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Abstract: The aminotransferase from Bacillus circulans (BtrR), which is involved in the biosynthesis of
butirosin, catalyzes the pyridoxal phosphate (PLP)-dependent transamination reaction to convert
valienone to β-valienamine (a new β-glycosidase inhibitor for the treatment of lysosomal storage
diseases) with an optical purity enantiomeric excess value. To explore the stereoselective mechanism
of valienamine generated by BtrR, multiple molecular dynamics (MD) simulations were performed for
the BtrR/PLP/valienamine and BtrR/PLP/β-valienamine complexes. The theoretical results showed
that β-valienamine could make BtrR more stable and dense than valienamine. β-valienamine could
increase the hydrogen bond probability and decrease the binding free energy between coenzyme PLP
and BtrR by regulating the protein structure of BtrR, which was conducive to the catalytic reaction.
β-valienamine maintained the formation of cation-p interactions between basic and aromatic amino
acids in BtrR, thus enhancing its stability and catalytic activity. In addition, CAVER 3.0 analysis
revealed that β-valienamine could make the tunnel of BtrR wider and straight, which was propitious
to the removal of products from BtrR. Steered MD simulation results showed that valienamine
interacted with more residues in the tunnel during dissociation compared with β-valienamine,
resulting in the need for a stronger force to be acquired from BtrR. Taken together, BtrR was more
inclined to catalyze the substrates to form β-valienamine, either from the point of view of the catalytic
reaction or product removal.

Keywords: aminotransferase from Bacillus circulans BtrR; molecular dynamics simulation; principal
component analysis; steered molecular dynamics simulation; stereoselective mechanism

1. Introduction

Valienamine is an unsaturated cyclic alcohol pseudo-aminosaccharide with side chains and
has been developed as a novel glucosidase inhibitor because of its similar chemical structure
with D-glucose [1]. It can control blood glucose elevation, and various diseases caused by
hyperglycemia, such as diabetes. In addition, it can effectively treat sclerosis, obesity, diabetes,
and hyperlipidemia [2,3]. According to the specificity of chiral carbon atoms, valienamine
has two isomers in its natural condition: valienamine and β-valienamine. The derivative
(N-octyl-β-valienamine) of β-valienamine is an effective therapeutic agent for lysosomal storage
diseases caused by the disorder of β-glycosidase [4–6]. Since 1980s, a number of researchers
have investigated the chemical synthetic routes of N-octyl-β-valienamine [7–13]. Considering the
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insufficient stereospecificity of the chemical catalysts, multiple chiral carbon makes the biosynthesis of
β-valienamine difficult. Moreover, harsh reactions, complex synthesis steps, and chemical pollution
increase the difficulties in synthesis and economic costs. Until now, biosynthesis remains as a
powerful method for the synthesis of β-valienamine. Therefore, developing a biosynthetic pathway
for generating β-valienamine in vivo is necessary.

In 2016, Cui et al. [14] used a heterogeneous aminotransferase (BtrR) from Bacillus circulans [15,16],
which can catalyze valienone to β-valienamine and maintain an optical purity of >99.9%, to generate
β-valienamine in a validamycin producer named Streptomyces hygroscopicus 5008. Figure 1a–f shows
that BtrR is composed of two homologous monomers. Each monomer is divided into three domains:
α-helical N-terminus (residue 1–38), a central αβα sandwich domain (residue 39–281), and an αβ
C-terminal domain (residue 282–415) (Figure 1a), which consists of 12 α-helices and 16 β-strands.
Two reverse symmetrical monomers form a homologous dimer (Figure 1e,f). The active sites are
located between subunits A and B. BtrR belongs to the fold type I or aspartate aminotransferase
family [17,18].
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belonging to the α-carbon atom of the amino acid moiety is cleaved, and an anionic intermediate is 
formed. The α-hydrogen is initially abstracted from the amino acid moiety of the external Schiff base 
complex to form a planar intermediate. The transfer of hydrogen between C-2 of the substrate moiety 
and C-4′of the coenzyme is characteristic of enzymatic transmutation as recognized by 
crystallographic studies of PLP enzymes. 

Although BtrR can specifically catalyze the formation of β-valienamine from valienone, the 
mechanism for its specific selectivity has not been studied. Previous work has failed to address the 

Figure 1. Overview of aminotransferase (PDB (protein data bank):5W71). (a,b) 3D structure of
aminotransferase. The N terminal (residues 1 to 37), which contained one α-helix, is colored in red.
The core domain (residues 38 to 281) is colored in deep teal. The C terminal (residues 282 to 415) is
colored in forest. The active site is colored in lavender. (c,d) The aminotransferase are rotated 180. (e,f)
Homologous dimer with the active site located between two monomers.

The general mechanism of the aminotransferase reaction is shown in Figure S1. Pyridoxal
phosphate (PLP) binds to the enzyme protein through a Schiff base formation with the ε-amino
group of an active-site Lys192. The addition of a substrate amino acid to the holoenzyme causes
a transaldimination, forming the external Schiff base with the substrate. One of the three bonds
belonging to the α-carbon atom of the amino acid moiety is cleaved, and an anionic intermediate is
formed. The α-hydrogen is initially abstracted from the amino acid moiety of the external Schiff base
complex to form a planar intermediate. The transfer of hydrogen between C-2 of the substrate moiety
and C-4′of the coenzyme is characteristic of enzymatic transmutation as recognized by crystallographic
studies of PLP enzymes.

Although BtrR can specifically catalyze the formation of β-valienamine from valienone,
the mechanism for its specific selectivity has not been studied. Previous work has failed to address the
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stereoselective mechanism of BtrR. At present, the following problems remain unsolved: (1) How does
binding different ligands induce protein conformation? (2) Why does BtrR have such a high catalytic
selectivity for β-valienamine? In this study, multiple molecular dynamics simulations were carried out
to explore the conformation dynamics of two systems. This study will explore the stereospecificity for
the substrate of BtrR and provide theoretical knowledge for its development. Our study will provide
detailed atomistic insight into the stereospecificity for β-valienamine of BtrR.

2. Results and Discussion

2.1. β-Valienamine and Valienamine Docking to BtrR

To obtain a reasonable substrate structure, β-valienamine and valienamine were optimized
according to the density functional theory at the B3LYP/6-31G* level using the Gaussian 09
software [19]. Table 1 listed the energy components (Egap), ionization potential (IP), and electron affinity
(EA) energies of β-valienamine and valienamine. As shown in the table, the Egap of β-valienamine
was lower than that of valienamine, which suggested that β-valienamine was more prone to electron
transfer than valienamine. The EA and IP of β-valienamine are higher than those of valienamine,
which suggested that β-valienamine could obtain electrons more easily than valienamine. This finding
may be the reason why BtrR can make β-valienamine first.

Table 1. Egap, IP, EA energies between the β-valienamine and valienamine.

Energy Components (eV) β-Valienamine Valienamine

Ionization potential (IP) 6.420 6.059
Electron affinity (EA) 0.386 0.158

Energy gap (Egap) 5.901 6.034

By molecular docking simulation, a reliable initial model of β-valienamine, valienamine,
and pyridoxal phosphate (PLP) was obtained. We docked the PLP (co-crystallized ligand) to BtrR
to compare the two docking methods (AutoDock Vina and AutoDock4.2) [20]. Both docking results
for AutoDock Vina and AutoDock 4.2 (Figure S2) showed that the position of the PLP, which was
docked to BtrR, was similar to that in crystal (PDB ID:5W71). This finding indicated that our docking
methods were reasonable. In this study, we used AutoDock 4.2 to carry out our docking study. Then,
PLP/β-valienamine and PLP/valienamine were docked to BtrR. Figure 2 showed that Lys192, Tyr304,
Ser187, and PLP each had a strong interaction with β-valienamine, whereas Ser187, Lyr192, and PLP
exhibited interaction with valienamine. Two ligands were successfully docked to the active pocket
of BtrR. It can be seen from the catalytic reaction mechanism of BtrR (Figure S1) that Lys192 and
PLP play the role of catalytic residues and coenzymes, respectively. The relative positions between
β-valienamine/valienamine and Lys192/PLP are shown in Figure S3. As we can see, Lys192 served
as a good bridge between β-valienamine/valienamine and PLP. The relative positions of the two
products were obviously different from those of Lys192. Docking results were realistic and could
be used for MD simulation analyses. For clarity, two MD simulation systems were represented as
BtrR/PLP/β-valienamine and BtrR/PLP/valienamine.
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Figure 2. The results for docking using AutoDock Vina. (a) Comparison of docking results of
β-valienamine and valienamine. (b,c) Close display of docking results. The residues in chain
A that surround substrates and PLP are colored by marine, while they are colored by forest in
chain B. β-valienamine, valienamine, and PLP are highlighted by cyan sticks, pink sticks, and yellow
sticks, respectively.

2.2. Structural Stability and Dominant Domain Motions of Two Complexes

To confirm the strong correlated conformational changes of protein regions influenced by different
ligands in BtrR, correlation matrix analysis can clarify the dynamic motion that was carried out.
The maps of two complexes are illustrated in Figure S4, where the large-scale and antiharmonic motions
are highlighted at the diagonal of the matrix. The data for correlation was exacted using Bio3d [21],
which is an R package for the comparative analysis of protein structures from trajectories. The regions
that contained residues with strongly correlated motions were called positive regions and colored in
blue in the map, whereas those that contained residues with anticorrelated movements were called
negative regions and colored in pink. The regions at the diagonal of the map represented the positive
motion of the residues with themselves, which illustrated high correlation. In normal conditions,
the values of the map fluctuated between −0.1 and 0.1, suggesting that the motion of the residues was
in the normal range. Figure S4 shows that valienamine induced intense centralized self-correlated
motion, whereas β-valienamine could weaken this motion and produce some anticorrelated and
correlated motions of BtrR. It was indicated that β-valienamine made the whole protein of BtrR
fluctuate less during the 300 ns simulations. In addition, compared with other regions, the residues
located at Leu100-Asn150 were accompanied by significant correlated or noncorrelated motions.
The results of the correlation matrix analysis also indicated that the regions of residues C164-S167 were
accompanied by significant correlated or noncorrelated motions, which undermined the modulated
PLP binding.

2.3. β-Valienamine and Valienamine Affect the PLP Binding to BtrR

To study the catalytic selectivity of BtrR, the secondary structure component was calculated
and the results are presented in Figure 3a–c. The α-helix in residues C164-S167 was
1.2% in BtrR/PLP/β-valienamine, whereas in BtrR/PLP-/valienamine, it was approximately
37.4%. The secondary structure results illustrated that the α-helix of residues C164-S167 in
BtrR/PLP/valienamine disappeared in BtrR/PLP/β-valienamine during the 300-ns MD simulations,
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indicating the disordered structure in the PLP binding domain, which may influence the binding of
β-valienamine to BtrR. To confirm the results, the hydrogen bonds between PLP and BtrR in two
complexes during MD simulation were employed and the results are shown in Table 2. There were
more hydrogen bonds in BtrR and PLP in BtrR/PLP/β-valienamine than in the BtrR/PLP/valienamine
complex. It is noteworthy that the probability of hydrogen bonds between PLP and Asp163/Gln166
(near the region C164-S167) increased significantly in the BtrR/PLP/β-valienamine complex.
In addition, testing of the hydrogen bonds between BtrR and β-valienamine/valienamine was
performed and the results are shown in Table S1. It can be seen that, compared to β-valienamine,
valienamine could form more hydrogen bonds with BtrR. The distance between atoms can influence
the formation of hydrogen bonds. Thus, the distance between PLP and active pocket was detected
and the results are shown in Figure S5. The distance from Lys192:NZ (chain A) to PLP:O6 in the
BtrR/PLP/valienamine complex was obviously larger than that in the BtrR/PLP/β-valienamine
complex, and the same trend could be found between Glu198:OE2 and PLP:O5, which may be one
reason for the reduction of hydrogen bonds between PLP and BtrR in the BtrR/PLP/valienamine
complex. Similarly, the distance between active pocket of BtrR and β-valienamine/valienamine was
also analyzed (Figure S6). It can be seen that β-valienamine exhibited a larger distance to Gly191,
Lys192, and Tyr304 than valienamine, which may have decreased the hydrogen bonds between
β-valienamine and BtrR. The decrease in hydrogen bond interactions may have affected the binding of
BtrR. These results indicated that β-valienamine could enhance the interaction between BtrR and PLP
from the point of view of protein structure changes and the probability of hydrogen bond formation.
Subnetwork analysis was used to demonstrate the influence of ligands on the connection between
BtrR and PLP during the simulation (Figure 4). Fourteen residues of BtrR had cnt (interatomic contact)
and sc-ligand interaction with PLP in the BtrR/PLP/β-valienamine complex, which was more than
that of in the BtrR/PLP/valienamine complex. Figure 4b showed that residues C164-S167 in the
BtrR/PLP/β-valienamine complex maintained a strong relationship with PLP, which illustrated that
β-valienamine could increase the connection between BtrR and PLP by regulating the structure of
residues C164-S167.

Table 2. Hydrogen bond occupancies between BtrR and PLP for BtrR/PLP/β-valienamine and
BtrR/PLP/valienamine during MD simulations.

Hydrogen Bonds
BtrR/PLP/β-Valienamine BtrR/PLP/Valienamine

Donor Accepter

Gly66:N (Chain A) PLP:O5 (Chain A) 100.00% 100.00%
PLP:O5 (Chain A) Glu198:OE1 (Chain A) 100.00% 68.54%
PLP:O3 (Chain A) Gln166:OE1 (Chain A) 89.62% 0

Ser187:OG (Chain A) PLP:O5 (Chain A) 89.11% 58.05%
Ser187:OG (Chain A) PLP:O2 (Chain A) 87.59% 66.85%

Ser67:N (Chain A) PLP:O4 (Chain A) 85.32% 0
Ser65:O (Chain A) PLP:O4 (Chain A) 69.37% 26.22%
PLP:C15 (Chain A) Asp163:OD1 (Chain A) 68.99% 20.60%
PLP:O3 (Chain A) Gln166:CD (Chain A) 65.95% 0
PLP:O5 (Chain A) Glu198:CD (Chain A) 88.01% 52.78%

Ser67:OG (Chain A) PLP:C11 (Chain A) 48.10% 36.33%
PLP:O5 (Chain A) Gly199:O (Chain A) 46.20% 0
PLP:C15 (Chain A) Asp163:OD2 (Chain A) 44.18% 31.27%
Gly66:C (Chain A) PLP:O2 (Chain A) 43.16% 0
Gly66:C (Chain A) PLP:O5 (Chain A) 41.39% 37.45%

Gln189:CG (Chain A) PLP:O7 (Chain A) 45.13% 27.34%
Ser67:N (Chain A) PLP:O2 (Chain A) 45.88% 26.33%
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Figure 3. Dynamic changes of the secondary structure profile for BtrR/PLP/valienamine and
BtrR/PLP/β-valienamine throughout the simulation. (a,c) The the secondary structure profile for
BtrR/PLP/valienamine. (b,d) The the secondary structure profile for BtrR/PLP/β-valienamine.
The colored bar represented different secondary structures as follows: coil (C), β-bugle (E), β-bridge (B),
helix (G), α-helix (H), and π-helix (I).
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Figure 4. Two-dimensional view and three-dimensional view of the subnetwork of the PLP for
BtrR. (a,b) The subnetwork of PLP and BtrR in the BtrR/PLP/β-valienamine complexes. (c,d)
The subnetwork of PLP and BtrR in BtrR/PLP/valienamine complexes. The interaction types:
interatomic contact (cnt):ligand-sc are highlighted in light gray, ligand-mc are highlighted in red,
and hbond:ligand-sc is highlighted in blue.

It is well known that binding free energy played an important role in the analysis of the
binding strength between proteins and ligands. In this study, the binding energy of BtrR and
ligands was performed and the results are shown in Table S2. The binding free energies were
primarily driven by polar solvation and electrostatic interactions. In addition, the vdW (van der
Waals)interaction and entropy also contributed to the binding free energies. The binding energy
between BtrR and PLP in BtrR/PLP/valienamine (−122.5015 kcal/mol) was higher than it in the
BtrR/PLP/β-valienamine complex (−143.7635 kcal/mol), which indicated that β-valienamine made
BtrR and PLP more closely integrated and provided more opportunities for interaction between PLP
and BtrR. This result was consistent with that of hydrogen bond analysis (Table 2). It was interesting
that compared to β-valienamine (−83.0855 kcal/mol), valienamine exhibited a lower binding free
energy (−97.5237 kcal/mol). In addition, we also prepared two 30-ns simulations for both BtrR/PLP
and BtrR/PLP/valienone to analyze the effect of the reactant (valienone) on the binding energies of
BtrR and PLP. The molecular mechanics-generalized born surface area (MM-GBSA) results (Table S3)
showed that valienone can obviously reduce the binding energy between BtrR and PLP. The per-residue
binding free energies were prepared to analyze the effects of individual amino acids on PLP and BtrR
binding (Figure 5a). From Figure 5a, it can be seen that the binding free energy contributions of
residues in BtrR/PLP/β-valienamine (S67, A165, S187, Q189, K192) were consistently higher than that
of BtrR/PLP/valienamine. Thus, the energy contribution of residues in BtrR/PLP/β-valienamine
constituted the major components of total energy contribution. The residues, which were recognized
as the significant contributions to the combination between PLP and BtrR, are shown in Figure S7.
The results showed that β-valienamine could enhance the interaction between PLP and BtrR. Figure 5b
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showed that G66, S67, S187, and K192 appeared in four aminotransferases, which might be important
for BtrR function.
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Figure 5. Free energy decomposition analysis for the BtrR/β-valienamine and BtrR/valienamine
complexes. (a) The total energy for residues (calculated using MM-GBSA). (b) Homologous sequence
correlation for PDB ID 5W71 (BtrR), 2R0T, 3BB8, and 1AX4. The residues are highlighted in red and
yellow, which correspond to high homology.

Besides catalytic and isomeric centers, cation-p interaction can also affect the activity of proteins
to a large extent. The cation-p interactions in two simulation systems were calculated and are shown
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in Table S4. Six cation-p interactions were found in each chain. Figure 6 shows the distances among
Y304-R192, Y223-R45, and F54-R176 from the centroid of the aromatic ring to the cation in Figure 6b,d,f
during the MD simulations. Three cation-p interactions were stable in BtrR/PLP/β-valienamine
during 300-ns MD simulations, but they were not found in BtrR/PLP/valienamine. Y304 and K192
were involved in substrate binding. Y223, which was located near the active site M235 (B), was the
important residue for the active site. K176 was located near the loop Q166 to V171, which modulated
PLP binding. Thus, three cation-p interactions (K192 functioned as catalytic residue) disappeared,
which may have affected the substrate specificity.
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Figure 6. Distance between the (a) aromatic ring and cation of Tyr 304 and Lys192, (c) aromatic
ring and cation of Tyr 223 and Arg45, (e) aromatic ring and cation of Phe45 and Arg176. Distance
between (b) Tyr 304 and Lys192, (d) Tyr 223 and Arg45, (f) Phe45 and Arg176 was calculated from
the cation to the centroid of the aromatic in chain A during the 300-ns MD of BtrR/valienamine and
β-BtrR/valienamine, respectively.
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2.4. Compared to Valienamine, β-Valienamine Could Make the Tunnel of BtrR Wider and Straighter

A total of 500 snapshots were extracted from two 300-ns MD simulations for the CAVER 3.0
analysis. The structural details of the tunnel were revealed by analyzing the bottleneck residues
obtained from the MD trajectory using CAVER 3.0. Table S5 showed the most frequent bottleneck
residues in the tunnel: W92 (A), S187 (A), Q189 (A), K192 (A), Y342 (A), A94 (A), R221 (B), A165 (A),
F336 (A), S34 (B), D219 (B), M235 (B), Y304 (A), and I93 (A). Six pathways were reliably identified using
CAVER 3.0 for each simulation system (Figure 7a,c). As shown in Table 3, tunnels from the first-ranked
tunnel cluster (tunnel 1) for BtrR/PLP/β-valienamine and BtrR/PLP/valienamine complexes were
identified in all 500 snapshots, whereas the tunnels from the second best-ranked cluster were identified
in approximately half of the analyzed snapshots. The tunnels from the remaining three clusters were
rarely identified. In addition, tunnel 1 of the two complexes had a larger average bottleneck radius
and smaller curvature and length than the others. This finding indicated that compared with the other
tunnels, tunnel 1 was the optimal channel for the ligand to be taken off from BtrR.

Table 3. The top-ranked tunnels of bottleneck residues of BtrR identified using CAVER 3.0 according
to the MD simulations trajectory.

Rank Pathway
Cluster

No. of
Snapshots

Average Bottleneck
Radius

Maximum
Bottleneck Radius

Average
Throughput

BtrR/PLP/β-valienamine

1 Tunnel 1 500 3.826 4.41 0.9399
2 Tunnel 2 474 2.450 3.45 0.8375
3 Tunnel 3 350 2.235 3.13 0.8604
4 Tunnel 4 328 2.254 3.43 0.8205
5 Tunnel 5 202 1.481 2.94 0.7030
6 Tunnel 6 98 1.194 1.94 0.5484

BtrR/PLP/valienamine

1 Tunnel 1 500 2.658 3.25 0.8967
2 Tunnel 2 432 2.134 2.99 0.8243
3 Tunnel 3 335 2.078 2.84 0.7800
4 Tunnel 4 301 1.478 2.13 0.7251
5 Tunnel 5 211 1.366 1.90 0.5374
6 Tunnel 6 108 0.927 1.03 0.6229

We analyzed the changes of tunnel 1 during the two 300-ns MD simulations to explore the
effects of β-valienamine and valienamine on the BtrR channels. Figures 7b and 8d show the
shape of two tunnel 1s for the two complexes and their relative position in BtrR. As can be seen,
the shape of tunnel 1 in BtrR/PLP/β-valienamine was more regular. The time evolution of the
bottleneck radius of tunnel 1 results (Figure 7e) showed that the bottleneck radius for tunnel
1 in the BtrR/PLP/β-valienamine complexes was almost 4.0 Å, which was larger than that of
BtrR/PLP/valienamine (2.8 Å). The length and curvature of the tunnel 1s in the two complexes
were calculated. In comparison with BtrR/PLP/valienamine, the tunnel in BtrR/PLP/β-valienamine
had a smaller length and bending curvature (Figures 7f and 8g). The results suggested that the
existence of β-valienamine made the BtrR tunnel wider and shorter.
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complexes. (a,c) The top-ranked collective BtrR tunnels identified using CAVER 3.0 according to the
300-ns MD simulations trajectories. (b,d) Shape and size of tunnel 1s for BtrR/PLP/β-valienamine and
BtrR/PLP/valienamine, respectively. (e–g) Time evolution of bottleneck radius, curvature, and length
of tunnel 1 for BtrR/PLP/β-valienamine and BtrR/PLP/valienamine complexes, respectively.

2.5. β-Valienamine Was Easier to Remove from BtrR

To examine whether the steered MD simulations could rank-order the dissociation rates of the
two ligands. β-valienamine and valienamine dissociation processes were prepared. Each steered MD
simulation was repeated five times. Two ligands were successfully dissociated from BtrR (Figure 8a,c).
Table S6 showed the force and time needed during the stretching process. Valienamine needed more
force than β-valienamine, suggesting that it needed more effort to escape from BtrR than valienamine.
Furthermore, the dissociation time of the two substrates from BtrR was almost the same (Table S6).
This result indicated that valienamine was more closely associated with BtrR, which was consistent
with the MM-GBSA analysis in the conventional MD simulations.

To analyze the change in interaction between two different products and BtrR during dissociation,
three typical conformations were selected for analysis according to the change in force during steered
MD (SMD) simulation trajectories. Figure 8b,e showed the position changes of valienamine and
β-valienamine in three typical conformations, which further illustrated the successful dissociation of
ligands from BtrR. Figure 8c,f showed the changes of hydrogen bonds between ligands and BtrR during
dissociation. More hydrogen bonds were found between the ligands and BtrR in the early stage of the
SMD simulation. With the extension of SMD simulation time, the number of hydrogen bonds between
ligands and BtrR decreased continuously. In Figure 8c,f, the number of hydrogen bonds between the
BtrR and valienamine was significantly more than that in the β-valienamine during SMD simulations,
which further indicated that β-valienamine had the advantage of leaving BtrR and contributed to
the next reaction. The number of hydrogen bonds was closely related to the stability between the
ligands and protein in the SMD simulation. More hydrogen bonds suggested stronger interactions
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with ligands, making the removal of BtrR difficult. The hydrogen bonds played an important role in
the SMD simulations.
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Figure 8. SMD simulation results. (a) Force analysis of valienamine dissociation from the BtrR
dissociation channel. (b) The dynamic process of dissociation of valienamine from the BtrR dissociation
channel. (c) Interaction between valienamine and BtrR during the SMD simulation. The dotted line
represents the hydrogen bond and the curve represents the van der Waals force. (d) Force analysis of
β-valienamine dissociation from the BtrR dissociation channel. (e) The dynamic process of dissociation
of β-valienamine from the BtrR dissociation channel. (f) Interaction between β-valienamine and BtrR
during the SMD simulation. The dotted line represents the hydrogen bond and the curve represents
the van der Waals force.

In 2017, Vashisth et al. used potential mean force (PMF) to explore the energy changes for the
departure of ligands from protein during the SMD simulations [22]. In this study, we calculated the
PMF according to the second-order cumulant expansion of Jarzynski’s equality for β-valienamine
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and the valienamine dissociating form BtrR and the results are shown in Figure S8. As we can see,
valienamine higher needed to cross a higher energy barrier (35 kcal/mol) to dissociate from the tunnel
of BtrR. It indicated that valienamine had a stronger interaction with BtrR than β-valienamine, which
was consistent with the results of Figure 8. Figure 8 also showed that Tyr304, Tyr324, Gln189, Lys192,
Ser34, Arg221, and Trp92 played very important roles in the dissociation. The dihedral angles of Trp92
and Gln189 during the ligands dissociation were calculated and the results are shown in Figure 9.
The torsion angles of two residues all have a significant difference in two SMD simulations, which
may affect the distance between the side chains of two residues.
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dissociation process.

Figure 10 shows the variation of the distance between the indole group of Trp92 and the side
chain of Gln189 during dissociation. The distance between the indole group of Trp92 and the side
chain of Gln189 was significantly shorter during valienamine dissociation than that found during the
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β-valienamine dissociation, which further indicated that Trp92 and Gln189 may provided a greater
obstruction to valienamine when it was dissociating from BtrR.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 14 of 18 
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Figure 10. (a) The position of Trp92 and Gln189 in the BtrR channel. (b) The distance of distance
between Trp92 indole group and Gln189 NE2 during the dissociation process. (c) Distribution
probability of distance between the Trp92 indole group and Gln189 NE2.

3. Materials and Methods

3.1. Preparation of the Protein Structures

Two different systems were studied to identify the binding mechanism and unbind pathway of
two products with BtrR: (1) homodimer PLP + β-valienamine, and (2) homodimer + PLP + valienamine.
The initial coordination of the BtrR protomer was obtained from the (protein data bank) PDB bank
with PDB code 5W71 [15]. BtrR exists as a homodimer that has two active sites in fairly close contact
between the subunits [15]. Protonation states were determined at physiological pH by using the
H++ server [23]. All residues were assigned in their standard protonation (pH = 7), and all missing
hydrogen atoms were generated using Discovery Studio 4.0 client software [24]. The geometries of
β-valienamine and valienamine were obtained from the ChemSpider database [25] and then optimized
according to the density functional theory at the B3LYP/6-31G* level using Gaussian 09 software [19].

3.2. Molecular Docking Studies

AutoDock Vina [20], a high-precision program for virtual screening, molecular docking and drug
design was used for docking. The macromolecules obtained the from PDB bank was disposed with
AD4 type atoms and Kollman charges, while each heavy atom was merged with hydrogen atoms.
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Moreover, a grid box was added to surround all protein structures, and the grid center was located at
the active sites by using AutoDock Tools. The box size of grid maps and grid-point spacing were 26 Å
× 26 Å × 26 Å points and 0.375 Å, respectively. The default parameters for minimization, including
pseudo-Solis, Lamarckian genetic algorithm, and Wets method, were used [26]. Each docking was
repeated eight times to produce eight docking results. The conformation with the lowest energy was
considered as the binding conformation for BtrR and ligands.

3.3. Molecular Dynamics Simulations

Two conventional MD simulations were performed using NAMD version 2.10b [27] with
CHARMM27 all-atom force field parameters [28]. The homodimer bound to PLP, and β-valienamine
and valienamine obtained from docking studies, were solvated in a cubic periodic box with a 10.0 Å
periodic boundary condition to the closest protein atom. The remaining space in the box was filled
with TIP3P water [29]. To neutralize the two systems, counter ions (Na+, Cl−) were assigned with
a concentration of 0.15 mol/L. When periodic boundary conditions were present, the particle mesh
ewald (PME) [30] method was carried out to deal with electrostatic interactions in each system. In our
MD simulations, temperature control was performed with Langevin dynamics [31] with a 1 ps−1

damping coefficient (gamma), and the constant pressure control was used with all counting interactions
involving hydrogen for all hydrogen atoms. To fix and release molecules in each system, minimization
and equilibration were performed through a 50,000 step steepest descent algorithm before the actual
MD simulations. After minimizing the systems, a (Parrinello–Rahman pressure coupling with constant
particle number, pressure, and temperature) NPT (isotheral–isobaric) simulation was carried out via
weak coupling to constant pressure bath (coupling time = 2.0 ps, P0 = 1 bar). The shake algorithm
was used to constrain the bonds for the hydrogen atoms. Long-range electrostatic interactions were
calculated through a PME summation algorithm [30]. The two 300-ns MD simulations were conducted
at 300 K temperature and 1 bar pressure for the binding of the BtrR homodimer to β-valienamine
and valienamine.

3.4. Pathways Identified with CAVER 3.0

The geometry-based analysis of pathways was conducted using CAVER 3.0 software according
to the MD simulation trajectories [32]. It was supposed that the transport pathways with individual
detailed characteristics and their time evolution to be able to confirm the pathways’ invisible form a
static structure, and the pathway gating mechanism according to the structural basis was investigated.
The graph made up of Voronoi edges and vertices confirmed the pathways using CAVER 3.0 [32]. In this
study, 500 snapshots were extracted from the MD trajectories for CAVER 3.0 analysis to determine the
tunnel where the ligand dissociated from BtrR.

3.5. Steered Molecular Dynamics Simulation and PMF Constraction

To explore the unbinding pathway involved in the dissociation of two products escaped from BtrR,
NAMD [27] software with CHARMM27 all-atom force field [28] was used to set the ligands center
mass according to the predefined direction. The initial structures extracted from conventional MD
simulations were placed into a rectangular box whose size was enough to allow the simulation
of tension to proceed in a direction defined by two points. The center between the Cα atoms of
N189 and K192 (CAVER analysis showed that N189 and K192 had a higher probability to appear
in the tunnel (Table S5); in addition, the two residues appeared at the edge of the tunnel) was the
first point located at the active site, whereas another point was the center of mass of the ligands
(β-valienamine and valienamine). The box was filled with TIP3P water molecules accompanied
by counter ions (Na+, Cl−) to maintain the physiological ion conditions and neutralize the system.
Subsequently, energy minimization (50,000 steps) and NPT (500 ps) were conducted. Before the
SMD simulation, the velocity and direction of pulling, and force spring constant were determined.
Forces of 250, 500, and 750 kJ·mol−1·nm−2 and pulling velocities of 0.15, 0.24, and 0.3 nm·ns−1
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were used to optimize the pulling process. For the optimized parameters, the inflection point of the
curve between the velocity and the maximum force required was found. The velocity below this
point was acceptable and reasonable, which could accurately predict the SMD simulation results.
Optimized parameters were used for the steered MD simulations. Trajectory and steering force
were recorded every 1 ps. The temperature was maintained using a Nose–Hoover thermostat [33],
and the pressure was controlled using a Parrinello–Rahman barostat [34]. The cut off for the van
der Waals interaction was 10.0 Å. Constant-velocity ensemble simulations were carried out in our
SMD simulations. The constant of the spring was set at 0.5 kal·mol−1·A−2 to pull out the imaginary
atom from the accessible SMD simulation. Each system underwant a 10-ns SMD simulation, and each
simulation was repeated five times.

To quantitatively visualize the variation in potential energy of the two products, we calculated the
change in PMF along the egress pathway mapped out from the SMD. In those stages, a single trajectory
was selected from simulations where the energy value was closest to the Jarzynski average (JA) [35,36].
The swarm of trajectories were contracted into one single JA structure, which could help remove
trajectories that contributed least to the overall PMF. Our study divided the reaction coordinates into
numerous small windows (≈0.2 nm), and each of them was simulated for 4 ns. Finally, after completion
of all the separated simulations belonging to the same reaction coordinate, we implemented an extra
simulation to recombine the output obtained from the small windows into a single PMF.

3.6. The Free Energy of Binding Calculation and Per-Residue Energy Decomposition Analysis

The binding free energy of BtrR bound to β-valienamine and valienamine was obtained using
the molecular mechanics generalized born surface area and molecular mechanics Poisson–Boltzmann
surface area approach [37–41]. For each MD-simulated complex, the 1000 snapshots extracted
from the MD trajectory (snapshots were evenly selected from the last 2000 ps stable trajectory) to
calculate the ∆Gbind values, and the average ∆Gbind value was considered as the final ∆Gbind value for
these snapshots.

4. Conclusions

BtrR catalyzed valienone to β-valienamine and maintained the optical purity of the product up
to >99.9%. To analyze the mechanism responsible for the high selectivity of BtrR to β-valienamine,
multiple MD simulations were carried out for BtrR with two products, β-valienamine and valienamine.
MD results showed that β-valienamine could enhance the hydrogen bond interaction between BtrR
and coenzyme PLP by influencing the structure of BtrR Cys164-Ser167 residues. The results of energy
decomposition also confirmed that the existence of β-valienamine could decrease the binding between
PLP and BtrR and contribute to the catalytic reaction. CAVER analysis suggested that β-valienamine
could increase the bottleneck radius, and reduce the curvature and length of the BtrR tunnel, which
was conducive to the entry and removal of ligands. SMD simulation results showed that β-valienamine
was more easily removed from the BtrR tunnel, thus contributing to the next catalytic reaction. Hence,
from the point of view of the occurrence of the catalytic reaction or product removal, BtrR was more
likely to catalyze the formation of β-valienamine.
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