

**Figure S1.** The effects of Cd and exogenous GB application on MDA accumulation in the shoots (**A**,**B**) and roots (**C**,**D**) of two tobacco cultivars (Left: Guiyan1; Right: Yunyan2) exposed to 5  $\mu$ M Cd for 5, 10, and 15 days: The error bars represent the SD values (n = 3). The different letters indicate the significant differences (p < 0.05) among the 4 treatments within each sampling date. Control, GB, Cd, and Cd + GB correspond to BNS + foliar spray of deionized water, BNS + foliar spray of 500  $\mu$ M GB, BNS + foliar spray of deionized water + 5  $\mu$ M CdCl<sub>2</sub>, and BNS + foliar spray of 500  $\mu$ M GB + 5  $\mu$ M CdCl<sub>2</sub>, respectively.



**Figure S2.** The effects of Cd and exogenous GB application on the SOD, POD, CAT, and APX activities in the shoots of two tobacco cultivars (Left: Guiyan1; Right: Yunyan2) exposed to 5  $\mu$ M Cd for 5, 10, and 15 days: The error bars represent the SD values (n = 3). The different letters indicate the significant differences (p < 0.05) among the 4 treatments within each sampling date. Control, GB, Cd, and Cd + GB correspond to BNS + foliar spray of deionized water, BNS + foliar spray of 500  $\mu$ M GB, BNS + foliar spray of deionized water + 5  $\mu$ M CdCl<sub>2</sub>, and BNS + foliar spray of 500  $\mu$ M GB + 5  $\mu$ M CdCl<sub>2</sub>, respectively.



**Figure S3.** The effects of Cd and exogenous GB application on the photosynthesis parameters of two tobacco cultivars after 15 days of Cd exposure: The error bars represent the SD values (n = 3). The different letters indicate the significant differences (p < 0.05) among the 4 treatments within each cultivar. Control, GB, Cd, and Cd + GB correspond to BNS + foliar spray of deionized water, BNS + foliar spray of 500  $\mu$ M GB, BNS + foliar spray of deionized water + 5  $\mu$ M CdCl<sub>2</sub>, and BNS + foliar spray of 500  $\mu$ M GB + 5  $\mu$ M CdCl<sub>2</sub>, respectively. Pn = net photosynthetic rate, gs = stomatal conductance, Tr = transpiration rate, and Ci = intercellular CO<sub>2</sub> concentration.



**Figure S4.** Transmission electron micrograph images of the root tip cells of Guiyan1 (left panel) and Yunyan2 (right panel) after 15 days of Control (**A**,**B**), GB (**C**,**D**), Cd (**E**,**F**), and Cd + GB (**G**,**H**) treatments, respectively. Control, GB, Cd, and Cd + GB correspond to BNS + foliar spray of deionized water, BNS + foliar spray of 500  $\mu$ M GB, BNS + foliar spray of deionized water + 5  $\mu$ M CdCl<sub>2</sub>, and BNS + foliar spray of 500  $\mu$ M GB + 5  $\mu$ M CdCl<sub>2</sub>, respectively. Labels: N, nuclear; NL, nucleolus; V, vacuole; W, cell wall; M, mitochondrion, PL, plasmolysis. The arrows indicate the electron dense granules (EDG). Bar = 1  $\mu$ m.

![](_page_4_Figure_0.jpeg)

**Figure S5.** The effects of Cd and GB on the stomatal aperture of Guiyan1 (left panel) and Yunyan2 (right panel) after 15 days of Control (**A**,**B**), GB (**C**,**D**), Cd (**E**,**F**), and Cd + GB (**G**,**H**) treatments, respectively. Control, GB, Cd, and Cd + GB correspond to BNS + foliar spray of deionized water, BNS + foliar spray of 500  $\mu$ M GB, BNS + foliar spray of deionized water + 5  $\mu$ M CdCl<sub>2</sub>, and BNS + foliar spray of 500  $\mu$ M GB + 5  $\mu$ M CdCl<sub>2</sub>, respectively. The photos were detected by a scanning electron microscope. Labels: OS, open stomata with aperture width  $\geq$  2  $\mu$ m; CS, close stomata with aperture width < 2  $\mu$ m; EH, epidermal hair. Bar = 20  $\mu$ m.