Supplementary Information

Triphenylamine-merocyanine based D1-A1- π -A2/A3-D2 chromophore system: Synthesis, optoelectronic and theoretical studies

Pedada Srinivasa Rao^{1,2}, Avinash L. Puyad³, Sidhanath V. Bhosale^{1,2*} and Sheshanath V. Bhosale^{4*}

¹Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India ³School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, Maharashtra, India

⁴Department of Chemistry, Goa University, Taleigao Plateau, Goa-403206, India * Correspondence: bhosale@iict.res.in; svbhosale@unigoa.ac.in

Keywords: donor-acceptor; cyclic voltammograms; triphenylamine; tetracyanoethylene; 7,7,8,8-tetracyanoquinodimethane

Figure S1. Thermogravimetric analysis (TGA) graph of TPA-MC-1.

Figure S2. Thermogravimetric analysis (TGA) graph of TPA-MC-2.

Figure S3. Thermogravimetric analysis (TGA) graph of TPA-MC-3.

Table S1. Calculated TD-DFT excitation properties of TPA-MC-1, TPA-MC-2 and TPA-MC-3

	Excitation	Excitation	Oscillator		Percentage
Molecules	Energy	Wavelength	Strength	Excitations	contribution for transition
	(eV)	(nm)	(f)		
TPA-MC-1	2.5831	479.98	2.1566	150 ->151	HOMO->LUMO (98%)
TPA-MC-2	1.8305	677.34	0.5899	182 ->183	HOMO->LUMO (96%)
				182 ->184	HOMO->L+1 (3%)
	2.2915	541.06	0.7965	182 ->183	HOMO->LUMO (3%)
				182 ->184	HOMO->L+1 (93%)
	2.6517	467.57	0.6391	181 ->183	H-1->LUMO (4%)
				181 ->184	H-1->L+1 (93%)
TPA-MC-3	1.4538	852.85	1.0404	202 ->203	HOMO->LUMO (98%)
	2.2895	541.52	0.9685	200 ->203	H-2->LUMO (50%)
				202 ->204	HOMO->L+1 (44%)
	2.6822	462.25	0.6986	199 ->203	H-3->LUMO (5%)
				200 ->203	H-2->LUMO (2%)
				201 ->204	H-1->L+1 (85%)
				202 ->205	HOMO->L+2 (5%)

TPA-MC-1		eV		
L	151	-1.90127		

Н	150	-4.81428	
TPA-M	IC-2		
184	I +1	-2 64034	
183	L	-3.15355	

192	н	5 25010	
182	Н	-5.25919	1 -
181 TPA-N	<u>H-1</u> IC-3	-5.60641	
205	L+2	-1 93175	

204	L+1	-2.5519	
203	L	-3.57397	
202	Н	-5.18	

Figure S4. Frontier molecular orbitals of TPA-MC-1, TPA-MC-2 and TPA-MC-3 with energy in eV.

Figure S5. The computed absorption spectra of TPA-MC-1.

Figure S6. The computed absorption spectra of TPA-MC-2.

Figure S7. The computed absorption spectra of TPA-MC-3.

Figure S8. ¹H NMR spectra of compound 3.

Figure S9. ¹³C NMR spectra of compound 3.

Figure S10. FT-IR spectra of compound 4.

Figure S11. ¹H NMR spectra of compound 4.

Figure S12. ¹³C NMR spectra of compound 4.

Figure S13. ESI-Mass of Compound 4.

Figure S14. HRMS of Compound 4.

Figure S15. FT-IR spectra of compound TPA-MC-1.

Figure S16. ¹H NMR spectra of TPA-MC-1.

Figure S17. ¹³C NMR spectra of TPA-MC-1.

Figure S18. ESI-Mass of TPA-MC-1.

Figure S20. FT-IR spectra of compound TPA-MC-2.

Figure S21. ¹H NMR spectra of TPA-MC-2.

Figure S22. ¹³C NMR spectra of TPA-MC-2.

Figure S23. ESI-Mass of TPA-MC-2.

Figure S24. HRMS of TPA-MC-2.

Figure S25. FT-IR spectra of compound TPA-MC-3.

Figure S26. ¹H NMR spectra of TPA-MC-3.

Figure S27. ¹³C NMR spectra of TPA-MC-3.

Figure S28. ESI-Mass of TPA-MC-3.

Figure S29. HRMS of TPA-MC-3.