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Abstract: Endocrine therapy is an essential component in the curative treatment of hormone receptor
(HR)-positive breast cancer. To improve treatment efficacy, the addition of metronomic chemotherapy
has been tested and shown to improve therapeutic effects. To better understand cellular reactions
to metronomic chemoendocrine therapy, we studied autophagy-related markers, beclin 1 and LC3,
and apoptosis-related markers, TUNEL and M30, in pre- and post-treatment cancer tissues from
a multicenter neoadjuvant trial, JBCRG-07, in which oral cyclophosphamide plus letrozole were
administered to postmenopausal patients with HR-positive breast cancer. Changes in the levels of
markers were compared with those following neoadjuvant endocrine therapy according to clinical
response. Apoptosis, in addition to autophagy-related markers, increased following metronomic
chemoendocrine therapy and such increases were associated with clinical response. By contrast,
following endocrine therapy, the levels of apoptosis-related markers did not increase regardless of
clinical response, whereas the levels of autophagy-related markers increased. Furthermore, levels of
the apoptosis-related marker, M30, decreased in responders of endocrine therapy, suggesting that
the induction of apoptosis by metronomic chemoendocrine therapy was involved in the improved
clinical outcome compared with endocrine therapy. In conclusion, metronomic chemoendocrine
therapy induced a different cellular reaction from that of endocrine therapy, including the induction of
apoptosis, which is likely to contribute to improved efficacy compared with endocrine therapy alone.

Keywords: beclin 1; LC3; TUNEL; M30; autophagy; apoptosis; metronomic; chemoendocrine therapy;
endocrine therapy

1. Introduction

Endocrine therapy is one of the essential components of curative treatment for hormone receptor
(HR)-positive early stage breast cancer. Even following a five-year course of endocrine treatment, certain
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patients experience cancer recurrence that continues steadily [1]. In order to improve the treatment
efficacy and prognosis of patients, a number of strategies have been proposed, including the extension
of treatment duration, the addition of molecular target therapy such as an mTOR inhibitor and a
cyclin-dependent kinase (CDK) 4/6 inhibitor, and the addition of metronomic chemotherapy [2–5].

Metronomic chemotherapy is the repeated administration of antineoplastic drugs at low doses
frequently to avoid toxic side effects [6,7]. Metronomic chemotherapy has been suggested to induce
anti-cancer effects via multiple mechanisms, including anti-angiogenesis, anti-tumor immune response,
and direct anti-cancer action [8]. Low-dose oral cyclophosphamide is one of the most commonly
administered metronomic agents either alone or together with other agents such as capecitabine and
methotrexate [9–12]. Because metronomic chemotherapy induces anti-cancer effects with minimal side
effects, it is a good candidate for combined use with endocrine therapy.

We have previously shown that the addition of metronomic chemotherapy, an oral
cyclophosphamide, to endocrine therapy increases breast-conservation rate with minimal toxicity [13].
In addition, we reported that a response-guided approach, such as the addition of metronomic
cyclophosphamide in patients not responding to an 8–12-week course of endocrine therapy, resulted in
a tumor response comparable to that in responders who were treated with endocrine therapy alone [14].
Therefore, the addition of metronomic chemotherapy to endocrine therapy is a promising strategy for
improving patient outcomes without additional major toxicity.

In general, anticancer therapy induces either cytocidal or cytostatic effects on cancer cells.
Endocrine therapy has been shown to induce cytostatic effects [15]. However, as endocrine therapy
reduces cancer volume in almost 70% of cases of HR-positive early breast cancer, it also induces
cytocidal effects, although the mode of cell death is not clear [16]. We and others have shown that
endocrine therapy does not induce apoptosis but that it does induce autophagy in HR-positive breast
cancer [16,17]. Therefore, autophagy is likely to be involved in the reduction of tumor volume by
endocrine therapy.

In order to improve treatment efficacy and to overcome treatment resistance, it is critical to
understand how cancer cells react to anticancer treatments. As the mode of cell death involved
in the tumor response to metronomic chemotherapy with endocrine therapy (chemoendocrine
therapy) remains to be elucidated, we studied autophagy-related markers, beclin 1 and LC3,
and apoptosis-related markers, TUNEL and M30, in archived breast cancer tissue specimens
from a prospective multicenter neoadjuvant chemoendocrine trial, JBCRG-07, in which an
oral cyclophosphamide was administered together with an aromatase inhibitor, letrozole, in
postmenopausal patients with HR-positive breast cancer. We compared the clinical response with
changes in the levels of the markers and found that apoptosis and autophagy were involved in the
clinical response to metronomic chemoendocrine therapy while autophagy, but not apoptosis, was
involved in the response to endocrine therapy.

2. Results

2.1. Induction of Autophagy and Apoptosis by Metronomic Chemoendocrine Therapy

Tissue samples were collected from 38 of the 41 patients in the JBCRG-07 study. The baseline
characteristics of the 38 patients are shown in Table 1.

Autophagy was examined by evaluating levels of beclin 1 and LC3 and apoptosis was examined
by evaluating levels of TUNEL and M30 in tissues from the neoadjuvant letrozole and low-dose
cyclophosphamide study (JBCRG-07). Representative images for each marker are shown in Figure 1A.

Both of the autophagy-related markers increased following metronomic chemoendocrine
therapy (Figure 1B, p = 0.0010 and 0.0030 for beclin 1 and LC3, respectively). Similarly, the two
apoptosis-related markers increased following treatment (Figure 1B, p = 0.0053 and 0.0006 for TUNEL
and M30, respectively).
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Table 1. Baseline characteristics of patients.

Characteristics Subgroup Number

Number of patients 38
Average age (range) 69.7 (57–82)

T
T1 1
T2 33
T3 4

N
N0 33
N1 5

ER
+ 38
− 0

PgR + 24
− 14

HER2 + 8
− 30

Histological grade
1 13
2 25
3 0

ER, estrogen receptor; PgR, progesterone receptor; HER2, human epidermal growth factor receptor 2. T, tumor, N,
nodal status.
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Figure 1. Increases in autophagy- and apoptosis-related markers following metronomic 
chemoendocrine therapy. (A) Images for autophagy-related markers, beclin 1 and LC3, and 
apoptosis-related markers, TUNEL and M30, in breast cancer tissues (Scale bar = 50 µm). (B) Both 
autophagy-related markers and both apoptosis-related markers increased significantly following 
metronomic chemoendocrine treatment. A solid upward arrow indicates a significant increase 
following treatment. 
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Chemoendocrine Therapy 

The association between changes in the levels of each marker and the clinical response to 
metronomic chemoendocrine therapy was examined. The baseline characteristics according to 
clinical response are shown in Table S1. The autophagy-related markers beclin 1 and LC3 increased 
significantly in the responders (Figure 2A, p = 0.012 and 0.043, respectively) but not in the non-
responders. Similarly, the apoptosis-related marker M30 increased significantly in the responders 
(Figure 2B, p = 0.0059) but not in the non-responders. TUNEL showed a trend for increase in the 
responders (Figure 2B, p = 0.060). 
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Figure 1. Increases in autophagy- and apoptosis-related markers following metronomic
chemoendocrine therapy. (A) Images for autophagy-related markers, beclin 1 and LC3, and
apoptosis-related markers, TUNEL and M30, in breast cancer tissues (Scale bar = 50 µm). (B) Both
autophagy-related markers and both apoptosis-related markers increased significantly following
metronomic chemoendocrine treatment. A solid upward arrow indicates a significant increase
following treatment.

2.2. Association of Autophagy- and Apoptosis-Related Markers with Clinical Response to Metronomic
Chemoendocrine Therapy

The association between changes in the levels of each marker and the clinical response to
metronomic chemoendocrine therapy was examined. The baseline characteristics according to clinical
response are shown in Table S1. The autophagy-related markers beclin 1 and LC3 increased significantly
in the responders (Figure 2A, p = 0.012 and 0.043, respectively) but not in the non-responders. Similarly,
the apoptosis-related marker M30 increased significantly in the responders (Figure 2B, p = 0.0059) but
not in the non-responders. TUNEL showed a trend for increase in the responders (Figure 2B, p = 0.060).

2.3. Association between the Levels of Autophagy- and Apoptosis-Related Markers and the Clinical Response to
Endocrine Therapy

In our previous study, we showed that endocrine therapy induces autophagy but not
apoptosis [17]. In the present study, we investigated whether autophagy or apoptosis were associated
with the clinical response to endocrine therapy using samples from the multicenter neoadjuvant
exemestane trial (JFMC34-0601). The baseline characteristics of patients in JFMC34-0601 according
to clinical response are shown in Table S2. The levels of autophagy-related markers, beclin 1 and
LC3, were increased significantly in patients who showed a clinical response to endocrine therapy
(Figure 3A, p = 0.022 and 0.020, respectively). LC3 also increased in the non-responders (p = 0.016).
The apoptosis-related markers, TUNEL and M30, did not increase in either the responders or the
non-responders (Figure 3B), although M30 decreased in the responders (Figure 3B, p = 0.014).
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Figure 2. Association between the levels of autophagy- and apoptosis-related markers and the clinical 
response to metronomic chemoendocrine therapy. (A) Both autophagy-related markers, beclin 1 and 
LC3, increased significantly in the responders (p = 0.012 and 0.043, respectively) but not in the non-
responders. (B) Apoptosis-related marker M30 increased in the responders (p = 0.0059) but not in the 
non-responders. Similarly, TUNEL showed a trend for increase in the responders (p = 0.060). A solid 
upward arrow indicates a significant increase following treatment. An open upward arrow indicates 
a trend for increase following treatment. N.S. not significant. 
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Figure 2. Association between the levels of autophagy- and apoptosis-related markers and the clinical
response to metronomic chemoendocrine therapy. (A) Both autophagy-related markers, beclin 1
and LC3, increased significantly in the responders (p = 0.012 and 0.043, respectively) but not in the
non-responders. (B) Apoptosis-related marker M30 increased in the responders (p = 0.0059) but not
in the non-responders. Similarly, TUNEL showed a trend for increase in the responders (p = 0.060).
A solid upward arrow indicates a significant increase following treatment. An open upward arrow
indicates a trend for increase following treatment. N.S. not significant.
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Figure 3. Association between the levels of autophagy- and apoptosis-related markers and the
clinical response to endocrine therapy. (A) Both autophagy-related markers, beclin 1 and LC3,
increased significantly in the responders (p = 0.022 and 0.020, respectively). LC3 also increased in the
non-responders (p = 0.016). (B) Neither of the apoptosis-related markers, TUNEL and M30, increased
in the responders or non-responders. M30 decreased significantly in the responders (p = 0.014). A solid
upward arrow indicates a significant increase following treatment. A solid downward arrow indicates
a significant decrease following treatment. N.S. not significant.
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2.4. Association of Autophagy- and Apoptosis-Related Markers with Patients’ Survival

The association between the pre-treatment levels of each marker and the patients’ survival was
examined in JBCRG07 study. Disease-free survival (DFS) showed a trend for association with either of
apoptosis-related markers with no statistical significance (p = 0.09 for both TUNEL and M30) while no
association was observed between DFS and autophagy-related markers (Figure 4a). Overall survival
(OS) was significantly associated with the apoptosis-related marker M30 (p = 0.045) but not with
the other markers (Figure 4b). Patients with the positive expression of pre-treatment M30 showed a
significantly poorer OS than those with the negative expression.
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Figure 4. Association between the pre-treatment levels of autophagy- and apoptosis-related markers
and survival. (A) None of the apoptosis-related and autophagy-related markers showed an association
with disease-free survival. (B) M30 was significantly associated with overall survival (p = 0.045)
although none of the other markers showed an association. N.S. not significant.
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3. Discussion

In this study, we demonstrated that metronomic chemoendocrine therapy increased the expression
of autophagy-related markers, beclin 1 and LC3, and the expression of apoptosis-related markers,
TUNEL and M30, in HR-positive breast cancer tissues. In addition, such increases were more evident
in the responders than in the non-responders. This was different from the cellular response to
endocrine therapy as endocrine therapy did not increase the expression of the apoptosis-related
markers and decreased the expression of M30 in the responders. Therefore, the induction of
apoptosis by metronomic chemoendocrine therapy explains, at least in part, the improved efficacy
of chemoendocrine therapy compared with endocrine therapy alone [13,14]. In this regard, a
response-guided approach in which metronomic chemotherapy is added to the treatment of
non-responders to short-term exposure of endocrine therapy is a reasonable option to improve
treatment efficacy [14].

Autophagy is a mechanism of cell death and our results that both autophagy-related markers
increased following chemoendocrine and endocrine therapy, particularly in the responders, suggest
that autophagy is one of the mechanisms that reduce tumor volume in HR-positive breast cancer.
However, some reports show contrasting results that the inhibition of autophagy sensitizes cancer cells
to aromatase inhibitors [18,19]. Therefore, autophagy may be involved in both endocrine response and
endocrine resistance. It is of clinical importance to investigate whether autophagy in the remaining
cancer cells following treatment results in cancer cell death or survival. This can be determined by
examining autophagy in tissues from the middle of the treatment and comparing these with the clinical
response following treatment; this should be performed in a future study.

Clarifying the mode of cell death by a certain treatment will be useful in understanding resistance
mechanisms. In the present study, apoptosis-related markers, TUNEL and M30, did not increase,
whereas M30 decreased in responders to exemestane, suggesting that resistance to apoptosis is not
directly associated with resistance to exemestane. The reason why apoptosis decreased following
endocrine therapy is not clear, however; two neoadjuvant endocrine studies showed consistent
results [16,17]. One possible explanation is that a high apoptotic index has been shown to correlate
with a high proliferation index in breast cancer tissues [20–22] and so the cytostatic effect of endocrine
therapy leads to reduced cancer proliferation, resulting in a lower apoptotic index in cancer cells.

In this study, we used beclin 1 and LC3 for autophagy-related markers and TUNEL and M30
for apoptosis-related markers. Beclin 1 is a coiled-coil myosin-like BCL2-interacting protein that
is involved in initiation and nucleation of the phagophore, whereas LC3 is a ubiquitin-like protein
that is involved in elongation and closure of the autophagosome [23]. Thus, we considered beclin
1 and LC3 suitable for autophagy detection because of involvement in different autophagic phases
and different turnovers. There are other markers for autophagy, including p62, which is involved in
autophagy-dependent elimination of different cargos including ubiquitinated protein aggregates and
should be considered for future studies [24]. TUNEL stands for terminal deoxynucleotidyl transferase
(TdT) dUTP Nick-End Labeling and detects apoptotic cells with extensive DNA degradation during
the late stage of apoptosis [25], while M30 detects fragments of cytokeratin-18 cleaved by caspases
during apoptosis and is shown to correlate with the expression of activated caspase-3 [26–28]. M30 is
suitable for apoptosis detection in cancer cells because cytokeratin-18 is expressed in epithelial cells
and apoptosis in non-epithelial cells including stromal cells can be excluded by M30. Additional
autophagy- and apoptosis-related markers will be useful in future studies to elucidate more detailed
mechanisms underlying drug-induced cell death by different anti-cancer agents.

We showed that pre-treatments levels of apoptosis-related markers showed a trend for association
with DFS and that M30 was significantly associated with overall survival (OS), which is in concordance
with the previous reports showing that apoptotic index was associated with aggressive phenotypes of
breast cancer and unfavorable prognosis [29]. On the other hand, autophagy-related markers did not
show any association with survival in the present study, indicating that autophagy-related markers
do not have as clear an impact on survival as apoptosis-related markers. In fact, the prognostic
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impact of autophagy-related markers is controversial [30] and may differ for different biological
subtypes of breast cancer. Further larger studies are necessary to clarify the prognostic value of
autophagy-related markers.

There were a number of limitations in the present study. First, the sample sizes of both the
chemoendocrine study (JBCRG-07) and endocrine study (JFMC34) were small. Therefore, the lack of
significant changes in the levels of autophagy- or apoptosis-related markers in the non-responders may
have been due to a small sample size and, thus, requires cautious interpretation. Secondly, a limited
number of markers related to autophagy and apoptosis were examined. It is necessary to include other
markers, for example p63, to determine more precisely the role of autophagy and apoptosis in response
to anticancer therapy in a future study. Thirdly, there are additional modes of cell death, other than
autophagy and apoptosis. It is clinically important to investigate other cell death modes, including
senescence and mitotic catastrophe, using tissues prior to and following different types of anticancer
treatment. Another limitation is that only oral cyclophosphamide was tested as a metronomic therapy.
Therefore, it is not clear how other metronomic drugs, including oral 5-fluorouracil, cause anticancer
effects in cancer cells. It will be useful to elucidate the cellular responses to different metronomic drugs
in order to identify a suitable combination for use with endocrine treatment.

In conclusion, we demonstrated that metronomic chemoendocrine therapy with oral
cyclophosphamide induced apoptosis and autophagy in cancer tissues, whereas endocrine therapy
did not induce apoptosis. The difference in the cellular response to different therapies helps to explain
the difference in clinical outcomes and supports improved efficacy by the response-guided addition of
metronomic therapy to endocrine therapy [14]. Further studies are warranted to investigate which
mode of cell death is involved in the anticancer effects of different metronomic drugs to consider an
optimal treatment strategy for endocrine therapy.

4. Materials and Methods

4.1. Clinical Trials

The design of the clinical trial, JBCRG-07, is described elsewhere (Registration number: UMIN
000001331) [13]. Briefly, patients with T2-4 N0-1 and estrogen receptor (ER)-positive breast cancer were
enrolled between October 2007 and March 2010. ER-positivity was defined by ≥10% nuclear staining.
Patients received 2.5 mg/day letrozole and 50 mg/day oral cyclophosphamide daily for 24 weeks, and
surgery was performed 1–4 weeks following the final administration. The multicenter prospective
neoadjuvant exemestane study, JFMC34-0601, was a single-arm phase II study of neoadjuvant
endocrine therapy (Registration number: UMIN C000000345). The design of the trial is described
elsewhere [31–34]. Briefly, the eligibility criteria included postmenopausal women aged 55–75 years
with stage II or IIIa invasive breast cancer with positive ER status (≥10% nuclear staining). Patients
received 25 mg/day exemestane for 16 weeks followed by an 8-week extension depending on the
treatment response. Surgery was performed at 24 weeks. Patients with progressive disease were
withdrawn from the study and offered appropriate treatment, including surgery and other anticancer
drugs. Clinical response was assessed by investigators by combining caliper measurements and
images obtained via ultrasound, computed tomography, and Magnetic Resonance Imaging according
to the Response Evaluation Criteria in Solid Tumors version 1.0 [32]. Written informed consent was
obtained from all patients who participated in the studies. The studies conform to the provisions of
the Declaration of Helsinki.

4.2. Immunohistochemistry (IHC)

The IHC staining was performed using a Histofine Kit (Nichirei, Tokyo). The positivity of
ER and progesterone receptor (PgR) was defined by ≥10% nuclear staining. The expression of
human epidermal growth factor receptor 2 (HER2) was examined using the HercepTest (Dako, Tokyo).
HER2-positivity was defined as either 3+ or 2+ with HER2 gene amplification by fluorescence in situ



Int. J. Mol. Sci. 2019, 20, 984 10 of 13

hybridization. The autophagy- and apoptosis-related markers were stained using the anti-beclin 1
antibody (1:250; NB500-249; Novus Biologicals, CO, USA), anti-LC3 antibody (1:200; PM036; MBL,
Nagoya, Japan), TUNEL (In Situ Cell Death Detection Kit; Roche Diagnostics, Mannheim, Germany)
and M30 CytoDEATH (1:100; Roche Diagnostics). The cytoplasmic staining of beclin 1, LC3, and M30
and nuclear staining of TUNEL were assessed with pre- and post-treatment tissues. The expression
rate of each marker was assessed as positive cancer cells per total cancer cells.

4.3. Statistical Analysis

Statistical analyses were performed using the Wilcoxon’s paired test for comparisons between
pre- and post-treatment levels of autophagy- and apoptosis-related markers. Overall survival (OS)
and disease-free survival (DFS) were estimated and compared using the Kaplan–Meier method and
log-rank test between groups. All analyses were performed using the JMP Ver.13.2.1 (SAS Institute, Inc.,
Cary, NC, USA). All P values were two-sided, and p < 0.05 was considered statistically significant. All
graphs were produced using the GraphPad Prism ver. 7 (GraphPad Software, San Diego, CA, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/4/984/
s1.
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