 kDa protein 1 gi|474012573 37 71123.58/5.06 641 8
61 Germin-like protein 8-14 gi|473963025 4 21939.25/5.36 174 24

Photosynthesis-related proteins
11 Ribulose-1,5-bisphosphate carboxylase activase, partial gi|37783283 10 22336.08/4.98 309 8, 12
28 Ribulose bisphosphate carboxylase small chain, chloroplastic gi|473882355 14 18526.35/8.65 208 12
33 RuBisCO large subunit-binding protein subunit alpha, chloroplastic gi|474113969 34 65380.60/5.17 864 8
36 Ribulose-1,5-bisphosphate carboxylase activase, partial gi|37783283 10 22336.08/4.98 330 4
37 Photosystem II cytochrome b559 alpha subunit (chloroplast) gi|699976019 6 9444.60/4.64 196 4

44 Ribulose bisphosphate carboxylase small chain PWS4.3,
chloroplastic gi|132087 2 19417.36/8.99 92 4, 8

Proteins involved in Signal transduction
24 14-3-3 protein gi|431822520 16 29264.88/4.83 434 12

Carbohydrate metabolism-related proteins
6 Beta-D-glucan exohydrolase gi|20259685 14 67301.15/6.87 74 12

10 Glucose-1-phosphate adenylyltransferasesmall subunit,
chloroplastic/amyloplastic gi|474108293 23 64723.14/7.91 266 12

13 Phosphoglycerate kinase gi|3293043 16 49839.53/6.57 580 8, 12
14 Glycerophosphodiester phosphodiesterase GDE1 gi|473847956 13 52899.68/5.69 43 12
18 Fructose-bisphosphate aldolase, chloroplastic gi|473848356 15 42002.99/5.94 358 12
38 Phosphoribulokinase gi|5924030 22 45141.39/5.72 587 8
50 Phosphoglucomutase, cytoplasmic gi|473763033 18 63499.68/5.14 302 2, 24
51 Phosphoglucomutase, partial gi|18076790 15 62789.15/5.66 218 24
54 6-phosphogluconate dehydrogenase, decarboxylating gi|474379872 23 81169.95/8.56 608 24
55 Cytosolic 3-phosphoglycerate kinase, partial gi|28172911 16 31334.35/4.98 291 8, 24

Proteins involved in energy pathway
9 Vacuolar proton-ATPase subunit A gi|90025017 37 68454.90/5.23 583 12
17 ATP synthase CF1 beta subunit (chloroplast) gi|667669997 33 53857.48/5.06 1200 4
39 Ferredoxin-NADP(H) oxidoreductase gi|20302473 10 40232.03/6.92 120 8

Proteins involved in gene expression and DNA remodeling
15 Guanine nucleotide-binding protein subunit beta-like gi|473957859 6 27150.69/6.29 211 12
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Table 1. Cont.

Spot Protein Name Accession Matched
Peptides MW/PI Score Time (h)

Proteins involved in protein turnover
8 ATP-dependent zinc metalloprotease FTSH 1, chloroplastic gi|474350516 29 54477.49/5.58 673 12
27 50S Ribosomal protein L12-2, chloroplastic gi|475532245 10 21837.90/5.35 452 12
30 Tyrosine phosphorylation protein A gi|548319365 25 74252.07/6.61 434 8

34 5-methyltetrahydropteroyltriglutamate-Homocysteine
methyltransferase gi|473993302 14 84552.49/5.74 423 8

35 5, 10-methylene-tetrahydrofolate reductase gi|115589742 12 64875.07/5.86 83 8
40 20 kDa chaperonin, chloroplastic gi|474407512 10 29710.03/6.76 154 8
47 Putative alanyl-tRNA synthetase, chloroplastic gi|474142555 12 111648.20/5.62 198 24

48 ATP-dependent Clp protease ATP-binding subunit ClpA-like
protein CD4B, chloroplastic gi|474241774 33 82735.21/5.16 513 12, 24

49 Lysyl-tRNA synthetase gi|474147702 8 132545.46/6.28 92 24
52 Putative mitochondrial-processing peptidase subunit beta gi|474142281 30 43290.34/5.41 486 24
53 Adenosylhomocysteinase gi|474154141 8 45700.84/6.48 56 24
56 Cysteine synthase gi|474315986 13 35583.27/5.82 216 12, 24
60 Ribosome-recycling factor, chloroplastic gi|474043078 15 24770.60/8.92 504 24

Cell structure-related proteins
12 Actin-3 gi|474259583 18 44367.62/5.26 376 8, 12

Proteins of unknow function
2 Hypothetical protein TRIUR3_05354 gi|473755342 27 104676.25/5.87 368 2, 12
26 Unnamed protein product gi|669029445 4 18152.74/5.60 244 12
58 Hypothetical protein TRIUR3_21449 gi|474384687 14 32942.26/9.31 129 24
59 Unnamed protein product gi|669027704 13 26818.76/5.57 335 24
63 Unnamed protein product gi|669029445 5 18152.74/5.60 269 24
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2.5. Validation of Upregulated Proteins by qRT-PCR

To confirm the changes in protein abundance, qRT-PCR was used to analyze the mRNA
expression levels of protein-coding genes after inoculation with Bgt in wheat cultivars L699, Neimai836,
and Chuannong26. Six upregulated proteins were randomly selected and primers for the mRNAs
of these proteins were specifically designed (shown in Table 2). The mRNA levels for all the
six proteins were significantly increased in at least one sampling time in wheat L699. These
changes reflected the increases in proteins and the differentially expressed proteins identified by
two-dimensional electrophoresis were validated (Figure 7). However, the mRNAs of four proteins,
i.e. fructose-bisphosphate aldolase, phosphoglycerate kinase, 5-methyltetrahydropteroyltriglutamate-
homocysteine methyltransferase, and the Germin-like protein (GLP) 8-14, were upregulated earlier
than proteins in wheat L699. The protein level of fructose-bisphosphate aldolase increased at 12 hpi, but
the mRNA level did not exhibit a significant increase at any sampling time point in wheat Neimai836.

Table 2. List of primers used for qRT-PCR amplification.

Spot Protein Name Accession No. Primer Sequence 5′-3′

Reference
gene 18S rRNA AY049040

Sense: 5′-GTGACGGGTGACGGAGAATT-3′

Antisense: 5′-GACACTAATGCGCCCGGTAT-3′

9 Vacuolar proton-ATPase ABD85016
Sense: 5′-TATGAACGTGCTGGGAAGGT-3′

Antisense: 5′-GGGTTGCAGAGGTAACAGGA-3′

18 Fructose-bisphosphate aldolase EMS47455
Sense: 5′-TCTTGTCTGGTGGTCAGTCG-3′

Antisense: 5′-CGTCTTGAGGCAGGTGTTCT-3′

13 Phosphoglycerate kinase CAA51931
Sense: 5′-AATGGTGCTGTTTTGCTCCT-3′

Antisense: 5′-TGTTCCGAATGCATCGTTTA-3′

36 Ribulose-1,5-bisphosphate carboxylase
activase

AAP72270
Sense: 5′-ACGGACCAGTGACCTTTGAG-3′

Antisense: 5′-ACCAGTCTTCATCGCATCCT-3′

34
5-methyltetrahydropteroyltriglutamate-

homocysteine methyltransferase EMS51950
Sense: 5′-TGTGTTCTGGTCCAAGATGG-3′

Antisense: 5′-CTCAAACCTCGGTTGGTCAT-3′

61 Germin-like protein 8-14 EMS51159
Sense: 5′-TGCAGATCACCGACTACGC-3′

Antisense: 5′-CACGGACTTGAGCTTCTTGAC-3′
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Figure 7. Quantification of six gene transcripts and protein levels at different time points post
inoculation with Bgt in wheat. The bar graph shows the fold changes of the mRNA expression
levels in inoculation vs control samples at five time points. The blue, red, and green columns are
representatives of wheat L699, Neimai836, and Chuannong26, respectively. The lines show the fold
changes of the protein expression levels in inoculation vs control samples at five time points. The blue,
red, and green lines are representatives of wheat L699, Neimai836, and Chuannong26, respectively.
The mRNA expression levels were quantified by qRT-PCR normalized against 18S rRNA. Asterisks
indicate statistically significant differences (*, p < 0.05; **, p < 0.01) of mRNA expression levels between
the inoculation and control samples.

3. Discussion

Plants employ two levels of immunity to encounter pathogen invasion: Pathogen-associated
molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). In the
early phase of defense, PAPMs are recognized as ‘non-self’ molecules by the host plants. This
induces downstream defense signaling, such as the generation of reactive oxygen species (ROS)
and the transcription of genes encoding pathogenesis-related proteins (PRs). The pathogens release
effector proteins to oppose PTI, and then the plant resistance proteins recognize the effector, which
stimulates the plant’s ETI, leading to the hypersensitive response (HR) and activating other plant
defense pathways [32–34].

However, not only the specific signaling mediated by resistance genes, but also the other basic
cellular processes, are involved in the effective defense to support the plant innate immune system [35].
In our results, the differentially expressed proteins, including both resistance proteins against Bgt
and other proteins related to the direct and indirect defensive processes. The potential roles of these
proteins in the defense response are discussed below.

3.1. Stress- and Defense-Related Proteins

Plants experience a variety of biotic and abiotic stresses during the growth and development
periods. Studies on the plant stress response found many stress response related proteins. For example,
the Germin-like proteins are important stress-related proteins.

Protein spot 61, with an increasing expression level 24 h after Bgt infection, was identified as GLPs.
GLPs as extracellular glycoproteins are important components of the plant PRs [36]. Recently, GLPs
were reported to be involved in the stress responses of Arabidopsis, pepper, barely, and rice [37–40].
GLPs can remove excess ROS generated by plants in the form of enzymes, receptors, or structural
proteins in various physiological and biochemical processes. The expression of GLPs increased
significantly and potentially catalyzing the production of H2O2, in plants infected by fungi, bacteria,
viruses, or other pathogens [41–43]. H2O2 can selectively participate in the signaling cascade pathway,
which can stimulate plant self-defense reactions. In addition, H2O2 is able to use the cellulose
crosslinking action to strengthen the structure of plant cell walls, which is very important in plant
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defense against oxidative stress. GLPs play an important role in wheat L699 resistance to powdery
mildew. This result is consistent with the previous study [43].

Heat shock proteins, as chaperones during the stress response, are very important for the correct
folding of newly synthesized proteins [44]. Heat shock proteins were first discovered in Drosophila
and were a class of proteins expressed by organisms under high temperature stimulation [45,46].
Recently, heat shock proteins were found to have very important roles in the innate immune response
and are indispensable for the function of other defense-related proteins [47,48]. Mandal found that
heat shock protein expression was significantly increased in wheat N0308 72 h after Bgt infection [29].
Protein spot 32 was identified as heat shock proteins with an expression level that increased after 8 h
with Bgt inoculation. Heat shock proteins are closely related to wheat resistance of powdery mildew,
as reported previously [29].

Plant lipoxygenases are members of a class of nonheme iron-containing dioxygenases that catalyze
the addition of molecular oxygen to fatty acids containing a cis, cis-l,4-pentadiene system, which
produces an unsaturated fatty acid hydroperoxide [49]. Currently, an increasing number of studies
show that there are many similarities between the plant defense mechanisms and the animal defense
mechanisms under adverse conditions [50]. Lipoxygenases in animals and plants play an important
role in withstanding adverse environments. Protein spots 3, 4, 5, and 29, which were identified
as lipoxygenase, were upregulated 8 h and 12 h after Bgt inoculation compared to non-inoculated
wheat. In the lipoxygenase pathway, the polyunsaturated fatty acids are catalyzed by lipoxygenases to
generate hydrogen peroxide and subsequently form compounds with a specific mass of physiological
functions by the catalytic reaction of other enzymes, such as jasmonic acid and guaiac acid, which
induces the synthesis of resistance proteins against stresses [51,52].

3.2. Proteins Related to Photosynthesis

Plant defense reactions are closely related to photosynthesis. It is generally believed that plant
photosynthesis-related protein biosynthesis is reduced and resources are allocated to the defense
response when plants are infected by a pathogen. The plant defense responses to pathogens is known
as the “hidden costs” defense [53]. Plants affected by pathogens active the HR response, which is
considered as another reason for weakening the plant photosynthesis after the original infection.
However, protein spots 11, 28, 33, 36, 44 comprise ribulose carboxylase, which is an indicator of
photosynthesis. These spots were upregulated 4 h, 8 h, and 12 h after powdery mildew infection,
which could indicate that photosynthesis is increased. It was reported that photosynthesis is enhanced
in early plant pathogen infections and weakened on later stage during the infection [54].

3.3. Proteins Involved in Carbohydrate Metabolism and Energy Pathways

The expression of several proteins involved in glucose metabolism, including β-D-glucose
hydrolase (spot 6), phosphoglycerate kinase (spot 13, 55), glycerol phosphodiester enzyme (spot 14),
diphosphate aldolase (spot 18), ribulose kinase (spot 38), glucose phosphate mutase (50, 51), and
six-glucose phosphate decarboxylase (spot 54), were increased in response to wheat powdery mildew
in wheat L699. Previous studies have shown that hexose can provide extra energy and serve as a signal
for activating resistant response. For instance, in response to barley powdery mildew infection, the
expression of hexose metabolizing enzymes significantly increased [55].

3.4. Proteins Involved in Gene Expression and Protein Turnover

Each step in the flow of genetic information is very strict, so the error rate of protein synthesis
in this process is very low. However, protein synthesis has a certain error rate that is the net
result of several processes. Aminoacyl-tRNA synthetases and ribosomes play important roles in
protein synthesis [56,57]. Studies have shown that aminoacy-tRNA synthetase is not only involved in
protein synthesis, but also participates in other activities, including the regulation of transcription and
translation, RNA splicing, signal transduction, and immune response [58]. Current research is focused
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on the relationship between the function and structure of new amino acid-tRNA synthetases, especially
the aminoacyl-tRNA synthetase, which is related to diseases. After powdery mildew infection in wheat
L699, the expression levels of alanyl-tRNA synthetase (spot47), lysyl-tRNA synthetase (spot49), and
ribosomal protein (spot27) increased, suggesting that these proteins may be important in the wheat
anti-powdery mildew responses.

3.5. Proteins Associated with Cell Organization

In powdery mildew-infected wheat L699, actin (spot 12) was upregulated. The actin cytoskeleton is
an essential dynamic component for cells and is highly conserved in eukaryotic cells. The cytoskeleton
is closely linked with the membrane and is involved in various cellular processes, including defense
signaling based on actin cytoskeletal structures after pathogen infection [59].

3.6. The Correlation of mRNA and Protein Expression

The analysis of six proteins and the expression of the protein-coding regions of their genes showed
that the proteins and mRNA levels had a certain uniformity in our study. However, there exists
post-transcriptional regulation after translational regulation in wheat, which may lead to differences
between protein expression levels and mRNA levels.

3.7. The Novel Proteins Potentially Involed in the Response of Wheat Against Bgt

Some of the identified proteins, such as the lipoxygenase, glucan exohydrolase, glucose
adenylyltransferasesmall, phosphoribulokinase, and phosphoglucomutase, are first reported during
the interaction of wheat-Bgt in this study. These proteins are potentially very critical for the wheat-Bgt
interaction at early stage. For future research, the defense functions of these novel proteins deserve
further investigation by using the integrative approaches, such as the comparative metabolomics, gene
overexpression, and silencing methods. The related study will lead to deeper understanding of the
detailed functions of these important proteins and more efficient disease control strategies.

4. Materials and Methods

4.1. Plant Materials and Inoculation

L699, Neimai836, and Chuannong26 were used in this study. L699 carries the resistance gene Pm40
and shows resistance to most powdery mildew isolates in China. Neimai836 carries the resistance gene
Pm21, but not Pm40, and also shows resistance to most powdery mildew isolates in China. Nevertheless,
Chuannong26 is highly susceptible to powdery mildew without any effective resistance gene. Plants
were cultivated in 30 cm pots in a growth chamber at 18 ◦C under a 12 h/12 h dark photoperiod. These
pots were divided into the Bgt-inoculated group and the mock-inoculated group with nonopaque and
breathable hoods. Seedlings of the Bgt-inoculated group were artificially inoculated by dusting with
Bgt conidia from sporulating seedlings of Chuannong26 at two to three leaf stages. Leaf samples were
harvested at 2, 4, 8, 12, and 24 hpi with liquid nitrogen and immediately stored at −80 ◦C. Samples
were collected from three biological replicates at each time point and every sample protein was run on
three gels. For the analysis, one best gel was selected from three gels.

4.2. Cytological Observation of the Interaction between Wheat and Bgt

Leaves of the Bgt-inoculated and mock-inoculated wheat were sampled at 2, 4, 8, 12, and 24 hpi
and cut into 2–3 cm leaf fragments. The leaf fragments collected at 2, 4, 8, and 12 hpi were destained
using isopropanol fumigation. The leaf fragments collected at 24 hpi were destained with AA solution
(ethanol:glacial acetic acid = 1:1, v/v). Then the sample were stained with Coomassie blue staining
solution (0.15% trichloroacetic acid aqueous solution:0.6% Coomassie brilliant blue R-250 methanol
solution = 1:1, v/v) for 4 h. After rinsing with distilled water, the leaves were saved in a mix
solution (glacial acetic acid:glycerol:distilled water = 1:4:15, v/v/v). The infection structures including
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germ tubes, appressoria and haustoria of Bgt were observed under electron microscope (40×, Nikon
Eclipse 80i, Nikon Corporation, Tokyo, Japan).

4.3. Protein Extraction

Leaf tissue (1 g) was ground in a prechilled mortar with liquid nitrogen. Then, the powder was
transferred to a 1.5 mL centrifuge tube with the addition of 1 mL acetone containing 10% trichloroacetic
acid (TCA) and 0.07% β-mercaptoethanol. The samples were vortexed and chilled for 1 h at −20 ◦C.
Then the homogenate was centrifuged at 13,000× g for 30 min at 4 ◦C. After the supernatant was gently
decanted, the pellet was washed four times with chilled acetone containing 0.07% β-mercaptoethanol,
then dried until all the acetone was removed by a vacuum drying instrument. The resulting powder
was dissolved in 1 mL of IEF buffer (7 M urea, 2 M thiourea, 4% CHAPS, 20 mM DTT, 0.001%
bromophenol blue, and 0.5% ampholyte (pH 3–10)). After centrifugation at 13,000× g for 20 min twice,
the leaf proteins were obtained from the supernatant, and their concentration was determined using a
Bradford dye binding assay [60].

4.4. Two-Dimensional Electrophoresis, Protein Visualization, and Image Analysis

The protein mixture was loaded onto an IPG strip (17 cm, pH 4-7, linear gradient (Bio-Rad,
California, CA, USA)) by active rehydration at 50 V for 14 h (20 ◦C) on a Protein Isoelectric Focusing
(IEF) Cell (Bio-Rad). The following conditions were used for the IEF: 20 ◦C, 50 µA/strip, 250 V for 1 h,
1000 V for 1 h, 10,000 V for 5 h, and 10,000 V, with a total of 60,000 vhs. The focused IPG strips were
equilibrated in buffer containing 5 mL 6 M urea, 2% SDS, 20% glycerol, 375 mM Tris-HCl (pH 8.8), and
200 mM DTT for 15 min, then re-equilibrated in a similar buffer whose 200 mM DTT was replaced by
250 mM iodoacetamide for 15 min. Proteins were separated on the second dimension on vertical 12%
sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel in a Protean II XI Cell (Bio-Rad) at 25 mA/gel.
Proteins in the gels were stained by the “blue silver” protocol as described by Candiano et al. [61].
Gels were scanned by a GS-800 scanner (Bio-Rad) and the proteins in the images were analyzed using
PDQuest software with version 8.0 (Bio-Rad). There were variations due to sample loading, the 2-DE
techniques and staining. To minimize these variations, each spot intensity was normalized according
to its percent volume of all protein spots on the gel. The proteins showing at least a twofold change in
abundance were considered as differentially expressed proteins (DEPs).

4.5. MS and Database Searches

Protein slices in fresh blue silver-stained gel were excised and plated into a 96-well microtiter
plate. Excised slices were first distained twice with 60 µL 50 mM NH4HCO3 and 50% acetonitrile, then
dried twice with 60 µL acetonitrile. Afterwards, the dried pieces of gels were incubated in ice-cold
digestion solution (12.5 ng/µL trypsin and 20 mM NH4HCO3) for 20 min, then transferred into a 37 ◦C
incubator for digestion overnight. Finally, peptides in the supernatant were collected after extraction
twice with 60 µL extraction solution (5% formic acid in 50% acetonitrile).

The peptide solution described above was dried under the protection of N2. A 0.8 µL matrix
solution (5 mg/mL α-cyano-4-hydroxy-cinnamic acid diluted in 0.1% TFA, 50% ACN) was pipetted to
dissolve the peptides. Then, the mixture was spotted on a MALDI target plate (AB SCIEX, Framingham,
Massachusetts, MA, USA). MS analysis of the peptides was performed on an AB SCIEX 5800 TOF/TOF.
The UV laser was operated at a 400 Hz repetition rate with a wavelength of 355 nm. The accelerated
voltage was operated at 20 kV, and the mass resolution was maximized at 1600 Da. The mass instrument
with internal calibration mode was calibrated by myoglobin digested with trypsin. All acquired spectra
of samples were processed using TOF/TOF ExplorerTM Software (AB SCIEX) in default mode. The data
were searched by GPS Explorer (V3.6) with the search engine MASCOT (V2.3, Matrix Science, London,
UK). The search parameters were as follows: dates were compared against the NCBI nr database,
trypsin was digested with one missing cleavage, MS tolerance was set at 100 ppm, and MS/MS
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tolerance was set to 0.6 Da. Functional annotation of identified proteins based on gene ontology was
performed using the Protein Information Resource (https://proteininformationresource.org).

4.6. RNA Isolation and qRT-PCR Assays

Total RNA from Bgt-inoculated or mock-inoculated wheat leaves was sampled at 2, 4, 8, 12,
and 24 hpi and extracted using Trizol reagent (Tiangen Biotech, Beijing, China). First strand cDNA
was synthesized with Transcript One-Step gDNA removal and cDNA Synthesis Supermix (Transgen
Biotech, Beijing, China). Primers were specifically designed to anneal to each of the selected genes and
the endogenous reference gene 18S rRNA (GenBank accession No. AY049040) [62]. The expression
patterns of selected genes were analyzed with a Bio-Rad iQ5 system. Relative gene quantification was
calculated by the comparative 2–∆∆Ct method [63] and normalized to the corresponding expression
level of the 18S rRNA. All reactions were performed in triplicate, including three no-template controls.

5. Conclusions

In summary, we identified 46 differentially expressed proteins in wheat in response to Bgt
inoculation using 2-DE and mass spectrometry. Among these identified proteins, the lipoxygenase,
glucan exohydrolase, glucose adenylyltransferasesmall, phosphoribulokinase, and phosphoglucomutase
are first reported during the interaction of wheat-Bgt. We inferred that these proteins are not only
involved in defense response but also physiology and cellular process for wheat to confer resistance
against Bgt. The wheat resistance gene products potentially mediate the immune response and
coordinate other physiological and cellular processes during the resistance response to Bgt.
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