S International Journal of

7
Molecular Sciences m\D\Py

Review

Nutritional Regulation of Gene Expression:
Carbohydrate-, Fat- and Amino Acid-Dependent
Modulation of Transcriptional Activity

Diego Haro 12, Pedro F. Marrero 12 and Joana Relat 1-2*

1 Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences,

Food Campus Torribera, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain;
dharo@ub.edu (D.H.); pedromarrero@ub.edu (P.EM.)

Institute of Biomedicine of the University of Barcelona (IBUB), CIBER Physiopathology of Obesity and
Nutrition (CIBER-OBN)), Instituto de Salud Carlos III, E-28029 Madrid, Spain

*  Correspondence: jrelat@ub.edu; Tel.: +34-93-402-0862

check for
Received: 31 January 2019; Accepted: 13 March 2019; Published: 19 March 2019 updates

Abstract: The ability to detect changes in nutrient levels and generate an adequate response to these
changes is essential for the proper functioning of living organisms. Adaptation to the high degree
of variability in nutrient intake requires precise control of metabolic pathways. Mammals have
developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and
amino acids and provide an integrated response. These mechanisms include the control of gene
expression (from transcription to translation). This review reports the main molecular mechanisms
that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused
on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role
of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating
transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently,
alterations in these pathways underlie the onset of several metabolic pathologies such as obesity,
insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete
understanding of these mechanisms may improve our knowledge of metabolic diseases and may
offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.

Keywords: carbohydrates; amino acids; fatty acids; carbohydrate-responsive element binding protein;
peroxisome proliferator-activated receptors; amino acid response; activating transcription factor 4;
TORC1 signaling

1. Introduction

The discovery of the galactose operon in bacteria represented a key finding for the study of the
regulation of metabolism. That work showed how, by modifying the level of expression of specific
enzymes, bacteria can adapt their metabolism to meet their nutritional needs, and it connected, for the
first time, changes in enzymatic activity to the transcriptional control of gene expression [1]. It is
now commonly accepted that transcriptional regulation also contributes to metabolic homeostasis in
complex organisms.

The alteration of the mechanisms controlling gene expression (from transcription to translation),
may lead to the development of metabolic diseases. Thus, understanding the effect of nutrients on
gene expression may improve our knowledge of metabolic diseases and may offer new therapeutic
approaches based on nutritional interventions and individual genetic makeup. For instance, the risk
of having a metabolic syndrome (MetS) caused by a disruption of energy homeostasis is associated
with overweight and obesity. This association stresses the link between lipid and glucose metabolism.

Int. J. Mol. Sci. 2019, 20, 1386; d0i:10.3390/ijms20061386 www.mdpi.com/journal/ijms


http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/20/6/1386?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20061386
http://www.mdpi.com/journal/ijms

Int. ]. Mol. Sci. 2019, 20, 1386 20f 21

While the treatment of dyslipidemia and diabetes characteristic of the metabolic syndrome can be
achieved by drugs targeting cholesterol synthesis or pancreatic beta cell function, other metabolic
dysfunctions typical of this situation have a more complicated treatment. The family of peroxisome
proliferator-activated receptors (PPARs), metabolic sensors involved in the control of lipid and glucose
metabolism, is a good example of how knowledge of the mechanisms that control gene expression
offer new therapeutic opportunities. In this sense, the thiazolidinediones (TZDs), PPARy agonists,
are used as potent hypoglycemic agents.

The purpose of this review is to highlight current knowledge of how transcriptional control
participates in homeostatic energy balance; particularly, how carbohydrates, lipids and amino
acids—nutrients that can be used as energy sources—modulate transcriptional activity to achieve
metabolic homeostasis (Figure 1). We will not discuss in this review other pathways that are also
modulated by nutrients, such as the complex regulatory framework responsible for cholesterol
homeostasis that includes the sterol regulatory element binding proteins (SREBPs), nor will we discuss
members of the nuclear receptor family of metabolic sensors, such as the oxysterol-activated receptors,
liver X receptors (LXRs) and the bile acid-activated farnesoid X receptor (FXR). We will not comment,
either, on the important impact of nutrients on the epigenetic mechanisms of gene regulation.
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Figure 1. Mammals detect an abundance of nutrients such as sugars, fat and amino acids, and provide
a metabolic response most times through the control of gene expression (from transcription to
translation). Sugars signaling mainly goes through the carbohydrate-responsive element binding
protein (ChREBP). Peroxisome proliferator-activated receptors (PPARs) are the responsible response
to fat, and the GCN2/activating transcription factor 4 (ATF4) and mTORCI1 pathways sense amino
acid concentrations.

2. Sugar. The Carbohydrate-Responsive Element Binding Protein (ChREBP)

Metabolic homeostasis and energy balance require a precise control of glucose and lipid
metabolism. Hormonal regulation in response to glucose availability is mainly responsible for
this control, but in this review we will refer exclusively to the mechanisms that explain a direct
effect of different metabolites on the transcription of genes that code for enzymes involved in
metabolic homeostasis.

The regulation of the metabolic pathways involved in glucose homeostasis is carried out in part
by the transcriptional control of the genes coding for the regulatory enzymes of those pathways.
Shortly after the elevation of glucose levels in the liver, several key enzymes of glycolysis and
lipogenesis are post-translationally activated by well-known mechanisms. A high carbohydrate
diet also induces transcription of the genes encoding these enzymes, including glucokinase (GK) [2]
and pyruvate kinase [3,4] for glycolysis, ATP citrate lyase [5], acetyl CoA carboxylase [6], fatty acid
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synthase (FASN) [7] and stearoyl-CoA desaturase 1 (SCD1) [8] for lipogenesis and glucose 6-phosphate
dehydrogenase [9] for the pentose pathway, thus promoting the storage of sugars as triglycerides (TGs).

The mechanism by which carbohydrates regulate transcription of these genes besides the
transcriptional control exercised by insulin and glucagon and their signaling cascade, was finally
unraveled by the purification and characterization of the carbohydrate-responsive element binding
protein (ChREBP). ChREBP is a basic helix-loop-helix leucine zipper transcription factor encoded by a
gene localized in the region of chromosome 7q11.23 that is deleted in patients with Williams-Beuren
syndrome, a multisystemic developmental disorder [10]. In response to glucose and fructose, this
protein forms a heterodimer with its partner Mlx and binds and activates the transcription of target
genes that contain carbohydrate response element (ChoRE) motifs. This regulation plays a critical
role in sugar-induced lipogenesis and glucose global homeostasis through the coordination of hepatic
intermediary metabolism, carbohydrate digestion and transport [11,12] (Figure 2).
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Figure 2. ChREBP is a basic helix-loop-helix leucine zipper transcription factor. In response
to glucose and fructose, this protein forms a heterodimer with its partner Mlx and binds and
activates the transcription of target genes that contain carbohydrate response element (ChoRE)
motifs. This regulation plays a critical role in sugar-induced lipogenesis and global glucose
homeostasis. The mechanisms of ChREBP activation involve several glucose metabolites, pathways
and post-translational modifications including phosphorylation, acetylation and O-GlcNAcylation.

Besides its role as a glucose sensor, ChREBP has also been described as essential for
fructose-induced lipogenesis in both the small intestine and liver [12,13]. In fact, an acute and robust
ingestion of fructose, but not of glucose, activates hepatic ChREBP. In this context, it has been published
that ChREBP contributes to some of the physiological effects of fructose on sweet taste preference
and glucose production through regulation of, for instance, fibroblast growth factor-21 (FGF21) or the
catalytic subunits of glucose-6-phosphatase. It has been recently demonstrated that ChREBP loss of
function is essential for the fructose-dependent increase of plasmatic levels of FGF21, and that under
high-fructose diets an absence of FGF21 leads to liver disease. A correlation between circulating FGF21
and rates of de novo lipogenesis has also been shown in humans. Altogether, these results indicate
that the signaling axis sugar(fructose)-ChREBP-FGF21 may play a role in liver pathogenesis [14].
Finally, it has been suggested that the restriction of fructose over intake will be beneficial for preventing
irritable bowel syndrome modulating the impact of ChREBP activity in fructose metabolism [15].

Two isoforms of ChREBP have been identified. A novel variant called ChREBPf3 expressed from
an alternative promoter in a glucose- and ChREBPx-dependent manner was identified in adipose
tissue [16]. That article suggests a mechanism whereby, through two steps, the glucose-induced
ChREBP« transcriptional activity induces the expression of the more potent isoform, ChREBPf3.
A negative feedback loop by which glucose-induced ChREBP (3 downregulates ChREBP« signaling has
been described in pancreatic islets, providing new insight into the physiological role of islet ChREBPf3
and the regulation of glucose-induced gene expression [17].
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2.1. ChREBP Post-Translational Modifications

The mechanisms of ChREBP activation by glucose involve several glucose metabolites, pathway, and
post-translational modifications, including phosphorylation, acetylation and O-GlcNAcylation [18,19].

Phosphorylation/dephosphorylation-dependent subcellular localization and activity is a key
regulatory mechanism of ChREBP activity in response to glucose level [20-22]. ChREBP is regulated by
nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 or importins [23,24]. A decrease
in glucose concentration results in ChREBP phosphorylation by PKA, a complex formation with 14-3-3
and the localization in the cytosol of an inactive pool of ChREBP-14-3-3 complex [24]. The increase in
glucose levels raises the concentration of xylulose 5-phosphate (X5P), a pentose shunt intermediate that
leads to the activation of a specific protein phosphatase that dephosphorylates ChREBP. The ChREBP
dephosphorylation is a necessary event for its nuclear localization and transcriptional activation [24,25].
Elsewhere, other metabolites have been proposed as potential regulators of ChREBP translocation
and the role of PP2A activity and X5P as a signaling metabolite in the liver has been challenged [26].
That study reveals that G6P produced by GK, but not X5P, is essential for both ChREBP nuclear
translocation and transcriptional activity induced by glucose in liver cells. Fructose-2, 6-P2, the major
regulator of glycolysis and gluconeogenesis, has also been implicated in this response [27].

High glucose levels induce ChREBP acetylation and O-GlcNAcylation. These modifications
do not influence ChREBP localization, but instead favor the recruitment to its target genes [28,29].
The biological consequences of the site-specific O-GlcNAcylation dynamics of ChREBP have recently
been reviewed. Under high-glucose conditions, the phosphorylation of Ser514 increases the ChREBP
O-GlcNAcylation and maintains its transcriptional activity. Moreover, Ser839 O-GlcNAcylation is
essential for MIx heterodimerization, DNA-binding and therefore transcriptional activity, but also for
ChREBP nuclear export, partially due to stronger interactions with CRM1 and 14-3-3 [30].

O-GIcNAc is a nutrient-sensitive modification notably apt for the integration of several
metabolic signals because the hexosamine biosynthetic pathway (HBP) is a central player in
nutrient sensing. This is a key pathway for regulating nutrient processing because its final
product, UDP-N-acetylglucosamine, is synthesized based on nutrient availability, and this activated
sugar-nucleotide is utilized to produce a potent post-translational regulatory modification [31].

2.2. ChREBP Partners to Regulate Gene Expression and Metabolism

ChREBP transcriptional activity depends on the presence of other cofactors and transcriptional
factors such as the members of nuclear receptors family hepatic nuclear factor 4 (HNF-4), LXR, FXR or
the thyroid hormone receptor (TR) [32,33].

FXRis a key transcription factor of bile acid metabolism that was recently shown to interact directly
with ChREBP, acting as a repressor on the ChoRE of glycolytic genes [34]. Interestingly, similarly to
ChREBP, FXR is O-GlcNAcylated in response to glucose. It has been described that ChREBP and FXR
O-GlcNAcylation can modify their reciprocal affinity and transcriptional activity [35].

An important role for LXR linking hepatic glucose utilization to lipid synthesis has been suggested.
LXR /3 double-knockout mice show reduced feeding-induced nuclear O-GlcNAcylated ChREBP«,
ChREBP« activity and lipogenic gene expression in the liver. The study of the effects of high-fructose
or high-glucose feeding on hepatic gene expression from fasted and fasted—refed wild type and LXRx
knockout mice suggests that, in mice, LXRx is an important regulator of hepatic lipogenesis and
ChREBP« activity upon glucose, but not fructose intake [36].

A specific cross-talk between ChREBP and PPAR« has been shown for the glucose-mediated
induction of FGF21 expression. In hepatic PPARx knockout mice, the glucose-dependent induction of
FGF21 expression associated with an increased sucrose preference is blunted under a carbohydrate
administration. The absence of response is due to diminished ChREBP binding onto FGF21 ChoRE,
indicating that PPARw is required for the ChREBP-induced glucose response of FGF21 [37].
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ChREBP provides hepatoprotection against a high-fructose diet also by preventing overactivation
of cholesterol biosynthesis and the subsequent activation of the proapoptotic arm of the unfolded
protein response (UPR). A role has also been identified for ChREBP in the derepression of cholesterol
biosynthesis by ubiquitination and destabilization of SREBP2. These results suggest a previously
unknown link between ChREBP and the regulation of cholesterol synthesis with a putative role in
liver injury [38]. Using tissue-specific ChREBP deletion, an essential role for intestinal (but not hepatic)
ChREBP in fructose tolerance has been established [39]. The coordinated induction of glycolytic and
lipogenic gene expression requires both SREBP-1c and ChREBP. Whereas SREBP-1c mediates insulin’s
induction of lipogenic genes, ChREBP mediates the glucose induction of both glycolytic and lipogenic
genes in an insulin-independent way. These complementary actions ensure that the liver synthesizes
FAs only when insulin and carbohydrates are both present [40].

In humans, low levels of ChREBP and de novo lipogenesis in adipose tissue are associated with
insulin resistance. In mice, the adipose tissue-specific knockout of ChREBP causes insulin resistance,
probably due to an impairment on glucose transport and lipogenesis in this tissue [41]. In the liver,
ChREBP deletion impairs hepatic insulin sensitivity and alters glucose homeostasis in mice [42]. Finally,
it has been demonstrated that in brown adipose tissue (BAT), the AKT2-ChREBP pathway is induced
by cold to optimize fuel storage and thermogenesis [43]. Recently provided evidence suggests that
AKT?2 drives de novo lipogenesis in this tissue by inducing ChREBPf3 transcription. This pathway
is required for optimum BAT function and is conserved in humans. These findings have important
implications for understanding BAT activity under human-relevant environmental conditions.

3. Fat. The Peroxisome Proliferator-Activated Receptors (PPARs)

Deregulation of lipid metabolism lies at the base of the most common medical disorders in
western populations, such as cardiovascular disease, obesity, diabetes and fatty liver conditions.
However, a gap in knowledge still exists in both the basic science and the clinical fields regarding the
impact of altered lipid storage on human diseases. At the beginning of the 1960s, a diverse group of
pesticides (clofibrate) were recognized as capable of causing the proliferation of peroxisomes in rat
livers. Subsequently, it was identified that these compounds bound to a nuclear receptor that was
known as the peroxisome proliferator-activated receptor (PPAR) (Figure 3).

The PPARs belong to the ligand-activated nuclear receptor (NR) family and the steroid receptor
superfamily. The nuclear receptors are a family of transcription factors that can exert their effects as
monomers, homodimers or heterodimers by binding to a specific sequence of DNA called nuclear
receptor responsive elements (NRREs) with a repetitive consensus hexamer (AGGTCA) that is
recognized by the DNA-binding domain (DBD) of the NR. All NRs share a common structure, a NH2
terminal region (A/B) and a conserved DBD (region C) that includes two Zn fingers, a linker region
(D) responsible for nuclear localization and, finally, a well-conserved carboxy-terminal ligand-binding
domain, the LBD, or region E. Some of the NR may possess an extra F domain—a highly variable
carboxy-terminal tail with unknown functions, so far [44,45].

PPARs regulate the expression of genes involved in a variety of processes concerning metabolic
homeostasis by controlling the metabolism of glucose and lipids, adipogenesis, insulin sensitivity,
immune response, cell growth and differentiation [46]. For the PPAR-mediated transcriptional
activation of its target genes, the heterodimerization of a PPAR with the RXR and the binding
of the heterodimer to a PPAR responsive element (PPRE) sequence are necessary, producing a
change in chromatin structure indicated by ligand activation of the complex and histone H1 release.
The binding of the ligand triggers a conformational change that will generate new specific contacts
with coactivators [47]. As PPARs control lipid homeostasis (lipid synthesis and oxidation) and are
activated by lipids (or a closely related derivative) that act as ligands (see below), the mechanism of
activation by lipids may necessarily be far more involved than the description presented here.
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Figure 3. PPARs belong to the ligand-activated nuclear receptor (NR) family. They are transcription
factors that exert their effects as heterodimers with the retinoid X receptor (RXR) by binding to a
specific sequence of DNA called PPAR-responsive element (PPRE) with a repetitive consensus hexamer
(AGGTCA). Three PPAR isotypes are described (x, B and y) with different expression patterns and
metabolic functions. PPARs are lipid sensors and can be activated by both dietary fatty acids (FAs) and
their derivatives in the body and, consequently, redirect metabolism. In the liver, PPARx and PPARS
exhibit opposing activities in the control of diurnal lipid metabolism. PPAR« is upregulated in the
fasted state to regulate fat catabolism. By contrast, PPARS is most active in the fed state and controls
the transcription of lipogenic genes. BAT, brown adipose tissue; WAT, white adipose tissue.

3.1. PPAR Isotypes and Metabolic Integration

Despite their different tissue distribution, this subfamily of NR functions in an integrated network
to regulate metabolism. The PPARs function as lipid sensors in a way that can be activated by both
dietary fatty acids (FAs) and their derivatives in the body, consequently redirecting metabolism.

The alpha isoform of the PPARs (PPAR«) has a crucial role in fatty acid oxidation (FAO) and
therefore is mainly expressed in highly oxidative tissues such as the liver and, to a lesser extent, in the
heart, kidneys, skeletal muscle and BAT. PPAR« has been shown to play a crucial role in the adaptive
response to fasting by regulating genes involved in FAO [48,49] and, therefore, has indirect effects on
other metabolic pathways and energy homeostasis [47,50,51].

PPARYy is highly enriched in both BAT and white adipose tissue (WAT). It is induced during
adipocyte differentiation and is an important regulator of fat cells [52,53]. This member of the PPARs
is a master effector of adipogenesis in a transcriptional cascade involving C/EBP [54] and has an
important role in the regulation of glucose and lipid metabolism. It also participates in the regulation
of cardiovascular disease, inflammation, organ development and tumor formation [55]. According
to its functions, PPARYKO mice do not develop adipose tissue [56] and, in humans, a dominant
negative mutation in a single allele of PPARG (encoding for PPARGY) leads to insulin resistance and
lipodystrophy phenotype [57]. Finally, this transcription factor is of great clinical importance because
it is the molecular target for thiazolidinedione (TZD). TZDs are a class of antidiabetic agents that
improve peripheral insulin sensitivity and assist in glycemic control in type 2 diabetic patients [58].

The third member of this family, PPARS, has been more elusive. Its expression is quite ubiquitous
and the first functions described for PPARS were those related to the catabolism of fatty acids and
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energy homeostasis [50]. It is an important metabolic regulator in different tissues, such as adipose
tissue, skeletal muscle and the heart [59].

The transcriptional activation of PPARS enhances fatty acid catabolism and energy uncoupling,
decreasing TG stores, improving endurance performance and enhancing cardiac contractility.
Its receptor activation decreases macrophage inflammatory responses and modulates lipoprotein
metabolism to lower TG while, on the other hand, raising HDL cholesterol. In liver, the activation of
this transcription factor ameliorates glucose homeostasis by repressing hepatic glucose output [59].

In muscle, a fundamental role in the regulation of mitochondrial FAO is attributed to PPARGS.
Thus, overexpression of PPARS in muscle increases oxidative capacity in a marked way. In fact,
mice that express large amounts of PPARS in muscle (marathon mice) can run for hours without
stopping [60]. However, in the liver, PPARS plays a lipogenic role as indicated by overexpression
(adenovirus) experiments [61] on knockout animal models [62]. Recently, it has been shown that PPARS
controls the diurnal expression of lipogenic genes in the dark/feeding cycle. Surprisingly, liver-specific
PPARS activation increases, whereas hepatocyte-PPARS deletion reduces muscle fatty-acid uptake
(see below) [63].

3.2. New Fats are the PPARa Endogenous Ligands

PPARcx-null mice develop a phenotype characterized by hypoglycemia, hyperlipidemia,
hypoketonemia and fatty liver due to their inability to meet energy demands in a fasting state [51].
FASKOL mice lack the capacity for synthesizing fatty acid from carbohydrates due to the deletion
of FASN [64]. This animal, when either fed a diet without fat or exposed to prolonged fasting, has
shown the same hypoglycemic phenotype as PPARx-null mice, with decreased expression of PPARx
target genes. FASKOL mice have also developed a cholesterol phenotype not dependent on diet.
In these cases, both hypoglycemia/steatohepatitis and cholesterol phenotypes were reversed by the
administration of a PPAR« agonist such as WY14643 [64]. Because the “new fat” comes from diet or from
de novo synthesis via FASN, this experiment has led to the concept that only “new fat” is the capable of
activating PPARx and promoting gluconeogenesis and FAO. By contrast, “old fat”, the fat mobilized
from peripheral fat stores and transported to the liver where it accumulates, fails to activate PPAR«.
Elsewhere, by immunoprecipitation of PPAR«, an endogenous ligand with nanomolar affinity was
described for PPAR activation, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1 PC) [65].

Interestingly, liver PPARS expression can generate the PPARx endogenous ligands. PPARS
overexpression (adenoviral-mediated PPARS) up-regulates glucose utilization and de novo lipogenesis
pathways [61].

Deletion of hepatocyte-PPARS reduces, while liver-specific activation PPARS increases, muscle
fatty acid uptake [63]. Metabolite studies identify 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine
(18: 1/18: 0 PC) as a serum lipid regulated by hepatic PPARS diurnal activity. This lipid (18: 1/18:
0 PC) increases the use of fatty acids through muscle PPARx and reduces the levels of postprandial
lipids [63]. Therefore, it seems that a PPARS-dependent signal couples the metabolism of lipids in the
liver and the muscular FAO.

4. Amino Acids as Signaling Molecules from Restriction/Deficiency to Protein

Together with carbohydrates and lipids, proteins are the third class of macronutrients acquired
through the diet. Protein intake is essential for life, mainly for acquiring essential amino acids (EAA) to
maintain protein turnover and support almost all cellular processes. Protein turnover is the net result
of protein synthesis and degradation and it ensures maintenance of protein functionality. The effects
of amino acids and proteins on transcriptome and metabolome take place when protein turnover is
unbalanced: Greater protein breakdown/less synthesis/high-protein intake leads to an increase in
amino acid pools, while greater synthesis/less breakdown/low-protein intake results in a reduction in
the amino acid pools [66]. The maintenance of amino acid homeostasis depends on a cell’s capacity to
sense amino acid availability.
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4.1. Amino Acid Response (AAR): The GCN2/ATF4 Pathway to Sense Low Amino Acid Levels

Higher organisms are unable to synthesize the 20 amino acids required for protein synthesis
in sufficient amounts to meet cellular needs, and some of them, the EAA, must be supplied by the
diet. In humans, the sources of dietary proteins are essentially animals and plants. The amount
and composition of these proteins are different, and its quality depends on the content of the
above-mentioned EAA. A healthy and balanced diet must cover all the requirements in amino acids
and should include proteins from different sources and in different proportions.

The circulating levels of amino acids depend on the ratio between protein synthesis and protein
breakdown. Besides protein turnover, aminoacidemia is directly proportional to protein intake and is
strongly affected by stress situations such as trauma, thermal burning, sepsis or fever.

Amino acid response (AAR) is the canonical pathway to respond to amino acid deficiency.
The reduction of EAA levels below the cell threshold causes the deacetylation of the corresponding
tRNAs. These uncharged tRNAs are able to bind and activate the general control nonderepressible
2 (GCN2) kinase and to initiate the AAR signaling transduction cascade. GCN2 is considered a
direct sensor of amino acids [67]. When activated, GCN2 phosphorylates the eukaryotic initiation
factor 2 alpha (elF2x) [68,69], which results in the activation of the integrated stress response (ISR) to
maintain cellular homeostasis [70]. ISR activation reduces general protein synthesis by the slowing or
stalling of the initiation step of mRNA translation through a downregulation of the elF2B activity [71].
Paradoxically, in this situation there is an increase in the translation of discrete mRNAs including the
activating transcription factor 4 (ATF4) [72,73]. Once induced, ATF4 directly or indirectly triggers the
transcription of a subset of specific target genes to adapt to dietary stress [74].

Although the GCN2/elF2«/ATF4 is the major signaling pathway to respond to amino acid
starvation, it is not unique [75]. It has been reported that a methionine-restricted (MR) diet activates
a noncanonical protein kinase R-like endoplasmic reticulum (ER) kinase (PERK)/nuclear factor-like
2 (Nrf2) axis [76]. Along the same lines, Laeger et al. demonstrated that the absence of GCN2
is compensated upstream of ATF4 to maintain an increased expression of FGF21 in long-term
protein-restricted diets [77]. Finally, at least in part, the activation of the IRS signaling pathway
in the liver under an MR diet seems to be independent of p-elF2 [78] (Figure 4).

4.2. Metabolic Impact of Amino Acid Restricted/Deprived Diets

Besides protein homeostasis, the dietary content of amino acids has a direct impact on
lipid metabolism [79,80], health and lifespan. Leucine-deprived mice have shown a reduction in
energy intake, increased energy expenditure (EE) and mobilization of the lipid stores [81] through
transcriptional effects on the liver, WAT and BAT. In these animals, there was an increment of
sympathetic outflow to adipose tissues, an induction in the expression of FAO genes linked to a
reduction in the expression of lipogenic genes and FASN activity in WAT and an overexpression
of uncoupling protein 1 (UCP1) and type 2 deiodinase (Dio2) in BAT [82,83]. In the liver,
a leucine-deprived diet produces decreases in genes associated with fatty acid and TG synthesis,
but not in genes linked to fatty acid transport or oxidation [81]. It has been described that the decrease
in expression of SREBP-1c in the liver and WAT is the responsible mechanism for a reduction in the
expression of lipogenic genes in a leucine-deprived diet [84].

All these effects cause weight loss, a reduction of fat mass and an improvement in insulin sensitivity,
probably through the activation of the AMP-activated protein kinase and a GCN2-dependent decrease
in the mammalian target of rapamycin (mTOR)/S6 kinase 1 (56K1) signaling [68,85].

In the same way, MR diets show similar effects on lipid metabolism [86-89], insulin sensitivity [90]
and mitochondrial uncoupling [87]. The metabolic response to MR diets administered to rats and mice
includes hyperphagia, increased EE, improvement in insulin sensitivity and reduced fat deposition,
liver TGs and circulating lipids [86,91,92], besides changes in membrane phospholipid composition [93].
In mice, WAT responds to MR by increasing the expression of genes involved in FAO and the
upregulation of FASN and SCD1 in WAT, but also by the downregulation of lipogenic genes in
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the liver [92]. This liver reduction of lipid content has also been observed in patients with metabolic
syndrome [94]. Finally, EAA deprivation changes the levels of anorexigenic neuropeptides and their
signaling in hypothalamic feeding centers [95-97].

The metabolic response to amino acid starvation or amino acid-deficient diets has been linked
to FGF21. The changes described in lipid metabolism in the liver, WAT and BAT are impaired in
FGF21-deficient mice [98-100]. FGF21 is a member of the Fibroblast Growth Factor (FGF) family,
which is mainly produced by the liver but also by other tissues such as WAT and BAT, skeletal muscle
and pancreatic beta cells [101,102]. Its expression is regulated among other transcription factors by
ATF4 [103], pointing out the GCN2/elF20c/ ATF4 as the major pathway to induce FGF21 expression by
low-protein diets (LPD) or leucine-deprived diets [103].

Animals fed an MR diet are resistant to diet-induced obesity, showing improved glucose
homeostasis, increased FA activation and oxidation in the liver, increased lipolysis in WAT, increased
Ucpl expression in BAT [90,104,105] and increased circulating levels of FGF21. FGF21 induction under
MR diets has also been described by several authors, and it has been demonstrated that FGF21 is a
critical mediator of the metabolic effects of an MR diet on EE, WAT remodeling and insulin sensitivity,
but not on hepatic gene expression [106]. Moreover, Wanders et al. described that the overexpression
of FGF21 in an MR diet is independent of GCN2 signaling [76]. Regarding methionine, some authors
point out cysteine as the key player on the metabolic effects of MR diets, and have described how
cysteine supplementation attenuates the metabolic response to an MR diet [107,108].

Nutritional
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Pactiietan PERK/Nrf2 Improved insulin sensitivity
ess IRS Lipid metabolism (more FAO and
(MR) FGF21 lipolysis, less lipogenesis)
Thermogenesis
Hyperphagia
Low-protein diets Increased energy expendl.ture
(LPD) (GCN2)/ATF4 Thermogenesis / Browning
FGF21 Lipid metabolism (more FAO and
(5% to 10%) lipolysis, less lipogenesis)
Improved insulin sensitivity
Amino acid sensing:
SLC38A9, v-ATPase, . Protein synthesis
CASTOR1 (Arg) ﬁ‘:tll‘::::d Nucleotide synthesis
Amino acid intake SESTRIN (Leu) mTORCI De novo lipogenesis
SAMTOR (Met — SAM) Glycolysis
Leucyl-tRNA synthetase Pentose phosphate pathway
(LRS)

Figure 4. Protein intake is essential for acquiring essential amino acids (EAA) to maintain protein
turnover and support almost all cellular processes. The effects of amino acids and proteins on
transcriptome and metabolome take place when the protein turnover is unbalanced and there are
changes in the amino acid pool. Amino acid-restricted diets, LPD and protein intake have an
impact on metabolic homeostasis and directly affect not just protein metabolism but also lipid and
glucose metabolism.
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Finally, it should be noted that not just EAA-deficient/deprived diets exert effects on
metabolism. Although some differences have been described between protein-free (0% protein calories),
very-low-protein (5% protein) and moderately low-protein (10% protein) diets [109] regarding food
intake and EE induction, globally, LPDs have shown comparable metabolic phenotypes to leucine
or methionine restriction [110]. LPD causes weight loss and an increase in both food intake and
EE [110,111]. In both rodents and humans, LPD induces FGF21 circulating levels [111,112] and
thermogenic markers in the BAT of obese rats [109]. In line with a leucine-deprived diet, the effects on
lipid metabolism, food intake and EE observed in LPD are blunted in FGF21 liver-specific knockout
mice (LFgf21KO), showing that FGF21 is involved in the metabolic response to protein-restricted
diets [108,110].

The impairment of the GNC2 signaling pathway has dramatic consequences in animals fed amino
acid restricted diets [68,81]. GCN2 knockout mice have shown hepatic steatosis and reduced muscle
mass under a leucine-deprived diet. Moreover, a double-knockout mouse with a genetic deletion of
GCN2 and the branched chain keto acid dehydrogenase kinase (BDK) will die in less than two weeks
postnatal [113]. These effects are not present when animals are provided with enough EAA. Under
a normal diet, rodents have not shown any metabolic phenotype. These data indicate that defects
on GCN2 are revealed only when challenged with amino acid deficiency. In humans this could be
important for the design of personalized nutritional therapies.

4.3. mTOR Signaling Pathway to Sense Amino Acid Availability

The mTOR is a serine/threonine kinase ubiquitously expressed. In humans, mTOR is the core
protein of two different multiprotein complexes, TORC1 and TORC2. Of the two complexes, TORC1 is
the one that integrates nutritional signals, the energy status of the cells and their stress levels [114,115].
TORC1 is activated by growth factors but also when enough energy, oxygen and building blocks such
as amino acids are present; it is inhibited during stress or fasting, when a lack of resources prevents
the turning on of the anabolic pathways [116] (Figure 4).

The activation of TORC1 by amino acids occurs in most cases through the RAG GTPase
complex [117,118]. This RAG complex is located in the membrane of the lysosomes associated with
the RAGULATOR complex, a pentameric complex [119,120]. The presence of amino acids triggers the
conversion of the RAG proteins into their GTP-bound state, which enables them to recruit TORC1
to the lysosome via an interaction with the RAPTOR subunit of the TORC1 complex. Besides its
interaction with RAG, TORC1—through the catalytic domain of mTOR—also interacts in the lysosome
with the protein RHEB (RAS homolog enriched in the brain), responsible for the TORC1 activation
by growth factors [121,122]. Because RHEB depletion blocks the amino acid-dependent activation
of TORC], it has been postulated that full activation of TORC1 requires growth factors and amino
acids [118,120].

The identification of amino acids’ cellular sensors, and the way they activate TORC1, are far
from the final map. It is known that TORC1 senses cytosolic and intralysosomal amino acids. Some
recent studies have described the lysosomal arginine sensor SLC38A9 as necessary for the efflux of
EAA and the activation of TORC1 [123-126]. It has also been demonstrated that SLC38A9 interacts
with a v-ATPase that is associated with the RAGULATOR complex and acts as an activator of the
RAG complex [123-127]. Moreover, it has been published that a key role of the v-ATPase is signaling
the lysosomal amino acids, but nothing is known about how this ATPase can sense intralysosomal
amino acids.

Different mechanisms have been postulated to sense cytosolic amino acids. The protein complex
GATOR1/GATOR?2 regulates TORC1 activity and is the main pathway to sense amino acids [128-130].

GATORL1 is linked to the lysosomal membranes by the KICSTOR complex and inhibits TORC1
through its GTPase-activating protein (GAP) activity toward RAG. On the other hand, GATOR?2 is
able to block the GAP activity of GATOR1 [128], thus activating TORC1. The question is how GATOR
proteins are regulated by amino acids. CASTOR1, SESTRIN and SAMTOR have been identified as
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cytosolic amino acid sensors for TORC1 activation. CASTOR1 is an arginine sensor that binds and
blocks GATOR2 when arginine is absent. The binding of arginine to CASTOR1 blocks its interaction
with GATOR2 and causes the activation of TORC1 [131,132]. A similar mechanism has been proposed
for SESTRIN, which senses leucine levels. In this case, leucine prevents the interaction between
SESTRIN and GATOR?, also triggering the activation of TORC1 [132-135]. Finally, SAMTOR is a
methionine sensor that detects S-adenosylmethionine (SAM). SAMTOR can bind directly to GATOR1
when levels of SAM are high. In a methionine-starvation situation, levels of SAM decrease and the
SAMTOR-GATORI interaction is disrupted leading to a reduction in TORC1 activity [136].

Although most of the amino acids are sensed by the GATOR1/GATOR2 complex, some alternative
pathways have been described. Glutamine, for instance, is sensed via the RAG-related ARF family
GTPases [137]. The FLCN complex has GAP activity toward RAG and is activated by amino acids,
thus activating TORC1 signaling [138,139].

Finally, the leucyl-tRNA synthetase (LRS) has also been postulated as an amino acid sensor able
to regulate TORC1 activity. Some authors have proposed that LRS could interact directly with RAG
and act as a GAP [138,140] but others have shown that LRS leucylates a lysine residue of RAG and
activates TORC1 [141].

4.4. Metabolic Impact of TORC1 Activation: Protein Synthesis, de novo Lipogenesis, Glycolysis and Pentose
Phosphate Pathway

The TORC1 complex controls cell growth by promoting protein and lipid synthesis, cell cycle,
and anabolic pathways and blocking catabolism and autophagy. This section is focused on the impact
of TORC1 activity on protein, lipids and glucose metabolism.

TORCI1 phosphorylates the p70S6 Kinase 1 (S6K1) and the eukaryotic translation initiation factor
4E (elF4E) binding protein (4EBP) [116].

56K1 is a serine/threonine protein kinase that, when activated, phosphorylates several proteins
related to the initiation step of the mRNA translation [142]. S6K1 activates the eukaryotic initiation
factor 4B (elF4B), which belongs to the 5" cap-binding elF4F complex where it acts as a positive
regulator. On the other hand, S6K1 phosphorylates and triggers proteasomal degradation of the
elF4B-inhibitor PDCD4 [143].

The 4EBP is phosphorylated by TORC1 and this causes its dissociation from the protein elF4E.
In its dephosphorylated form, 4EBP blocks the protein translation by binding to the elF4E and
preventing the assembly of the elF4F complex [144,145].

TORC1 promotes de novo lipogenesis through the activation of SREBP1. The activation of
SREBP under TORC1 signaling takes places through two different mechanisms. The first depends
on S6K1 activity that, via an unknown molecular mechanism, is able to promote the processing of
SREBP1 [146-148]. The second mechanism involves the phosphorylation of LIPIN1 by TORC1. TORC1
phosphorylates and controls the entry of LIPIN1 to the nucleus. When dephosphorylated, LIPIN1 is
active and inhibits SREBP transcriptional activity. Once phosphorylated by TORC1, LIPIN1 cannot
enter the nucleus and SREBP is active [149]. Both mechanisms increase the gene expression of enzymes
involved in cholesterol and lipid biosynthesis

Regarding glucose metabolism, TORC1 increases HIF1a protein levels by inducing its translation.
HIFla promotes the gene expression of glycolytic enzymes and glucose uptake. The induction
of glycolysis and the reduction of oxidative phosphorylation downstream of TORC1 signaling
facilitates the incorporation of nutrients as biosynthetic precursors instead of energy suppliers. Finally,
the activation of SREBP by TORC1 also promotes the gene expression of enzymes from the oxidative
arm of the pentose phosphate pathway that will generate NADPH for biosynthesis [146].

It is described that the impairment of mTORC1 signaling drives the development of cancer, obesity
and cardiovascular disease.
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5. Concluding Remarks

In this review, we have summarized the molecular mechanisms of diet-induced gene expression,
which allows the integration of nutrient signaling to metabolic homeostasis. Although not discussed in
this paper, it is well-known that dysregulations on the above-mentioned signaling transduction
pathways trigger the development and progression of metabolic disorders such as obesity and
type 2 diabetes, thus revealing a complicated network of regulatory mechanisms to achieve
metabolic homeostasis.

The connection between alterations in the signaling pathways and metabolic diseases is
particularly well-illustrated in the case of PPARy. Mutations in the gene coding for PPARy
are clearly related to an obese phenotype and insulin resistance in humans. Thiazolidinediones
(TZDs) are efficacious therapeutic agents for the treatment of noninsulin-dependent diabetes. These
drugs improve insulin sensitivity through the modulation of glucose and fatty acid metabolism,
are high-affinity ligands for PPARy and their antidiabetic activity is mediated through the activation
of this nuclear receptor.

This example points out the importance of the knowledge/understanding of molecular
mechanisms that through regulating gene expression control metabolism in response to dietary inputs
to design new therapeutic strategies against metabolic diseases based on nutritional interventions.
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Abbreviations

AAR Amino acid response

ATF4 Activating transcription factor 4
BAT Brown adipose tissue

ChoRE Carbohydrate response element
ChREBP Carbohydrate responsive element binding protein
DBD DNA binding domain

Dio2 Type 2 deiodinase

EAA Essential amino acids

EE Energy expenditure

elF2o Eukaryotic initiation factor 2 alpha
elF4B Eukaryotic initiation factor 4B
FAO Fatty acid oxidation

FASN Fatty acid synthase

FGF21 Fibroblast growth factor 21

FXR Farnesoid X receptor

G6P Glucose 6-phosphate

GAP GTPase activating protein

GCN2 general control nonderepressible 2
GK Glucokinase

HBP Hexosamine biosynthetic pathway

ISR Integrated stress response
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LBD Ligand binding domain

LPD Low protein diet

LRS Leucyl-tRNA synthetase

LXR Liver X Receptor

MR Methionine-restricted

mTOR Mammalian target of rapamycin

NR Nuclear receptors

NRF2 nuclear factor-like 2

NRRE Nuclear receptors responsive element
O-GIcNAc  O-linked N acetylglucosamine

PERK protein kinase R-like endoplasmic reticulum (ER) kinase
PPAR Peroxisome proliferator activated receptor
PPRE PPAR responsive element

RHEB Ras homolog enriched in the brain

S6K1 S6 kinase 1

SAM S-adenosylmethionine

SCD1 Stearoyl-CoA desaturase

SREBP Sterol regulatory element binding protein
TZD Thiazolidinediones

UCP1 Uncoupling protein 1

WAT White adipose tissue

X5P Xylulose 5-phosphate
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