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Abstract: Prostate cancer is the most commonly diagnosed malignancy in men, claiming over
350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA) testing,
but this misses some aggressive tumours, and leads to the overtreatment of non-harmful disease.
Hence, there is an urgent unmet clinical need to identify new diagnostic and prognostic biomarkers.
As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiple biomarkers
will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, and attention is
now turning to minimally invasive liquid biopsies, which enable the analysis of tumour components
in patient blood or urine. Effective diagnostics using liquid biopsies will require a multifaceted
approach, and a recent high-profile review discussed combining multiple analytes, including changes
to the tumour transcriptome, epigenome, proteome, and metabolome. However, the concentration on
genomics-based paramaters for analysing liquid biopsies is potentially missing a goldmine. Glycans
have shown huge promise as disease biomarkers, and data suggests that integrating biomarkers
across multi-omic platforms (including changes to the glycome) can improve the stratification of
patients with prostate cancer. A wide range of alterations to glycans have been observed in prostate
cancer, including changes to PSA glycosylation, increased sialylation and core fucosylation, increased
O-GlcNacylation, the emergence of cryptic and branched N-glyans, and changes to galectins and
proteoglycans. In this review, we discuss the huge potential to exploit glycans as diagnostic and
prognostic biomarkers for prostate cancer, and argue that the inclusion of glycans in a multi-analyte
liquid biopsy test for prostate cancer will help maximise clinical utility.
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1. Introduction

Prostate cancer is the most common cancer in men, and is a major clinical burden [1]. In the last
decade, research into prostate cancer has advanced rapidly, and large advances have been made in both
finding new treatments and understanding the underlying biology. However, several areas of urgent
unmet clinical need remain, including the identification of: (i) validated biomarkers to complement
prostate-specific antigen (PSA) for screening; (ii) prognostic biomarkers with the clinical utility to
distinguish indolent and aggressive disease; (iii) molecular stratification methods and predictive
biomarkers; and (iv) surrogate end point biomarkers that are valid measures of therapeutic response
and survival [2]. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiple
biomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, and
attention is now turning to minimally invasive liquid biopsies, which enable the analysis of tumour
components in patient biological fluids such as blood and urine. Urine is an amenable bodily fluid
for prostate cancer biomarker discovery. It is easily obtained in a non-invasive way, and due to the
proximity of the prostate to the bladder, urine may carry markers that reflect the development and
progression of prostate cancer [3]. Proximal fluids of the prostate such as expressed prostatic secretions
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(fluid secreted by the prostate after a digital rectal prostate massage) can also be collected in urine and
used as a source of biomarkers [4]. Whereas traditional tissue biopsies only provide limited snapshots
of the tumour and might fail to reflect heterogeneity, liquid biopsies can provide a comprehensive
view of all cancerous lesions (primary and metastases) as well as offering the opportunity to track
tumour evolution [5].

A 2018 high-profile review in Nature Genetics highlighted that effective diagnostics using liquid
biopsies will require the multiparametric analysis of several analytes (including changes to the
transcriptome, epigenome, proteome, and the metabolome) within the same blood or urine sample [6].
The detection of changes to the glycome, and more specifically cancer-associated glycan sugar groups,
was not included in this review. Glycans have shown huge promise as diagnostic biomarkers for
cancer [7–9], and recent data suggests that integrating biomarkers across multi-omic platforms (which
includes changes to the glycome) can improve the stratification of patients with prostate cancer [10].

Glycans are saccharides that can be attached to proteins, lipids, and other glycans through the
enzymatic process known as glycosylation. Glycosylation is the most common posttranslational
modification, and is now known to be essential to virtually every biological process in the body [11].
Glycans can either be added sequentially to the hydroxyl oxygen of serine/threonine residues on the
target protein (O-linked glycosylation), or as pre-assembled blocks of 14 sugars that are transferred
co-translationally via the amide group of an asparagine residue on the target protein (N-linked
glycosylation). How much a protein or lipid is glycosylated depends on the number of glycosylation
sites present, and the expression of specific glycosylation enzymes within the cell [9]. Glycans are
major building blocks of life [12], but have been hugely understudied (Figure 1). This is partly due to
their complexity, the difficulties studying them, and that there is no clear link between glycans and
DNA. However, this is now changing, and the importance of glycans can be conceptualised as an
extended model of the central dogma (Figure 2). The technology to study glycans is rapidly advancing,
and there is expected to be an explosion of interest in this area in the next 10 to 15 years, which will be
helped by projects such as the human glycome project [13].
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Figure 1. Glycans, the understudied major building blocks of life. The glycoproteome combines three
highly adaptable interdependent biological alphabets. Created with BioRender.
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Changes to glycans in cancer cells were first described 50 years ago [14], and confirmed by the
development of antibodies against tumour-specific antigens [15]. Aberrant glycosylation is a universal
feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer
type [16,17]. Cancer cells have numerous changes to glycans compared to normal tissue, including
changes to sialylation, fucosylation, the truncation of O-glycans, and N-glycan branching (see [18] for
more details). The importance of glycans in cancer is emphasised by the majority of the Food and
Drug Administration (FDA)-approved tumour markers being glycan antigens or glycoproteins [19–21].
Glycans have key roles in fundamental molecular and cell biology processes in cancer biology,
including cell signalling, tumour cell invasion, immune modulation, angiogenesis, interactions with
the cell matrix, and metastasis, which are linked to all of the recognised cancer hallmarks [17]. Glycans
secreted by cancer cells likely represent the altered glycosylation status of cancer cells, and are a largely
untapped resource of cancer biomarkers. There is a huge potential to exploit glycans to improve
early diagnosis, as biomarkers for prognosis and stratification, and as markers of specific therapeutic
targets [7].

The physiological function of the prostate is to act as a secretory gland, which generates and
secretes glycoproteins such as PSA into seminal fluid. As such, the prostate is a major secretor of
glycans, and there is an unrealised opportunity to detect aberrant glycosylation patterns in serum
and urine, and link this to prostate cancer status [22]. As prostate cancer progresses, the epithelial
glands become smaller and more rounded, potentially having a drastic effect on the normal secretory
pathways where proteins and lipids are glycosylated. Glycans can influence cell survival, proliferation,
and metastasis, and likely play a key role in these processes in prostate cancer [22]. A wide range of
alterations to glycans have been observed in prostate cancer, including changes to PSA glycosylation,
increased sialylation and fucosylation, increased O-GlcNacylation, the emergence of cryptic and
branched N-glyans, and changes to galectins and proteoglycans [22–24] (see Tables 1–3 for more
details). In this review, we discuss the huge potential to exploit glycans as diagnostic and prognostic
biomarkers for prostate cancer, and argue that it will be essential to include glycans as part of a
multi-analyte liquid biopsy test.

2. PSA Glycosylation

Prostate-specific antigen (PSA) is a glycoprotein enzyme that has been used widely as a biomarker
for prostate cancer, but has the disadvantage of low specificity and no prognostic value at diagnosis [25].
PSA screening for prostate cancer has led to the overdiagnosis and overtreatment of indolent disease,
resulting in unnecessary biopsies and treatments for non-aggressive cancers [26,27]. Refinements on
the PSA test, such as the Prostate Health Index (PHI) and 4Kscore, can improve diagnostic accuracy,
but have limited prognostic utility, and may miss some high-grade cancers [28]. Thus, there is
an urgent clinical need to shift the focus to identifying aggressive disease that needs immediate
treatment [29–31]. Advances in mass spectrometry have led to an increased interest in glycan
structures on cancer-associated proteins, and numerous studies have investigated whether a glycan
signature on PSA can be used to improve its clinical utility [21,24]. A recent study also linked a
single nucleotide polymorphism that affects PSA glycosylation to prostate cancer risk [32]. PSA has
a single N-glycosylation site at asparagine-69 (Asn-69) [24]. Approximately 50 glycoforms of PSA
have been described, but only some of these are found in aggressive prostate cancer. In particular,
complex biantennary glycoforms with α2,3-sialic acid have been closely linked to aggressive disease in
multiple studies [33–35] (Table 1). When combined with the PHI, the detection of α2,3-sialic acid PSA
glycoforms in a cohort of 79 patients showed 100% sensitivity and 94.7% specificity to differentiate
high-risk prostate cancer from low-risk and benign disease [34]. The robust prediction power of
α2,3-sialylated PSA to diagnose aggressive prostate cancer has been confirmed by other studies using
independent cohorts and different technologies [35]. Together, these studies provide strong evidence in
support of the clinical utility of PSA glycoforms to distinguish indolent and aggressive prostate cancer.
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3. Sialyled Glycans

Sialylation is the process by which sialic acid residues are added to glycans as the terminal
monosaccharide. Abnormal sialylation is a universal feature of cancer cells that is linked to poor
prognosis and metastasis [9,36–40]. In prostate cancer, sialic acid levels have been investigated as
an adjunct to PSA in predicting prostate malignancy [41,42]. Increased levels of α2-3-linked sialic
acid have been detected on serum glycoproteins in patients with prostate cancer compared to benign
prostatic hyperplasia (BPH), and can be used to predict Gleason score with a higher specificity and
sensitivity than PSA [43,44]. Serum sialic acid levels have also been linked to pathological grade, and
elevated sialic acid may predict bone metastasis [45]. Together, these studies suggest serum sialic acid
as a promising diagnostic biomarker for prostate cancer that should be further investigated for use in
predicting disease progression.

An emerging tool for glycoproteomic analysis is the use of azide sugar analogs as mimics of sialic
acid. This strategy utilises metabolically labelled glycans with chemical reporters that are ligated to
fluorescent probes, and offers a new avenue for probing changes to the glycome by both imaging
and glycoproteomic analyses [24,46]. In prostate cancer, sialic acid analogs have been used to identify
sialoglycoproteins linked to metastatic potential in cell lines derived from PC3 cells [47]. More recently,
sugar azide analogs have been utilised in prostate cancer tissue slices to identify glycoproteins that are
elevated or uniquely found in prostate cancer cells [48].

As well as changes to serum sialic acid levels and sialoglycoproteins, tumour-associated sialylated
glycans also change in prostate cancer. Numerous studies have reported the upregulation of the
sialylated blood group antigen Sialyl Lewis X (SLeX) in prostate cancer, and linked this with poor
prognosis in patients [49–52] (Table 1). SLeX, and its isomer SLeA, are the minimal recognition
motif for ligands of selectins, which is a family of lectins with roles in leukocyte trafficking and
tumour extravasation [53]. SLeX could influence prostate cancer progression through numerous
mechanisms, including binding to E-selectin, the evasion of Natural Killer (NK) cell immunity, and the
promotion of bone metastasis [52,54–56]. The upregulation of SLeX has been detected on PSA, Mucin 1
(MUC1), and prostatic acid phosphatase (PAP) proteins in a panel of 10 malignant tissues (relative to
matched normal tissue), opening up a new avenue for the development of prostate cancer-specific
glycoprotein biomarkers [57]. The cancer-associated sialyl-Tn glycan (known as sTn) has also been
linked to prostate cancer. sTn is a truncated O-glycan containing a sialic acid α-2,6 linked to GalNAc
α-O-Serine/Threonine (Ser/Thr) (Table 1). The sTn glycan is upregulated in several cancer types and
associated with metastasis and poor prognosis [37]. In prostate cancer, sTn is expressed in high-grade
prostate tumours [58,59], and can reduce prostate cancer cell adhesion [60,61]. The sTn antigen is
being widely investigated as a circulating biomarker for other cancers [62,63], and it is likely that
innovative tools that were developed to detect sTn [63–65] will also have clinical utility for prostate
cancer precision oncology.

Table 1. Summary of glycan alterations in prostate cancer. PSA: prostate-specific antigen.
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Table 1. Cont.

Glycan Structure Link to Prostate Cancer References
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Sialyl Tn (sTn)  Expressed in high-grade prostate tumours. Can 

reduce prostate cancer cell adhesion. 

[58–61] 

Core Fucosylation  Increased in patient serum. Linked to aggressive 

disease. 

[43,66–68] 

Levels correlate with Fucosyltransferase 8 (FUT8). [69] 

O-GlcNAcylation  Upregulated and linked to poor prognosis in 

primary prostate cancer. 

[70,71] 

Downregulated in castrate resistant prostate 

cancer(CRPC). 

[72] 

Branched N-

glycans 

 

Linked to metastasis and disease-free survival. [73] 

Predictive biomarker for CRPC. [74] 
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α3 

β4 

β2 

α3 

β4 

β2 

α3 α6 
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α6 
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to poor prognosis in
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PSA, MUC1 and PAP in
malignant tissue
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Fucosylation describes the attachment of a fucose residue to a glycan, and consists of terminal
fucosylation and core fucosylation. Increased core fucosylation has been detected in the serum of
patients with prostate cancer, is associated with disease progression [43,67,68] (Table 1), and
may influence prostate cancer cell trafficking through an E-selectin dependent mechanism [56].
The fucosyltransferase FUT8 is the only enzyme responsible for the α-1,6-linked core fucosylation that
adds fucose to the inner GlcNAc on N-glycans [76]. FUT8 expression is increased in high-grade and
metastatic prostate cancer [73,77]. The increased fucosylation of glycoproteins in aggressive prostate
cancer correlates with FUT8 [69], and this has been recently linked to castrate resistance, cell survival,
and lower PSA production [78] (Table 1). Taken together, these findings implicate dysregulated
fucosylation in prostate cancer progression and the development of castrate resistance. In line with
this, several fucosylated glycoproteins are being investigated as potential non-invasive predictive
biomarkers. These include decreased fucosylation on PSA [33,79] and integrins [80], and elevated
fucosylated haptoglobin [68].
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5. O-GlcNAcylation

The addition of O-GlcNAc to proteins (known as O-GlcNAcylation) plays a fundamental
role in cellular processes, including transcription, epigenetics, cell signalling, proteostasis,
and bioenergetics [81,82] (Table 1). In cancer cells, elevated pools of Uridine diphosphate
N-acetylglucosamine (UDP-GlcNAc) drive the O-GlcNAcylation of key targets in the cytoplasm,
nucleus, and mitochondrion, and can alter key hallmarks of cancer [83,84]. O-GlcNAcylation is
catalysed by O-GlcNAc transferase (OGT) (for more details, see [85]). OGT uses UDP-GlcNAc as a
substrate, which is produced by the hexosamine biosynthetic pathway (HBP). HBP acts as a sensor for
the nutritional state of the cell, and has a key role in the metabolic rewiring observed in cancer [86].
In primary prostate cancer, global O-GlcNAcylation is elevated relative to benign disease [70], and
O-GlcNAc levels correlate with a higher Gleason score and reduced patient prognosis [71]. Both
OGT and enzymes in the HBP pathway change in prostate cancer. OGT is upregulated in primary
prostate cancer, and this is linked to a higher Gleason score, reduced time to biochemical recurrence,
and increased c-Myc stability [87]. Similarly, UDP-N-Acetylglucosamine Pyrophosphorylase 1
(UAP1,the last enzyme in the HBP) is also overexpressed in prostate cancer tissue [88]. Although
HBP is upregulated in localised prostate cancer where it promotes disease progression, in advanced
castrate-resistant disease, the inhibition of HBP enhances tumour growth [72]. Metabolic rewiring
during disease progression is believed to promote the downregulation of HBP in castrate-resistant
disease, and in particular, loss of the Glucosamine-Phosphate N-Acetyltransferase 1 (GNPNAT1)
enzyme may serve as a marker of progression to castrate resistance [72].

6. Branched and Cryptic N-Glycans

Changes to N-glycans are common in cancer, and have been linked to metastasis in multiple
tumour types [89,90]. Common changes include the branching of complex biantennary glycans to
triantennary and tetraantennary structures, and the emergence of cryptic N-glycans [9] (Table 1).
In prostate cancer, β-1,6-GlcNAc tri-branched and tetra-branched N-glycans are linked to both
metastasis in xenograft models and disease-free survival in patients [73]. Serum N-glycan signatures
have shown promise as diagnostic and predictive biomarkers in prostate cancer [91]. Changes to
branched N-glycans can help distinguish BPH and prostate cancer [43,92], and increased serum
triantennary and tetraantennary N-glycans have clinical utility to predict castrate-resistant prostate
cancer [74]. In recent work, a muti-omic study identified tetraantennary and tetrasialylated N-glycans
using mass specrometery as part of a biomarker panel to improve the stratification of patients with
indolent and aggressive prostate cancer, and predict patient survival [10].

Cryptic N-glycans are the precursors, cores, and internal sequences of N-glycans that are usually
masked by other sugar moieties, but occur in cancer due to alterations in glycan synthesis and
processing [22,93]. As illustrated in Table 1, they contain the same mannose cores, but differ in the
terminal sugar moieties. Cryptic N-glycans expose internal sequences that are normally ‘cryptic’ to
the immune system [94]. Several studies have investigated how cryptic N-glycans change among
different Gleason grades of prostate cancer and in metastatic disease [73,94–96]. Of particular interest,
the cryptic N-glycan Man9 has been detected in the serum of men with prostate cancer, and serum
Man9 autoantibodies may help differentiate high-grade tumours and predict clinical outcome [75].
The further development and validation of assays to detect anti-Man9 antibodies in patient serum is
expected to be useful clinically.

7. The F77 Antigen

An antibody against the F77 antigen was initially isolated from mice injected with PC3 cells, and
has provoked great interest as a prostate cancer-specific diagnostic and therapeutic tool. F77 was
first identified as a glycolipid with α1,2-fucose linkages, and linked to the glycosylation enzymes
Fucosyltransferase 1 (FUT1) and Core 2 Branching Enzymes 1-3 (GCNT1, GCNT2, and GCNT3) [97–99].
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However, F77 has since been detected on O-glycan proteins, including a spliced isoform of CD44
found in the sera of prostate cancer patients [100]. The antibody against F77 can inhibit the growth of
PC3 and DU145 tumour xenografts in nude mice, and can be used to differentiate primary and
metastatic prostate cancer from non-malignant prostate tissue, [99]. Immunohistochemistry staining
tissue sections detected F77 in 112 of 116 primary and 29 of 34 metastatic prostate cancer tissues, while
no signal was detected in normal prostate tissue [99].

8. Glycolipids

Many of the glycans found attached to proteins are also found on glycolipids (glycolipids are
lipids modified by one or more glycans). The aberrant expression of glycolipids in cancer has potential
roles in disease progression and anti-tumour immunity (see [101] for more details). In prostate cancer,
the F77 antigen (see Section 7 above) is known to contain a glycolipid with α1,2-fucose linkages, and
preliminary studies have linked increased ganglioside GD1a to castrate-resistant disease [102,103].

9. Proteoglycans

Proteoglycans are proteins that are heavily glycosylated. The core protein has one or more
glycosaminoglycan (GAG) chains attached (such as chondroitin sulphate, heparin sulphate, or keratin
sulphate). Proteoglycans are a major component of the extracellular matrix and interact with growth
factors, chemokines, and other extracellular matrix proteins. They have roles in cell signalling,
adhesion, cell growth, and apoptosis, and have an established role in cancer progression [104].
Several proteoglycans have been found to be important in prostate cancer, including versican, decorin,
biglycan, lumican, and syndecan-1 (summarised in Table 2), and data from a range of studies implicate
proteoglycan alterations to prostate cancer cell survival and metastasis [105]. Proteoglycan expression
patterns might be useful as predictive and prognostic biomarkers in patients with prostate tumours [22].
Of particular interest, increased levels of versican [106], biglycan [107], and syndecan-1 [108,109] are
linked to poor prognosis.

Table 2. Proteoglycans with roles in prostate cancer.

Proteoglycan Link to Prostate Cancer References

Versican
Modulates binding to the extracellular matrix (ECM) and

enhances motility.
Associated with poor prognosis.

[106,110–112]

Decorin
Suppresses tumour growth by inhibiting both androgen

receptor (AR) and epidermal growth factor (EGF).
Decreased in prostate cancer.

[106,113,114]

Biglycan Associated with poor prognosis and PTEN deletion. [107]

Lumican Lumican in stroma tissue suppresses cancer progression.
Potential marker in prostate cancer staging. [115]

Perlecan Linked to disease progression. Upregulates sonic
hedgehog signalling. [116,117]

Syndecan-1
Role in the epithelial-to-mesenchymal transition (EMT).
Maintains stability of prostate tumour initiating cells. [118,119]

Poor prognosis. [108,109]

10. Galectins

Cancer cells may also display altered expression of proteins that interact with glycans. A key
example of this is the galectins, which are a group of glycan-binding proteins with an established
role in tumour biology [120]. Several galectins have been implicated in prostate cancer biology
(summarised in Table 3). A unique galectin signature has been identified in prostate cancer tissue, with
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the upregulation of galectin-1 and downregulation of galectins 3, 4, 9, and 12 observed during disease
progression [121]. Of particular interest, galectin-3 is linked to tumour progression [122] and has a role
in the prostate cancer bone metastasis niche [123]. Immunohistochemistry staining of galectin-3 in
tissues from 83 patients had 91.7% sensitivity, 64% specificity, and 73% accuracy in predicting PSA
biochemical recurrence [124].

Table 3. Galectins with roles in prostate cancer.

Galectin Link to Prostate Cancer References

Galectin-1
Upregulated during disease progression. Linked to angiogenesis. [121]

Potential therapeutic target in CRPC. [125,126]

Galectin-3

Promotes prostate tumour growth and invasion.
Potential diagnostic marker. [127]

High in early stages, lost in advanced disease.
May predict biochemical recurrence. [123,124]

Role in bone metastasis niche. [122]

Galectin-4
Linked to metastasis and reduced survival. [128]

Part of O-glycosylation-mediated signalling circuit drives
metastatic CRPC. [129]

Galectin-8 Linked to metastasis. Proposed as prognostic biomarker. [130]

11. Upregulation of Glycosylation Enzymes

One of the underlying causes of aberrant glycosylation in cancer is the dysregulated expression of
glycosylation enzymes within the cancer cell [16]. Growing evidence links the differential expression of
glycosylation enzymes to the progression of prostate cancer [57,78,88,131–136] (summarised in Table 4).
Androgens are known to drive the development and progression of prostate cancer, and the first
line of treatment for men with advanced disease is androgen deprivation therapy (ADT) [137].
Recently, we identified a set of glycosylation enzymes that were regulated by androgens both in
seven men undergoing ADT, and in prostate cancer cell lines. Importantly, these enzymes are linked to
prostate cancer cell survival, and are upregulated in primary prostate cancer relative to normal and
benign tissue [131,132]. The androgen-regulated glycosylation enzymes in prostate cancer include:
(i) ST6GalNac1, which synthesises the cancer-associated sTn antigen, (ii) GCNT1, which is linked to
the synthesis of sLeX, (iii) GalNAc transferase 7 (GALNT7), which is part of a gene signature associated
with androgen receptor splice variant-7 (AR-V7), and (iv) the HBP enzyme UAP1, which is highly
overexpressed in prostate cancer [57,60,88,132,138]. Several cancer-associated glycans, including sTn,
Tn, and sLeX are also androgen regulated in prostate cancer cell lines [132], but this is yet to be studied
in primary patient tissue. Preliminary studies have found that GCNT1 can be detected in post-digital
rectal examination (post-DRE) urine from 35 prostate cancer patients by immunoblotting, and used
to predict the extracapsular extension of prostate cancer (the receiver operating characteristic (ROC)
curve analysis for GCNT1 was 0.7614, compared to 0.7455 for PSA) [139]. The UAP1 gene can also
be detected in plasma and urine, and can be used as part of a gene panel to predict prostate biopsy
results and prognosis [140,141]. Altered expression of the fucosyltransferases FUT6 and FUT8 are
important in advanced prostate cancer. FUT6 is upregulated in distant metastases, and may play a role
in metastasis to bone [136]. FUT8 expression increases in aggressive and castrate-resistant prostate
cancer, and is linked to poor prognosis in patients (these studies were based on cell lines, and a small
number of tissue samples and will need repeating in additional larger cohorts) [77,78]. Taken together,
these studies suggest that glycosylation enzymes are a promising but yet unexploited resource of
diagnostic and prognostic biomarkers for prostate cancer, and may also provide new insights into
candidate glycoprotein alterations.
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Table 4. Summary of glycosylation enzymes with roles in prostate cancer. HBP: hexosamine
biosynthetic pathway.

Glycosylation
Enzyme Role in Glycosylation Link to Prostate Cancer References

ST6GALNAC1 Transfers α-2,6 sialic acid
to O-linked GalNAc

Regulated by androgens. Upregulated in
tumour tissue. Linked to the synthesis of

sTn. Reduced cell adhesion
[60,61,142]

GCNT1
Forms core-2-branched

O-linked glycans

Increased in aggressive disease. Closely
related to extraprostatic extension and

lymph node metastasis. Increases tumour
growth on orthotopic inoculation into the

mouse prostate.

[133,134]

Resistance to NK cell immunity. [52]

Regulated by androgens [132]

Associated with higher levels of core 2 O
sLex in PSA, PAP, and MUC1 [57]

Linked to F77 antigen. [97]

Detected in post-DRE urine. Indicator of
extracapsular extension [139]

GCNT2 Forms core-2-branched
O-linked glycans

Linked to invasion. Potential role in
integrin signalling. [143]

GALNT7
Initiation of

O-glycosylation

Upregulated in malignant PCa as part of a
glycosylation gene signature. [144]

Androgen regulated and linked to prostate
cancer cell viability. [132]

Correlates with AR-V7 in CRPC. [138]

C1GALT1 Generates the common
core 1 O-glycan structure

Part of O-glycosylation mediated signalling
circuit that drives CRPC and is linked to

poor survival.
[129]

ST6Gal1
Addition of sialic acid to

galactose-containing
N-glycan

Upregulated. Linked to reduced survival
and metastasis. [135]

Regulated by androgens. [132]

EDEM3
Mannose trimming of

N-glycans

Upregulated in malignant prostate cancer
as part of a glycosylation gene signature. [144]

Androgen regulated and linked to prostate
cancer cell viability. [132]

MGAT5
Biosynthesis of β1,6
GlcNAc-branched

N-glycans
Link to metastasis in mouse models. [145]

UAP1
Last enzyme in HBP
pathway. Produces

UDP-GlcNAc

Highly overexpressed (correlates negatively
with Gleason score). Linked to increased

UDP-GlcNAc. Protects prostate cancer cells
from endoplasmic reticulum (ER) stress.

Regulated by androgens.

[88]

GNPNAT1 HBP pathway. Produces
UDP-GlcNAc GNPNAT1 is decreased in CRPC. [72]

FUT6 Fucosylation Upregulated in distant metastases. Role in
prostate cancer metastasis to bone. [136]

FUT8
Transfers fucose to
core-GlcNAc of the

N-glycans

Increased in aggressive prostate cancer and
linked to poor prognosis. [77]

Increased in CRPC. [78]
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12. Exosomes

Exosomes are small vesicles secreted from most cell types that are present in body fluids.
There is increasing evidence that exosomes are involved in carcinogenesis, and they are emerging as
a rich source of tumour-specific proteins and biomarkers for cancer detection and progression [146].
Exosomes secreted by the prostate are structurally unique, and can be isolated from seminal fluid, tissue,
blood, or urine for further analyses, providing a novel and easily isolatable source of tumour-specific
proteins [147]. Glycans are important in exosome function [148]. A recent review discussed the
potential to exploitexosomes as powerful tools to diagnose aggressive prostate cancer as early as
possible, as well as predict patient prognosis and response to treatment [149]. Exosomes are a rich
source of glycans [23,150], but are still largely unexplored in prostate cancer. The profiling of N-linked
glycans from prostate cancer exosomes indicates a global decrease in large branched triantennary and
tetraantennary glycans that reflects clinical status [151]. A better understanding of the presence of
glycoproteins and glycan profiles of exosomes could improve current approaches of diagnosis and
prognosis. As discussed by Tkac et al., glycan markers are likely to be enriched in exosomes, which
will aid in assay design [23].

13. Tissue Imaging of Glycans

Changes to glycans can be profiled in clinically relevant tissues using recently developed
innovative approaches. A sialyltransferase-based chemoenzymatic histology assay can detect
differences between unsialylated glycans in normal, cancerous, and metastatic prostate tissue
sections [152], and bioorthoganol labelling has been used to identify sialoglycoproteins in prostate
cancer tissue slices [48]. Advances in imaging mass spectrometry mean that glycans can now be
identified directly on patient tissue, allowing for analysis of the spatial distribution of glycans.
N-glycans can be profiled on formalin-fixed paraffin embedded (FFPE) tissue samples and tissue
microarrays (TMAs) using matrix-assisted laser desorption/ionization imaging mass spectrometry
(MALDI-IMS) [24,153–155]. In this recently developed approach, glycans are released from their
protein carrier and analysed directly on tissue. More than 40 individual glycan structures can be
detected, and tumour-specific glycans can be grouped relative to histopathology localisations [155].
A major advantage of MALDI-MS imaging is that the best starting material is FFPE tissue, which
is widely available in pathology labs. Ongoing work in this emerging area aims to identify
tumour-specific glycan biomarker panels indicative of aggressive prostate cancer, as well as identify
a second tier of biomarkers by linking glycans back to their original glycoprotein carriers [23]. It is
hoped that information on the various types of glycans within cancer tissue can be used in the future
to enable the development of lectin-based assays for use in the pathology lab [155].

14. A Multi-Omic Liquid Biopsy Test

The development and progression of prostate cancer from localised, organ-confined disease to
biochemically progressive and then to metastasis is prolonged. To capture this evolving landscape,
serial tissue biopsies are needed, which is difficult and costly to execute in the clinic. In addition,
prostate cancer preferentially metastasises to bone, which is a site that is very difficult to sample.
Tumour heterogeneity can also lead to aggressive tumours being missed, or underestimation of the
tumour landscape [156]. Liquid biopsies offer a potential solution to overcome the practical and
technical challenges of the traditional tissue biopsy [157]. The concept of a ‘liquid biopsy’ relies on the
principle that cancer cells are shed directly into blood, urine, and other body fluids. These cancer cells
can be captured and used to derive information to improve diagnosis, prognosis, or treatment. Liquid
biopsies may also capture a more complete representation of a cancer, which encompasses tumour
heterogeneity [158].
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Flow cytometery techniques were able to detect circulating prostate cancer cells in men
with metastatic disease as early as the 1970s [159]. Today, technologies can use bodily fluids to
profile genomic mutations, copy number alterations, and obtain information about the tumour
transcriptome, epigenome, proteome, metabalome, and glycome. Among prostate cancer liquid
biopsies, circulating tumours cells (CTCs) are the most extensively evaluated biomarkers [160], but
other clinically relevant phenotypes have also shown promise. These include detection of the androgen
receptor variant V7 (AR-V7) [161], circulating miRNAs [162–164], TMPRSS2:ERG, and prostate cancer
antigen 3 (PCA3) [165–167], circulating free DNA (cfDNA) (reviewed in [158]), detection of gene
methylation [168,169], and the analysis of tumour-derived exosomes [170].

Individual biomarkers in liquid biopsy can often not accurately predict disease state due to
heterogeneity in phenotype across individuals and over time. To address this challenge, effective
diagnostics using liquid biopsies will require multiparameter strategies to combine information from
multiple analytes. A recent study by Murphy et al. suggested that integrating biomarkers across
multi-omic platforms (including changes to the epigenome, transcriptome, proteome, and glycome)
can improve the stratification of patients with prostate cancer [10]. By the analysis of four types of
DNA methylation, four coding and nine non-coding RNAs, 27 peptides, and 13 glycans (in a cohort of
158 radical prostatectomy patients), combined with clinical parameters, it was possible to effectively
distinguish indolent and aggressive prostate cancer with area under the ROC curve (AUC) = 0.91 (age,
PSA level, Gleason score, and DRE gave an AUC of 0.67). This strongly suggests that multivariate
models (built from different -omics data) will lead to superior accuracy over individual markers for
prostate cancer diagnosis and disease stratification [10], and together with the data discussed in this
review, clearly demonstrate that the inclusion of glycans in a multi-analyte liquid biopsy test for
prostate cancer should help improve clinical utility.

15. Conclusions and Future Perspectives

Glycans contribute to many aspects of prostate cancer, and likely represent a huge and largely
untapped resource of biomarkers with clinical utility. The summary provided by this review suggests
that glycan-based biomarkers should be exploited as powerful tools to diagnose prostate cancer as
soon as possible, and to accurately determine tumour aggressiveness and patient prognosis. Liquid
biopsies hold great potential as non-invasive assays to monitor tumour heterogeneity and evolution,
and select personalised therapy. As new markers are identified, their clinical impact must be translated
through assay development, followed by clinical reproducibility and sensitivity testing [171]. These
efforts raise new biological and technical challenges [158,172], yet constitute critical steps towards
precision oncology. The ultimate goal in the field will be to clinically validate several types of molecules,
including glycans, within a multi-analyte liquid biopsy test. Furthermore, looking towards the future,
artificial intelligence-based tools may be useful to automatically discover and detect these signatures
and move the field towards multiparametric analyses [173]. Alongside this, the development of
novel glycan-targeting drugs (for examples, see [174–179]) will likely lead to new personalised
glycan-based therapies.
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