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Abstract: Background: Interleukin-1 (IL-1)β and IL-1 receptor antagonist (IL-1Ra) have been
proposed as important mediators during chronic liver diseases. We aimed to determine whether
the modulation of IL-1β signaling with IL-1Ra impacts on liver fibrosis. Methods: We assessed
the effects of IL-1β on human hepatic stellate cells (HSC) and in mouse models of liver fibrosis
induced by bile duct ligation (BDL) or carbon tetrachloride treatment (CCl-4). Results: Human HSCs
treated with IL-1β had increased IL-1β, IL-1Ra, and MMP-9 expressions in vitro. HSCs treated with
IL-1β had reduced α-smooth muscle actin expression. These effects were all prevented by IL-1Ra
treatment. In the BDL model, liver fibrosis and Kuppfer cell numbers were increased in IL-1Ra KO
mice compared to wild type mice and wild type mice treated with IL-1Ra. In contrast, after CCl-4
treatment, fibrosis, HSC and Kupffer cell numbers were decreased in IL-1Ra KO mice compared to
the other groups. IL-1Ra treatment provided a modest protective effect in the BDL model and was
pro-fibrotic in the CCl-4 model. Conclusions: We demonstrated bivalent effects of IL-1Ra during liver
fibrosis in mice. IL-1Ra was detrimental in the CCl-4 model, whereas it was protective in the BDL
model. Altogether these data suggest that blocking IL-1-mediated inflammation may be beneficial
only in selective liver fibrotic disease.

Keywords: liver fibrosis; interleukin-1 receptor antagonist; interleukin-1; bile duct ligation; carbon
tetracholoride; insulin

1. Introduction

Interleukin-1 (IL-1) is a pro-inflammatory cytokine playing a key role in acute and chronic
inflammation [1–4]. IL-1 refers to two similar cytokines which bind to the same receptor, one being
mostly secreted (IL-1β) and the other remaining intracellular (IL-1α) [2]. The inflammasome promotes
the maturation of IL-1β in response to infectious or non-infectious agents. IL-1β is produced by
stimulated monocytes, macrophages and to a lesser extent by other cell types, such as neutrophils,
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epithelial and endothelial cells, smooth muscle cells and fibroblasts [5]. IL-1β activity is regulated
by IL-1 receptor antagonist (IL-1Ra), a naturally anti-inflammatory cytokine that binds to type 1
IL-1 receptors and that is produced by activated myeloid cells, hepatocytes, fibroblasts [2] and
or mesenchymal stem cells (MSCs) [6,7]. IL-1β has been proposed as an important mediator of
inflammation and tissue damage in chronic liver disease [8]. Indeed, elevated circulating levels of
both IL-1β and IL-1Ra are detected in the serum of patients with chronic liver diseases, including
alcoholic liver disease [9], chronic hepatitis B and C, and primary biliary cirrhosis [10–12]. More
recently, IL-1β was shown to be implicated in the transformation of steatosis to steatohepatitis and
liver fibrosis [13,14]. However, determining whether IL-1β is a contributor or a consequence to liver
fibrosis pathogenesis demands further investigation. In this context, two functional polymorphisms in
the IL-1 gene cluster were identified as related to development of acute-on-chronic liver failure [15].
Blocking IL-1 pathway during liver injury using IL-1Ra represents an interesting strategy to determine
its role in liver diseases. We previously observed that IL-1Ra knockout (KO) mice had delayed
liver regeneration after partial hepatectomy [16], which was consistent with observations from
others [17,18]. More recently, we demonstrated that 23% to 36% of MSC subpopulations release
IL-1Ra in vitro and in vivo, and that MSC-secreted cytokines show an anti-fibrotic effect in mice [19].
This MSC-IL-1Ra-mediated hepatoprotective effect was further confirmed by others in acute liver
injury models [20,21]. The important role of IL-1β signaling in the progression from chronic liver
injury to fibrosis was previously characterized in mice [8] and rats [22]. However, the mechanisms
involving IL-1Ra and its potential protecting effect in hepatic fibrogenesis remain to be elucidated.

In the present study, we aimed to investigate whether IL-1Ra is regulating, along with IL-1β,
the progression of chronic liver injury to fibrosis. In vitro, we showed that IL-1β upregulated itself
and IL-1Ra in human stellate cells (HSC); IL-1Ra prevented these effects. In vivo, we observed that
IL-1β and IL-1Ra were strongly upregulated in mice liver after bile duct ligation (BDL) or carbon
tetrachloride treatment (CCl-4) and further showed that IL-1Ra KO mice displayed increased fibrosis
in the BDL model and reduced fibrosis in the CCl-4 model. We thus highlighted a dual effect of IL-1Ra
that was dependent on the type of liver injury.

2. Results

2.1. Interleukin-1 Receptor Antagonist and Liver Fibrosis

2.1.1. IL-1β Reduce Stellate Cell Activation In Vitro

α-smooth muscle actin (α-SMA) expression by activated HSCs is a key feature of liver fibrosis [23].
Therefore, we investigated the effect of IL-1β on α-SMA mRNA and protein expressions in human
HSCs in vitro, using immunoblotting and RT-PCR. Treatment of HSCs with IL-1β modestly decreased
α-SMA protein expression levels in primary HSCs when compared to control (Figure 1A,B). This effect
was prevented when IL-1Ra was added. Transforming growth factor-β1 (TGF-β1) (used as a positive
control) induced increased α-SMA mRNA expression under these conditions (Figure 1C). Of note,
IL-1Ra was not able to reverse the effect of TGF-β1 (Supplementary Figure S1), suggesting that the
IL-1Ra effect is specific to IL-1β induction. We then sought to analyze whether IL-1β and IL-1Ra are
regulated in HSCs, the key cell in the transition from inflammation to fibrosis [24]. IL-1β and IL-1Ra
mRNA expressions were significantly upregulated in HSCs after exogenous IL-1β treatment (by 3.2-
and 1.4-fold, respectively) (Figure 1D,E). Treatment with IL-1Ra prevented IL-1β effects and further
reduced IL-1β and IL-1Ra expressions below basal levels. No effect on IL-1β and IL-1Ra expression was
observed following HSC treatment with TGF-β (Figure 1D,E). Matrix metalloproteinases expression
was previously demonstrated to be regulated by IL-1α in HSCs [25,26]. Therefore, we analyzed
whether this regulatory effect persisted when using IL-1β. MMP-9 mRNA expression level was
upregulated in IL-1β-treated human HSCs (by 2.1-fold) (Figure 1F). This effect was prevented when
cells were treated with IL-1Ra. Again, TGF-β had no effect. MMP-2 and collagen type I expression was
not significantly modified following IL-1β and L-1Ra treatment (Figure 1G,H). Overall, these results
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indicated that IL-1β reduces stellate cell activation and enhances IL-1β, IL-1Ra and MMP-9 production
in vitro.
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Figure 1. IL-1β reduces human stellate cell activation and increases the expression of IL-1β, IL-1Ra
and matrix metalloproteinase (MMP) 9 in vitro. (A) Total protein extracts from human untreated HSCs
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(control), HSCs treated with IL-1β, and HSCs treated with IL-1β and IL-1Ra simultaneously were
obtained. Protein extracts were subjected to SDS-PAGE, transferred to nitrocellulose and blotted
with anti-α-SMA and GAPDH. (B) α-SMA signals were quantified by densitometry and normalized
using GAPDH signals as a loading control. α-SMA (C), IL-1β (D), IL-1Ra (E), MMP-2 (F), MMP-9 (G),
and collagen type 1 (H) mRNA expression levels were measured by RT-PCR. Data are mean values
obtained from four independent experiments. NS p > 0.05, * p < 0.05, ** p < 0.01, comparing two groups
as indicated.

2.1.2. IL-1β and IL-1Ra Expression Levels are Upregulated in Mice after BDL or CCl-4-Induced
Liver Fibrosis

We analyzed liver IL-1β and IL-1Ra mRNA expression levels using RT-PCR, in both BDL- and
CCl-4-induced liver fibrosis models. In both models, liver IL-1β mRNA expression levels were
significantly upregulated in all mice groups following liver fibrosis induction (Figure 2A,B). IL-1β
expression was the highest in either WT mice (BDL model) or in IL-1Ra KO mice (CCl-4 model). IL-1β
expression was the lowest in IL-1Ra treated mice in both models. As expected, IL-1Ra expression was
absent in IL-1Ra KO mice in both fibrosis models (Figure 2C,D). In line with gene expression findings,
corresponding elevations of serum IL-1β and IL-1Ra were found in the BDL model (Figure 2E,F) (not
done in the CCl-4 model). Comparison between WT and KO baseline IL-1β and IL-1Ra mRNA levels
in sham animals without fibrosis induction is provided in Supplementary Figure S3. Overall, these
results showed that IL-1β and IL-1Ra are upregulated during BDL-or CCl-4-induced liver fibrosis.
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Figure 2. IL-1β and IL-1Ra expression levels are upregulated in mice after bile duct ligation- or carbon
tetrachloride-induced liver fibrosis. IL-1β (A,B) and IL-1Ra (C,D) liver mRNA levels were measured
by RT-PCR in control mice and mice following 2–4 weeks BDL or 6 weeks CCl-4 treatment. BDL and
CCl-4 groups were respectively as follows: WT (n = 7 and n = 8), IL-1Ra KO (n = 7 and n = 4) and
IL-1Ra treated mice (50 mg/kg/day) (n = 10 and n = 13). Sham treated mice were used as control for
the BDL and CCl-4 groups (n = 8 and n = 4). Serum levels of IL-1β (E) and IL-1Ra (F) were measured
by ELISA. * p < 0.05, ** p < 0.01, *** p < 0.001, comparing two groups as indicated.

2.1.3. IL-1Ra Has Bivalent Effects on Liver Fibrosis in BDL and CCl-4-Induced Liver Fibrosis

To investigate the contributing role of IL-1Ra in hepatic fibrogenesis, we quantified liver fibrosis
in WT, IL-1Ra KO and IL-1Ra treated mice over time after BDL or CCl-4 injection. Quantification of
collagen on sirius red stained sections showed that hepatic fibrosis was significantly increased in IL-1Ra
KO mice following BDL and decreased in IL-1Ra KO mice following CCl-4 injections (Figure 3A–D).
IL-1Ra treatment in WT mice caused decreased fibrosis in the BDL model and increased fibrosis in the
CCl-4 model. Of note, IL-1Ra KO mice were rescued following IL-1Ra treatment (Supplementary Figure
S2). Quantification of liver mRNA expression of Collagen type 1α (Coll1α) confirmed these results
(Figure 3E,F). Comparison between WT and KO baseline Coll1α mRNA levels in sham animals without
fibrosis induction is provided in Supplementary Figure S3. Altogether, these results demonstrated that
the effects of IL-1Ra knockout and treatment during liver fibrosis are model specific. While IL-1Ra
deficiency increases liver fibrosis in the BDL model, it decreases liver fibrosis in the CCl-4 model.

2.1.4. Hepatic Stellate Cell Activation

To investigate whether the increased liver fibrosis induced by BDL or CCl-4 was paralleled by
HSC activation, we determined α-SMA expression using immunofluorescence and RT-PCR on livers
from the three groups (Figure 4). Quantification of α-SMA by immunofluorescence on liver sections
and RT-PCR in liver showed that α-SMA expression remained globally unchanged in the BDL group
(Figure 4A–C). In the CCl-4 model, α-SMA varied along with fibrosis intensity. WT mice and WT mice
treated with IL-1Ra had significantly more α-SMA positive cells and liver α-SMA mRNA expression
compared to IL-1Ra KO mice (Figure 4D–F). Comparison between WT and KO baseline α-SMA mRNA
levels in sham animals without fibrosis induction is provided in Supplementary Figure S3. These
results confirm the model-specific variations in liver fibrosis intensity following IL-1Ra Knockout
or treatment.
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Figure 3. Differential and model-dependent variation of liver fibrosis following IL-1β signaling
modulation with IL-1Ra knockout versus treatment. Mice livers were fixed in formalin and embedded
in paraffin and collected for mRNA extraction and RT-PCR following 2–4 weeks BDL or 6 weeks CCl-4
treatment. BDL and CCl-4 groups were respectively as follows: WT (n = 7 and n = 8), IL-1Ra KO (n = 7
and n = 4) and IL-1Ra treated mice (50 mg/kg/day) (n = 10 and n = 13). Sham treated mice were used
as control for the BDL and CCl-4 groups (n = 8 and n = 4, histology not shown). Liver sections stained
by sirius red (A). On sirius staining liver parenchyma appears in light yellow and fibrotic areas appear
in red. Morphometric quantification of fibrosis was performed on multiple liver sections and expressed
as percentage of liver surface area for the BDL (B) and CCl-4 groups (D). Liver collagen type I mRNA
levels were measured by RT-PCR in mice with BDL (E) or CCl-4 treatment (F). Scale bars, 400 µm.
* p < 0.05, ** p < 0.01, *** p < 0.001, comparing two groups as indicated.

2.1.5. Kupffer Cell Activation

We then investigated the activation of Kupffer cells during liver fibrosis in the two models by
quantifying the ionized calcium binding adaptor molecule 1 (IBA-1) [27,28] on liver sections (Figure 5).
The results varied along with fibrosis intensity in each model, respectively. In the BDL model, the
numbers of liver IBA-1 expressing cells were significantly increased in IL-1Ra KO mice compared to
WT mice or IL-1Ra treated mice (Figure 5A,B). The opposite situation was observed in the CCl-4 model;
a lower level of activation was observed in the IL-1Ra KO group compared to the two other groups
(Figure 5C,D). Overall, these results are consistent with those observed in fibrosis level variations and
further highlight model specific effects during IL-1Ra modulation.
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Figure 4. Differential and model-dependent variation in periportal hepatic stellate cell number and
alpha-smooth muscle actin expression in fibrotic mice following IL-1Ra knockout or treatment. (A-F)
Mice livers were fixed in formalin and embedded in paraffin and collected for mRNA extraction and
RT-PCR following 2–4 weeks BDL or 6 weeks CCl-4 treatment. BDL and CCl-4 groups were respectively
as follows: WT (n = 7 and n = 8), IL-1Ra KO (n = 7 and n = 4) and IL-1Ra treated mice (50 mg/kg/day)
(n = 10 and n = 13). Sham treated mice were used as control for the BDL and CCl-4 groups (n = 8 and
n = 4, histology not shown). (A,D) Liver sections immunostained for α-SMA (green) and stained with
evans blue (red). Activated hepatic stellate cells appear in green and hepatic parenchyma areas appear
in red. Morphometric quantification of stellate cell activation was performed on multiple liver sections
and expressed as percentage of α-SMA+ area for the BDL (B) and CCl-4 (E) groups. Liver α-SMA
mRNA levels were measured by RT-PCR in mice following BDL (C) or CCl-4 treatment (F). Scale bars,
400 µm. * p < 0.05, ** p < 0.01, *** p < 0.001, comparing two groups as indicated.

2.1.6. Liver Enzymes

Hepatocyte death and liver injury were assessed by measuring alanine transaminase (ALT) in mice
serum in the two groups (Figure 6). In the BDL model, WT mice had higher level of ALT compared to
IL-1Ra KO mice or IL-1Ra treated mice (Figure 6A). In the CCl-4 model, WT mice treated with IL-1Ra
had higher ALT levels compared to WT mice or IL-1Ra KO mice (Figure 6B). IL-1Ra KO mice had the
lowest ALT level in the later model.
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Figure 5. Differential and model-dependent variation in Kupffer cell number in fibrotic mice following
IL-1Ra knockout or treatment. (A–D) Mice livers were fixed in formalin and embedded in paraffin
following 2–4 weeks BDL or 6 weeks CCl-4 treatment. BDL and CCl-4 groups were respectively as
follows: WT (n = 7 and n = 8), IL-1Ra KO (n = 7 and n = 5) and IL-1Ra treated mice (50 mg/kg/day)
(n = 8 and n = 14). Sham treated mice were used as control for the BDL and CCl-4 groups (n = 8 and
n = 6, histology not shown). (A,C) Liver sections immunostained for IBA-1 (green) and stained with
evans blue (red). Activated Kupffer cells appear in green and hepatic parenchyma areas appear in
red. Morphometric quantification of activated Kupffer cell numbers was performed on multiple liver
sections and expressed as percentage of IBA-1 + area for the BDL (B) and CCl-4 (D) groups. Scale bars,
400 µm. ** p < 0.01, *** p < 0.001, comparing two groups as indicated.
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Figure 6. Serum alanine aminotransferase levels (ALT). Serum ALT levels were measured in sham
mice and mice following 2–4 weeks BDL (A) or 6 weeks CCl-4 treatment (B). BDL and CCl-4 groups
were respectively as follows: WT (n = 7 and n = 8), IL-1Ra KO (n = 8 and n = 5) or IL-1Ra treated mice
(50 mg/kg/day) (n = 8 and n = 13). Sham treated mice were used as control for the BDL and CCl-4
groups (n = 8 and n = 6). * p < 0.05, ** p < 0.01, comparing two groups as indicated.

2.1.7. Matrix Metalloproteinases

We further analyzed MMP-2, MMP-9, MMP-13 and tissue inhibitor of matrix metalloproteinases 1
(TIMP-1) hepatic gene expressions after BDL- and CCl-4-induced liver fibrosis using RT-PCR (Figure 7).
In the BDL model, MMP-2, 9,13 and TIMP-1 levels were all higher in the WT mice group compared
to the IL-1Ra KO mice group or WT mice treated with IL-1Ra (Figure 7A–D). In the CCl-4 model,
MMP-2 and MMP-13 were higher in the IL-1Ra KO mice group compared to the two other groups
(Figure 7E,G). Regarding MMP-9 and TIMP-1, expression was decreased in the IL-1Ra KO mice group
compared to the two other groups (Figure 7F,H). Comparison between WT and KO baseline α-SMA
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mRNA levels in sham animals without fibrosis induction is provided in Supplementary Figure S3.
These results confirm that IL-1Ra regulates genes in a model specific-manner during liver fibrosis.
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Figure 7. Matrix metalloproteinase (MMP) 2, 9 and 13 and tissue inhibitor of metalloproteinase 1
(TIMP-1) expression. MMP-2, 9 and 13 and TIMP-1 liver mRNA levels were measured by RT-PCR in
sham mice and mice following 2–4 weeks BDL (A–D) or 6 weeks CCl-4 treatment (E–H). BDL and
CCl-4 groups were respectively as follows: WT (n = 7 and n = 8), IL-1Ra KO (n = 7 and n = 4) or IL-1Ra
treated mice (50 mg/kg/day) (n = 10 and n = 13). Sham treated mice were used as control for the
BDL and CCl-4 groups (n = 8 and n = 4). * p < 0.05, ** p < 0.01, *** p < 0.001, comparing two groups
as indicated.
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3. Discussion

Acute and chronic liver injuries are accompanied by a major inflammatory response, including an
increased expression of IL-1β and its natural antagonist IL-1Ra [8,10–12,16,22,29–39]. We previously
demonstrated that the absence of IL-1Ra caused an increased inflammatory state and a delayed liver
regeneration in a mouse model of partial hepatectomy [16] and that IL-1Ra might be an important
factor in MSC antifibrotic effect in the liver [19].

In the present study, we analyzed the effect of IL-1β alone or blocked with IL-1Ra on primary
human HSCs, as well as the effect of IL-1Ra deficiency or supplementation in two models of in vivo
experimental liver fibrosis. Our in vitro experiments showed that the treatment of primary human
HSCs with IL-1β resulted in an increase of its own transcription but reduced α-SMA expression,
with the effects being prevented by recombinant IL-1Ra. In vivo, IL-1β and IL-1Ra expressions were
strongly upregulated in WT mice livers following BDL and CCl-4 injuries, confirming the implication
of IL-1 signaling in this process and its regulation by the liver [40,41]. The knockout of IL-1Ra resulted
in opposite patterns in the two liver fibrosis models; IL-1Ra KO mice had increased fibrosis in the
BDL model while fibrosis was reduced in the CCl-4 model. It is known that BDL ligation causes a
periportal fibrosis [42] while CCl-4 intoxication leads to an initial centrilobular matrix deposition [43].
Considering our in vitro results and the known predominance of HSCs in the pericentral area [44],
we hypothesized that IL-1β signaling modulates liver fibrosis in an HSC-dependent manner.

A first question that we aimed to address was to understand the effect of increased IL-1 signaling
on HSC, the key player in liver fibrosis. We knew from previous works that HSCs respond to
IL-1 stimulation in vitro with various effects on proliferation and α-SMA expression [24,26,45,46].
We made the hypothesis that IL-1β, which is a key cytokine during inflammation, may increase
HSC activation. However, our results indicate that, on the contrary, upon IL-1β treatment, HSC
have a reduced activation. These findings are consistent with those reported previously, where HSC
activation was shown to be inhibited after treatment with IL-1α [45] or IL-1β [24]. As suggested
previously, IL-1β might mobilize and increase proliferation of HSC rather than directly promoting
fibrosis production [24]. Knowing that HSCs are the major source of proteases that degrade basement
membrane collagens such as MMP-9 [25], we analyzed its expression in vitro. We found that IL-1β
strongly increased MMP-9 gene transcription in HSCs and this effect was prevented by IL-1Ra. These
findings are consistent with those of others showing that, under 3D HSC cell culture conditions,
stimulation with IL-1α caused robust induction of pro-MMP-9 [25,26]. Of note, enhanced HSC
activation was observed in the latter experiments, however IL-1α was used instead of IL-1β and
this may explain the difference with our findings. These results add further evidence that IL-1β is a
key regulator of MMP-9 expression by HSC during liver fibrosis [8,25,26]. In addition, we [19] and
others [47] previously demonstrated that liver MMP-9 expression increases via mesenchymal stem
cells’ paracrine effect and might be a protective factor during liver fibrosis. Overall, whether it is clear
from numerous previous works that prolonged inflammation can lead to fibrosis [48], our findings
along with those of others [24] suggest that this process is not solely driven by a direct effect of IL-1
on HSC.

We then thought to investigate the effect of IL-1 signaling downregulation on HSC activation
and fibrosis in vivo using IL-1Ra KO mice. In both models, IL-1β was upregulated upon liver
fibrosis induction in the liver (2–5-fold) and serum (4–6-fold). IL-1Ra was strongly upregulated
in the liver (15–50-fold) and serum (35-fold); knowing that its main production source is the liver [49].
The increase in IL-1 signaling (in IL-1Ra KO mice) resulted in increased fibrosis in the BDL model
reduced fibrosis in the CCl-4 model. These results were consistent within their respective models
and corresponding changes in collagen type I mRNA expression and Kupffer cells activation were
observed. We hypothesized that these conflicting results may represent a model-specific influence.
Using IL-1 receptor knockout mice, Pradere et al. found a non-significant decrease in liver fibrosis in
both BDL and CCl-4 models [24]. They further showed that antagonizing both IL-1 and TNF-α was
essential to significantly reduce NF-κB in HSCs and reduce liver fibrosis in a BDL model (no data in
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the CCl-4 model). In their experiments, IL-1 and TNF-α did not lead to HSC activation but promoted
survival of activated HSCs. Consistent with the work of Pradere et al., Gieling et al. found that
IL-1 receptor-deficient mice exhibited reduced fibrosis after thioacetamide treatment for 8 weeks [8].
Overall, these data are in accordance with what we observed in the BDL model (more fibrosis in IL-1Ra
KO mice and diminished HSC activation). Altogether, it is likely that both IL-1 and TNF-α are both
required to successfully translate inflammation into fibrosis; however, increased IL-1 signaling by itself
may contribute to an increase in liver fibrosis. Regarding IL-1 signaling in the CCl-4 model, previous
evidence is scarce and difficult to compare with our experiments. Based on our consistent findings
in the IL-1Ra KO group showing diminished fibrosis, collagen type I expression, activated HSC
numbers, α-SMA and TIMP-1 expression, we can only hypothesize a direct effect of CCl-4-mediated
centrilobular increased inflammation and IL-1 signaling on pericentral HSC. Given our observation that
IL-1 diminish HSC activation in vitro, we hypothesize that when inflammation is mainly pericentral
(CCl-4 model), IL-1Ra absence (namely, unopposed IL-1 signaling) ultimately partially block the
profibrogenic signals. All together our results suggest that blocking IL-1-mediated inflammation
may be beneficial mostly in biliary type liver fibrosis. Certain IL-1β gene polymorphisms has been
associated with liver fibrosis progression in primary biliary cholangitis [50,51] and further confirm this
eventuality. Drug-related injury to the liver may then not be amenable to benefit from IL-1β signaling
inhibition since the injury is predominantly centrilobuar. Finally, since IL-1β is implicated in virus
clearance, viral hepatitis does not represent good candidates for IL-1β inhibition [52,53].

In our experiments, we also investigated the effect of IL-1Ra treatment (anakinra) and observed
that it provided marginal protective effect on liver fibrosis after BDL and increased fibrosis in the CCl-4
model. Using a different model and animal species, Mancini et al. observed a decreased collagen
content and fewer activated HSC in WT rats subjected to dimethylnitrosamine-induced liver fibrosis
and treated with IL-1Ra [22]; we could marginally reproduce these findings in the BDL model only.
Our primary hypothesis to explain this modest improvement is a failure of exogenous IL-1Ra to
efficiently increase circulating levels due a possible negative feed-back mechanism regulating its
own expression (Figure 2F). Indeed, we observed that IL-1Ra blood levels were not much increased
compared to the WT group despite daily anakinra administration. Another argument in favor of this
hypothesis is that IL-1Ra expression by the liver was reduced upon IL-1Ra administration. In the
clinical setting, IL-1Ra treatment was demonstrated to be successful in situations in which IL-1Ra
is absent or nonfunctional [54] while a very limited success was observed with recombinant IL-1Ra
to treat human inflammatory disease [2] suggesting that endogenous IL-1Ra production cannot be
surpassed. Of note, in a confirmatory experiment, we could demonstrate that IL-1Ra treatment
can rescue IL-1Ra KO mice. However, it is also possible that IL-1Ra given systemically is not fully
equivalent to the endogenous natural section of IL-1Ra. An example of that discrepancy is depicted by
the difference observed in fasting insulin levels between the different groups of mice after BDL. We
observed a significant increase in fasting insulin levels in mice after BDL in WT mice and KO mice
(consistent with insulin resistance that is commonly observed during liver fibrosis/dysfunction [55]),
however that increase was completely reversed by IL-1Ra treatment in WT mice (and KO mice)
(Supplementary Figure S2), consistently with the known anti-diabetic effect of exogenous IL-1Ra [56].
In the CCl-4 model, the profibrogenic effect of IL-1Ra treatment was consistent with all the other
findings in this model and further reinforces the hypothesis of a dual and topographical-dependent
effect of IL-1 signaling modulation.

4. Materials and Methods

4.1. HSC Isolation and Culture

Human HSCs were obtained from biopsies of healthy liver parenchyma from three different
patients undergoing partial hepatectomy. The protocol was approved by the local research ethics
committee of the Department of Surgery of the Geneva University Hospital. All donors provided
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their written informed consent for use of the samples in the present study. HSCs were isolated as
previously described [57,58]. Cells were cultured in 24-well plates (100,000 cells/well) in IMDM
medium (Invitrogen, Basel, Switzerland) containing 10% FCS, penicillin, and streptomycin (Invitrogen,
Basel, Switzerland) at 37 ◦C with 5% CO2. Cells were used for experiments between passages 3 to
6. HSCs were either left untreated, or treated with recombinant IL-1β (10 ng/mL, Thermo Fisher
Scientific, Waltham, MA, USA) for 48 h, or IL-1β (10 ng/mL) and IL-1Ra (15 µg/mL, Kineret, Amgen
Europe B.V, Breda, The Netherlands) together, or Transforming growth factor-β 1 (TGF-β1) (50 ng/mL,
PreproTech, UK) for 48h. For α-SMA protein detection, HSCs were treated and cultured for 5 days.

4.2. Electrophoretic and Immunoblot Analysis

Proteins from lysed cells were separated on polyacrylamide gels (SDS-PAGE) and transferred
to polyvinylidene difluoride membranes (Milipore, Billerica, MA, USA). Membranes were blocked
with 5% skim milk in wash buffer (20 mM Tris–HCl, pH 7.4, 140 mM NaCl, 0.1% Tween 20) and
incubated with anti-alpha smooth muscle actin (α-SMA) [59] (obtained from C. Chaponnier, Geneva,
Switzerland) or anti-vimentin (Dako, Baar, Switzerland) antibodies diluted in blocking solution.
Following three washes, membranes were incubated with peroxidase-conjugated goat anti-mouse
antibodies (Molecular Probes Inc, Eugene, OR, USA) diluted 1:6000 in wash buffer. Proteins were
revealed by chemiluminescence (ECL, Interchim Inc., Montluçon, France) on photographic film (GE
healthcare, Chicago, IL, USA) and signals were quantified using the Quantity One software (PDI, Inc.,
Huntington Station, NY, USA) and normalized by the expression of GAPDH or vimentin.

4.3. Animals

DBA-1 mice were purchased from Janvier (Le Genest-St-Isles, France). IL-1Ra knockout (IL-1Ra
KO) mice were generated from DBA-1 background and were a kind gift from Prof. Cem Gabay of
Geneva University [60,61]. Eight to ten-week-old male mice were used. Liver fibrosis was induced by
2 to 4 weeks of BDL or 6 weeks of CCl-4 treatment, as described here below. All animal studies were
approved by the Animal Ethics Committee of the Geneva Veterinarian Office and Geneva University,
Geneva, Switzerland (protocol 1043/3603/2, Oct 1, 2010).

4.4. Fibrosis Induction in Mice

Liver fibrosis was induced by BDL or CCl-4. BDL: briefly, mice were anesthetized with isoflurane,
a midline laparotomy was performed, and the common bile duct was dissected and cut between four
ligatures under a dissecting microscope. CCl-4: Three ml per kilogram of CCl-4 50% (v/v) solution in
corn oil (Sigma Co., Milan, Italy), containing 1.0 ml/kg of CCl-4, was administered by intraperitoneal
injections twice a week for 6 weeks. All mice were maintained under standard conditions at the animal
facility of Geneva University. Water and food were provided ad libitum. IL-1Ra treated animals
received 50mg/kg/day recombinant IL-1Ra, intraperitoneally, every day from BDL (or CCl-4) to
sacrifice (Anakinra/Kineret, Amgen Europe B.V, Breda, The Netherlands). Sham operated and sham
injected (NaCl 0.9%) mice were used as controls. In accordance with the 3R principles of animal
experimentation in our institution (reduce, refine, replace), the severity of the BDL model in DBA-1
mice prompted us to sacrifice mice as soon as they presented signs of suffering. Accordingly, mice
were sacrificed between 2 to 4 weeks. No mortality was observed in the CCl-4 model and all animals
were sacrificed at 6 weeks. Blood and liver samples were collected to be analyzed.

4.5. Assessment of Hepatic Fibrosis

Liver collagen content was determined using sirius red histochemistry as previously
described [62]. Tissue sections were observed using an Axiophot microscope (Carl Zeiss AG, Feldbach,
Switzerland) and images were acquired with an Axiocam color camera (Zeiss, Feldbach, Switzerland).
Hepatic fibrosis extent was determined using morphometric quantification (MetaMorph Software,
Universal Imaging, West Chester, PA, USA).
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4.6. Immunostaining for Alpha-Smooth Muscle Actin (α-SMA) and Ionized Calcium Binding Adaptor
Molecule 1 (IBA-1)

Paraffin sections were dewaxed, and rehydrated using xylene/ethanol baths and then heated
at 95 ◦C in a 10 mM/pH 6.0 sodium citrate bath for 10 min. The detection of activated HSCs
was performed using anti α-SMA antibody (a gift from Christine Chaponnier, Geneva University)
(1:50). The detection of macrophages was performed using an anti IBA-1 antibody (Wako Chemicals,
Richmond, VA, USA) (1:500). The liver sections were incubated overnight at 4 ◦C with primary
antibody diluted in PBS containing 0.1% BSA, washed in PBS, and incubated for 1 h with a secondary
antibody (Alexa Fluor 488 goat-anti mouse) diluted (1:1000) in PBS containing 0.1% BSA. All sections
were stained with 0.09% Evans blue solution. Images of immunostained sections were acquired using
Axiophot microscope and Axiocam color camera. The percentage of positive cells for α-SMA or IBA-1
was determined using MetaMorph, Image J and Definiens Software. Cells area positive for α-SMA or
IBA-1 staining were counted and normalized to the total liver surface. An average of 3000 cells were
counted on 4 histology fields per animal.

4.7. Real-Time Polymerase Chain Reaction (RT-PCR)

RT-PCR was used to determine the expression levels of fibrosis-related genes. Total RNA was
extracted from liver samples or cultured cells using Qiagen RNeasy Mini kit (Qiagen, San Diego, CA,
USA) according to manufacturer’s instructions. cDNA was synthesized from 1 µg of total RNA using
SuperScript III reverse transcriptase (Invitrogen, Basel, Switzerland). RT-PCR was performed using
SYBR Green PCR Master Mix (Applied Biosystems Inc, San Diego, CA, USA), with 2 ng cDNA and
300 nM of each primer following the following protocol: two minutes at 50 ◦C, 10 min at 95 ◦C, and for
45 cycles of 15 s at 95 ◦C, and 60 s at 60 ◦C using a SDS 7900 HT machine (Applied Biosystems Inc.).
Reactions were performed in three replicates on 384-well plate. Raw Ct values obtained with SDS
2.2 (Applied Biosystems Inc.) were imported in Excel software (Microsoft, Redmond, WA, USA) and
normalization factor and fold changes were calculated using the GeNorm method [63]. Briefly, GeNorm
was used to determine which normalization genes are the most stable in the sample population studied
and select them for normalization. We computed a normalization factor for each individual sample
represented by the geometric mean of the quantity values from the most stable normalization genes.
Each sample will therefore have its own normalization factor. Primers used for amplification were
designed using Primer3 online software (http://frodo.wi.mit.edu/) unless otherwise specified (Table 1).
All primers were tested with Amplifix Software (http://ifrjr.nord.univ-mrs.fr/AmplifX-Home-page)
and blasted on http://www.ensembl.org. Human matrix metalloproteinase (MMP) -2 was purchased
from Qiagen, San Diego, CA, USA. The efficiency of each primer was tested using positive control
cDNA serial dilutions and negative control.

Table 1. RT-PCR Primer Sequences.

Name
Primer-Probe Sequence 5′-3′

Forward Reverse

Mice

IL-1β ACT CCT TAG TCC TCG GCC A TGG TTT CTT GTG ACC CTG AGC
IL-1Ra CTG CAC TTC CAC AGT CCA GA ATA TGT GAT GCC CTG GTG GT

Collagen type I alpha 1 GCA TGG CCA AGA AGA CAT CC CCT CGG GTT TCC ACG TCT C
MMP-2 TGG GGG AGA TTC TCA CTT TG CAT CAC TGC GAC CAG TGT CT
MMP-9 AGT TGC CCC TAC TGG AAG GT GTG GAT AGC TCG GTG GTG TT
MMP-13 AGT TGA CAG GCT CCG AGA AA AGT TCG TTT GGG ACC ATT TG
TIMP-1 GCA TCT CTG GCA TCT GGC ATC GAA GGC TGT CTG TGG GTG GG1 [8]

Human

IL-1β TCC AGG GAC AGG ATA TGG AG TCT TTC AAC ACG CAG GAC AG [64]
IL-1Ra AAG ACC AGT CCA TGA GGG AG CTC CCC GAA AGA ACA TAA TCT C
α-SMA CAT CTA TGA GGG CTA TGC CTT G GTG AAG GAA TAG CCA CGC TC
MMP-9 TTG ACA GCG ACA AGA AGT GG GCC ATT CAC GTC GTC CTT AT
MMP-2 Ref: QT00088396 Ref: QT00088396

http://frodo.wi.mit.edu/
http://ifrjr.nord.univ-mrs.fr/AmplifX-Home-page
http://www.ensembl.org
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4.8. Serum Assays

Serum ALT was measured using UniCel DxC 800 Synchron Clinical Systems (Beckman Coulter,
Inc., Brea, CA, USA), following manufacturer’s instructions. Serum IL-1β, IL-1Ra and fasting insulin
contents were measured using mouse IL-1β ELISA set (BD Bioscience, San Jose, CA, USA), mouse
IL-1Ra ELISA kit (RayBio, Norcross GA, USA) respectively, and Ultrasensitive Mouse Insulin ELISA
(Mercodia, Uppsala, Sweeden) following manufacturer’s instructions.

4.9. Statistical Analysis

Results were expressed as means ± SEM. Differences between groups were analyzed using the
Student t-test or Mann-Whitney U Test and one-way analysis of variance with Kruskal-Wallis testing
corrections. A p-value < 0.05 was considered to be statistically significant.

5. Conclusions

In conclusion, our study demonstrated that IL-1Ra has opposite effects in two different liver
fibrosis models. IL-1Ra was detrimental in the CCl-4 model, whereas it was protective in the BDL
model. Since IL-1β can decrease α-SMA expression in primary HSC, and given the predominant
pericentral distribution of HSC and pericentral inflammation in the CCl-4 model, we postulated
that this may represents the cause of decreased fibrosis in the latter model. Altogether these data
suggest that blocking IL-1-mediated inflammation with IL-1Ra may only be beneficial in selective liver
fibrotic disease.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/6/
1295/s1.
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