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Abstract: Acute traumatic spinal cord injury (SCI) involves primary and secondary injury mechanisms.
The primary mechanism is related to the initial traumatic damage caused by the damaging impact
and this damage is irreversible. Secondary mechanisms, which begin as early as a few minutes
after the initial trauma, include processes such as spinal cord ischemia, cellular excitotoxicity, ionic
dysregulation, and free radical-mediated peroxidation. SCI is featured by different forms of injury,
investigating the pathology and degree of clinical diagnosis and treatment strategies, the animal
models that have allowed us to better understand this entity and, finally, the role of new diagnostic
and prognostic tools such as miRNA could improve our ability to manage this pathological entity.
Autopsy could benefit from improvements in miRNA research: the specificity and sensitivity of
miRNAs could help physicians in determining the cause of death, besides the time of death.

Keywords: acute spinal cord injury; pathophysiology; clinical management; postmortem techniques;
animal models; miRNAs

1. Introduction

Spinal cord injury (SCI) consists of a plethora of signs and symptoms resulting from a combination
of different factors among which the primary impact, the subsequent cellular swelling, the continuous
spinal cord compression, vascular (linked to the integrity of the arterial feeding and of the venous
outflow), and intrinsic cellular mechanisms [1,2]. In recent years, there has been a progressive
epidemiological increase and a trend reversal linked to a greater number of incidences in elderly people
of a pathology historically linked to young age [3].

Acute traumatic SCI involves primary and secondary injury mechanisms. The primary mechanism
is related to the initial traumatic damage caused by the damaging impact and this damage is irreversible.
Secondary mechanisms, which begin as early as a few minutes after the initial trauma, include processes
such as spinal cord ischemia, cellular excitotoxicity, ionic dysregulation, and free radical-mediated
peroxidation [4,5].

Our paper is dedicated to provide a concise review in a rapidly evolving field—SCI—featured by
different forms of injury, investigating the pathology and degree of clinical diagnosis and treatment
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strategies, the animals models that have allowed us to better understand this entity and, finally, the
role of new diagnostic and prognostic tools such as miRNA and the perspectives on the future of
research about SCI [6].

2. Functional and Neurological Implications of the Spinal Cord Injury

2.1. Traumatic SCI: Clinical Findings

SCI is generally identified in clinical settings because of its neurological consequences. Each SCI
level, such as Cervical (CS), Thoracic (TS), and Lumbar (LS) spine SCI, has its typical presentations, such
as a lesional and sublesional syndromes and motor and sensory clinical presentations, and possible
concurrent sphincter impairment (Figure 1).
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the pyramidal tracts and of extrapyramidal controlling systems. 

Figure 1. (A) Computed tomography (CT) scan disclosing a Thoracolumbar “C” type Spine Fracture
Dislocation (arrow), with (B) and (C) complete Spinal Cord Injury (arrow). (D) 3D reconstruction of
the CT scan disclosing the Spine Fracture Dislocation (arrow).

When the SCI regards the entire spinal cord, all the functions at the level and below of the lesion
are lost, while if the damage is incomplete, the consequent neurological presentations depends on
the horns, tracts and roots involved. In particular, in the typical lesional syndrome, damage of the
posterior horns or dorsal roots could cause hyper- or hypoanalgesia, while flaccid paralysis, muscular
hypotonia and hypotrophy, loss of reflexes, and fasciculations appear in the case of lesions of the
anterior horns or ventral roots.

In the sublesional syndrome, the sensory clinical presentation is represented by loss of
proprioception and pain, vibration, touch, and temperature sensations. The motor clinical presentation
features spastic paralysis, hypertonia, and increased reflex response due to damage of the pyramidal
tracts and of extrapyramidal controlling systems.

In the emergency scenario, nothing must be left to the eventuality and every patient suffering
from SCI must undergo a standardized assessment, performed with dedicated evaluation tools, in
order to receive an accurate prognostic information and a fine and complete neurological evaluation.
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2.2. Evaluating Tools

Standardized tools have been created and subsequently validated in order to precisely assess and
evaluate the neurological conditions of patients suffering from SCI [6]. The main advantages of such an
approach include the possibility to uniform all the clinical observations in a similar fashion; to program
and to obtain reliable results, both from trial concerning the clinical management; and the prognostic
issues in SCI2. Each SCI patient admitted into an Emergency Department should currently undergo a
standard evaluation [6,7]. Historically, the American Spinal Injury Association (ASIA) substituted,
in the first half of the 1970s, the previous gold standard Frankel Evaluation Scale because of a more
accurate neurological definition [8].

2.2.1. Frankel Scale

The Frankel Scale synthetizes the neurological conditions of the patient affected by SCI in a purely
“functional” fashion, considering the residual sensory or motor functions below the injury level; the
instrument classifies five groups of patients: (A) Patients with a full motor and full sensory deficit.
(B) Patients with a full motor palsy but some residual sensory function level. (C) Residual motor
function but not useful for an independent life. (D) Reduced strength in concern to the motor function
which is besides useful. (E) Normal neurological function. It is noteworthy that in the original paper
of 1969, concerning the B and C degrees, the integrity of the sensory function was considered to be
collateral, and the effective functional breakpoint is the interval between C and D scores, by which the
patients are considered or not considered to be independent [8].

2.2.2. ASIA Scale

In respect to the Frankel Scale, the ASIA score (and subsequent revised versions) overcomes
the limitations concerning the simplified “below the injury level” concept. Furthermore, the sensory
function evaluation is dermatomal-based, which means it is extremely accurate for each single
dermatome. The anorectal sphincter function evaluation was definitively introduced [9]. To sum up,
the sensory examination evaluates 28 specific dermatomes. The examination proceeds bilaterally and
includes superficial sensations (touch) and deep pain sensation (pinprick). For each dermatome, and
for each side, the scores are described as follows. 0: Absent sensation. 1: Impaired or altered sensation.
2: Normal sensation [10]. The motor examination consists of bilaterally evaluating, by means of a
traditional six-step (0–5) strength evaluation scale with five specific muscle groups in the upper limbs
and five specific muscle groups in the lower limbs; the cervical and lumbar myotomes are responsible
for the movement of the 10 most important articulations [9]. The anorectal sphincter function is directly
examined in a standard fashion by means of a direct anal and bulbocavernous reflex evaluation; the
possible results are presented as function (1) or absent function (0). During the spinal shock phase,
in the acute traumatic SCI, ASIA score is not suitable because of the flaccid paralysis and general
areflexia (including the sphincter reflexes). Although extremely accurate, the ASIA score present the
major limitation of its substantial inapplicability for patients suffering from concurrent consciousness
disturbances [9].

2.2.3. Barthel Index

The Barthel Index [11] was introduced in 1965 with the purpose of measuring performance in
activities of daily living. This tool was designed to evaluate the functional modifications due to
hospitalization in rehabilitation facilities, in particular, for patients suffering from stroke. The scale
has been modified in order to improve its sensibility and actually it is used for measuring the degree
of independence in patients with different diseases causing impairment in daily life activities [12].
The Barthel Index is an ordinal scale composed by ten variables and three possible levels of independence
for each variable. Every item is rated with a number, higher scores relate to better performances.
The three possible classes for every variable are (A) the patient is completely dependent from help in
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the execution of that particular activity; (B) the patient can fulfill the task only with partial help from
others; and (C) the patient is completely autonomous. In patients with SCI, the Barthel Index improves
after systemic treatment, especially for lumbar segments [13].

2.2.4. Functional Independence Measure

The Functional Independence Measure (FIM) measures the degree of disability in activities of
daily living in patients hospitalized after stroke, traumatic brain injury, and SCI with a scale composed
by 18 categories [14]. In particular, 13 categories analyze motor functions and five study cognitive
functions [15]. Each item is evaluated with a number ranging from 1 (degree of independence in that
particular daily life activity <25%) to 7 (100% of independence) and, consequentially, higher scores
relate to better performances. FIM is registered at admission and at discharge, and the partial score for
each time allows for the evaluation of the degree of help that the patient needs in order to accomplish
basic activities. The Spinal Cord Independence Measure (SCIM) is a specific version of FIM that
evaluates patients with SCI [16]. The total scores range from 0 to 100 and there are three subscales that
evaluates self-care, respiratory, and sphincter management, mobility.

3. Pathophysiology of the Spinal Cord Injury

3.1. Primary Mechanisms

Primary mechanism consists of the direct damage on the SC tissue perpetrated by a direct trauma
on the SC parenchyma. Among such possible factors are included a direct injury cause by a vertebral
trauma with bony disruption and/or ligament avulsion [17], which can directly impact SC. Other direct
traumatic mechanisms include a missile damage (such as in gunshot related SCI), laceration, shear
damage, and distraction [1,18] (Figure 2).Int. J. Mol. Sci. 2019, 20, 1841 5 of 28 
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3.2. Secondary Mechanisms

The aforementioned list of possible mechanisms of damage causes a focal neuronal and
oligodendrocytes injury resulting in a blood–spinal–barrier (BSB) interruption with increased SC
parenchyma permeability and subsequent changes in the electrolytes concentration beyond the BSB,
with altered sodium and calcium channel function [19,20]. Direct neurons and oligodendrocytes
damage along with a damage to the microvasculature, result in a focal ischemia and a cellular swelling
evolving in cellular death with release of proinflammatory factors, vasoactive peptides [21–23], and
cytokines [1], in response to which, the resulting increased permeability includes also the inflammation
cells promoting further tissue damage. Among the possible pathogenesis of such a focal ischemia,
mechanical damage-related vasospasm [24], microhemorrhages [25], and focal thrombosis caused
by platelet aggregation have been advocated [26,27]. A critical role has been also advocated for free
radicals of oxygen [28]. Cellular excess of such species is formed, in response to focal ischemia, because
of an incomplete transformation process operated by the Dismutase/Catalase enzyme system during
the electron transport in the mitochondrial oxygen metabolism chain [29]. This process then result in
progressive peroxidation of the cellular inner membrane causing a dysfunction of the phospholipids
dependent enzymes, among which cGMP [30] and Na+/K+ ATPase, with subsequent alteration of the
membrane gradients and cellular death, circularly resulting in further damage [31].

3.3. SCI-Related Pathways

SCI causes a deregulation of a plethora of pathways within the central nervous system [32], which
will be discussed in the present section.

The term apoptosis indicates a programmed cell death involving many cellular types, among
which neurons, oligodendrocytes, and microglial cells [33,34].

It represents a major secondary pathological change of SCI. Cell death after SCI occurs after tissutal
physical trauma, on one hand, and from secondary injury which enlarges the damage up to rostral and
caudal zones, on the other. Moreover, inflammatory reactions greatly contribute to the development of
secondary damage [35] and will be discussed later. Secondary injury following SCI plays an important
role and can aggravate damage and limit the recovery and secondary mechanisms of injury, including
neurogenic shock; vascular insults, such as hemorrhage and ischemia reperfusion; excitotoxicity;
calcium-mediated secondary injury and fluid–electrolyte disturbances; immunologic injury; apoptosis;
disturbances in mitochondrion function; and other miscellaneous processes [2]. At the RNA level, the
modulation in expression of several apoptosis-related genes has been established [36].

The RAS genes comprises a family of membrane-bound 21-kd guanosine triphosphate (GTP)-binding
proteins, which play an essential role in cell growth regulation, differentiation, and apoptosis. This effect is
achieved through the interaction with MAPK (mitogen-activated protein kinase), STAT (signal transducer
and activator of transcription), and PI3K (phosphoinositide 3-kinase) [37–39]. Usually, a deregulation
in MYC (proto-oncogene, bHLH transcription factor) expression is counterbalanced by the onset of
apoptotic pathways. Otherwise, cancer progression is favored [40].

SCI is known to activate an inflammatory response which starts with the alteration of the blood
spinal cord barrier. Later on, peripheral immune cells infiltrate, inducing inflammatory signaling
pathways [41,42]. Inflammation is responsible for secondary damage to the core and surrounding
regions of the injury site [43]. Specifically, neutrophils appear at the injury site 4 to 6 h after SCI, reach
a maximum at 12 to 24 h, and then disappear in 5 days [44,45]. Vascular damage in the spinal cord
causes apoptosis, edema, and damage white matter [46], while endothelial cell loss and angiogenesis
take place over a week post-SCI [47].

Astrogliosis is another typical cellular response to SCI. It implies a profound molecular and
functional rearrangement of astrocytes [48] as well as an early hypertrophic neuroprotective phase,
which gives way to a hyperplasic phase. Here, the formation of a glial scar hampers tissutal
regeneration [49]. The first phase promotes the repair of the injured blood–brain barrier and the second
one encourages gliosis process. The glial scar provides a defense and it is mainly formed by reactive
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astrocytes and proteoglycans [50]. The glial scar also prevents inflammatory response to exceed and
limit cellular degeneration [51]. During astrogliosis, many genes are turned on in expression, such as
glial fibrillary acidic protein (GFAP) and vimentin [52].

Following SCI, the injured spinal cord experiences oligodendroglia cell death and demyelination.
In fact, one of the characteristics of central nervous system is its restricted capability in promoting a
regenerative response. Local environmental, on one hand, and molecular features at cellular level,
on the other, are responsible for this failure [53]. The possibility of a spontaneous remyelination
and axonal regeneration processes is limited: a chronic and irreversible axonal damage is the final
outcome [54].

The increase in reactive oxygen species (ROS) after SCI is able to recruit immune cells in the site of
injury, thus enhancing secondary injury extent [55]. The endogenous antioxidant system comprises
glutathione, ascorbic acid, and ROS-scavenging-related enzymes; this cellular machinery tries to fight
ROS and their effects on cellular functions.

Neurogenic differentiation 6 (NeuroD6), a protein potentially involved in the development of the
mammalian nervous system [56], regulates thioredoxin-like 1 and glutathione peroxidase 3. Its infusion
into SCI lesions reduces the oxidization of the lesion after SCI and it is also effective in impairing
apoptosis [57].

Neuroplasticity has been reported to occur in the adult nervous system after SCI. This process
involves alterations in several molecular actors, cytokines, and growth factors, to name a few, and the
sprouting of new neural connections. This ultimately leads to axon regeneration [58].

4. Management of the Spinal Cord Injury

4.1. General Management

Adequate blood perfusion and oxygen saturation and deep venous thrombosis prophylaxis
are the first critical targets to achieve as per recommendation of the AANS/SCI guidelines [59,60].
Hypotension, commonly found in clinical practice following a SCI, could produce further ischemic
damage. Mean arterial pressure should range between 85 and 90 mmHg for the first seven days after
the SCI event. Peripheral blood saturation should be maintained at a minimum value of 90%, and low
molecular weight heparin should be administered along with antithrombotic compression stockings.

4.2. The NASCIS Era and Its Legacy

Apart from surgery, and its role in the management of SCI, probably the most discussed treatment
in the last three to four decades has been the use of Methylprednisolone sodium succinate (MP). The first
observations of the early 1980s outlined a potential promising neuroprotective role of MP in SCI clinical
and preclinical settings. Those observations gave rise to multiple randomized clinical trials (NASCIS I
and II) that proved a statistical association with improved neurological outcomes, in a multivariate
analysis in concerns to the treatment group, and the placebo group in regards to the interval between
the onset of SCI and the beginning of the treatment disclosing a statistically significant better outcome
when MP administration was started in less than 8 h after the trauma [61,62], with an average increase
of 5 points in the ASIA score of MP group in respect to the placebo group. Such results, depicting
a limited overall expected improvement, were subsequently balanced with an increased incidence
of infection and wound problems along with gastrointestinal hemorrhages [63,64]; until the 2013
guidelines of AANS/CNS ruled out MP administration from the recommended measures in patients
suffering from SCI [65], because of a concurrent significant evidence of potential harm [66], which
nevertheless remains controversial. The current position of the AOSpine Guidelines [67] regarding
the use of MP consists of administering a 24-h MP infusion to adult patients who can be treated
after less than 8 h from the trauma; a 48-h MP infusion should be in any case avoided, and use of
MP should be pondered in any case because of the lacking evidence of conspicuous improvements
at 6- and 12-months as far as the motor scores are concerned; according to the author’s thorough
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literature review no statistical difference between treatment groups in the risk of complications can be
unequivocally outlined.

4.3. Surgical Decompression and Treatment of the Vertebral Bony Associated Lesions

A spine trauma, determining an impairment of the physiological vertebral integrity and stability
by means of a ligamentous and/or bony disruption, can result in a direct trauma to the SC parenchyma
related to a SCI [23]. Concerning the vertebral fractures/dislocations, only a lesser part of those
conditions is associated to a neurological syndrome [67]. In such a clinical scenario, an adequate
laminotomy with wide decompression of the SC, along with a restoration of the spinal stability through
a spinal pedicular fixation remains, both for cervical and thoracolumbar levels, a gold standard of
care [68–70].

In particular, the issue of the correct “timing” for the decompression procedure has been extensively
debated. Currently, evidences outline that in thoracolumbar fractures, the optimal timing should not
exceed 24 h to 72 h of delay in respect to the trauma [66,67,71,72]: such an early treatment is associated
with a reduction of the overall complication rate, intensive care unit (ICU) stay length, infections, and
the number of days of ventilator dependence [73]. Furthermore, regarding thoracolumbar fractures, an
early procedure is associated with a lower incidence of bed rest-related complications, narcotic and
painkiller agent use, and a faster overall recovery time [74].

In the clinical context of cervical spine fractures dislocation, the “timing issue” produced way
more significant results: in the STASCIS prospective trial, based on clinical records of 313 SCI related
to cervical spine fractures, early surgery (<24 h) was associated to a more significant probability of
better neurological outcome [75]. Later evidences outline that an earlier treatment (<8 and 12 h),
depending on the study, produces better functional and neurological mid- to long-term outcomes [76,77];
although such results are still controversial and deserve perhaps further unambiguous validation
by evidences [78,79], which appear to intrinsically difficult to retrieve because of the vast amount
of possible intervening factors, such as age, comorbidities, and absence or presence of hypotension
following the trauma.

5. Focused Postmortem Techniques of the Human Brain and Spinal Cord

5.1. Removal of the Human Brain and Spinal Cord

The brain and spinal cord may be successfully removed in several ways, depending on the
pathology, especially in the presence of SCI. The goal is an intact brain ready for preliminary gross
examination that has no or minimal removal artifacts.

Usually, to remove an adult brain, the head is positioned and stabilized on a block while a
bitemporal incision passing near the vertex is made in the scalp down to the bone. Next, a sharp
dissection peels back the skin and subcutaneous tissues posteriorly and anteriorly. The circumference
of the skull is cut horizontally at the location of a crown placed on the head, with a vibrating saw
or similar device. To enable realignment for postmortem reconstruction, depending on personal
preference, triangular notches are cut in the skullcap; a “step cut” or an angled cut is often used.
While cutting the skull cap, avoid cutting the dura to avoid penetrating the brain itself. After the cut is
finished, use a hook or other wedge to separate and remove the skull cap. In adults, if the dura–brain
relationship needs to be preserved, careful dissection is needed to separate the dura from the skull
because it is usually tightly adhered to the inner skull. After the skull cap is removed, an incision
is made in the dura from the anterior attachment. To examine the anterior skull and brain base, the
brain is gently lifted and retracted posteriorly. Inspect for and record abnormalities of the anatomical
structures. Dissect the olfactory bulbs from the cribriform plates, and incise the carotid arteries, third
cranial nerves, and optic nerves where they exit the brain. Cut the tentorial attachment to the petrous
edge and separate the posterior bony attachments of the dura and tentorium from the skull. Inspect the
anterior basal posterior fossa to identify and separate the cranial nerves and vessels. Lastly, transect the
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medulla or upper cervical cord. To separate and remove the brain from the cranial cavity and precede
to the last preliminarily steps of the examination, next, one should usually sever the vertebral arteries
as low as possible. Now, the unfixed brain should be weighed (record whether this weight included
the dura). Inspect the gross anatomy, and the vessels and nerves to identify and record abnormalities.

When a subarachnoid hemorrhage is present, particularly if localized, it should be dissected while
fresh to avoid the consequences of fixation that usually results in a hardening of the blood mass that
can make dissection very challenging. Although aneurysmal walls are usually very frail, they must be
located and identified.

Once the brain is removed, the dural sinuses can be opened at the base of the skull and searched
for obstructions. Indications of cerebral pressure markings can now be checked. Then, use bone forceps
to remove the basal dura from the base of the skull that can then be inspected to detect fractures or
other lesions. Break the dorsum sellae along its upper anterior surface using a chisel and hammer.
Use scissors to cut the margins of the diaphragm while holding the diaphragm with forceps. Retract the
diaphragm upward, thereby lifting the pituitary gland from its fossa; this should permit fine scissors
or the point of a scalpel to reach the gland’s inferior connections, cut them to easily remove the gland.

Many different approaches and entrances to the dorsal spine are available, though these are
seldom used unless there is trauma, such as from a gunshot wound or prior surgery.

In the posterior approach, the body should be placed in the prone position with blocks under
the shoulders. A midline incision is made through the spinous processes, muscles are resected, and
bilateral laminectomies are made using a saw. Because this method easily exposes the uppermost
cervical spine and allows direct visualization of the craniocervical junction, it is recommended in cases
where neck injuries are suspected or when the brain needs to be excised along with the spinal cord.
Posterior dissection reveals deep contusions with blood extravasation and fractures of posterior parts
of vertebral bodies also are revealed. After the spinal cord has been removed, the spinal canal can be
readily examined.

The anterior approach is the fastest and simplest way to remove the cord because the cadaver
does not need to be turned over. The peripheral nerves can be followed after removal of the cord.
Detailed examination of the vertebral bodies is also possible. Removal of only a part of the cord is
possible, but removing the entire cord is usually preferable.

In the anterior approach, which begins after thoracic and abdominal organs and neck evisceration,
the paravertebral muscle and soft tissues are dissected laterally and, with a vibrating saw, sever the
lateral vertebral processes from the high thoracic or lower cervical levels down to the lower lumbar
level; avoid deep penetrations so that the spinal cord is not damaged. Incise through the high and low
disks transversely to remove vertebral bodies; this will reveal the spinal cord within the dural sleeve
along with the nerve roots and ganglia. Then, cut the dura vertically down to the spinal level that is
visible, and incise around the dura circumferentially, while taking care not to cut the actual spinal cord.
Inspect and sever the lower nerve roots, and cut across the cord itself at the caudal level. While lifting
up the entire mass, cord, dura, and nerves, towards the head, sever the nerves and other connections.
At this point, only the cervical nerves and the dentate ligaments connect the cervical cord to the body.
Disrupt these connections by pulling on the cord so that the entire cord can be removed from below.

Alternatively, the anterior approach also allows the complete removal of the brain with the spinal
cord (Figure 3).
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5.2. Dissection of the Human Brain and Spinal Cord

Fixation is an extremely important step in the proper examination of the brain and spinal cord as
it allows for detailed anatomical studies of the nervous system. Fix the specimen, preferably with little
prior handling, in a large volume of 10% formalin solution. To prevent distortion during fixation, we
suspend the brain by passing a thread underneath the basilar artery in front of the pons. In the case of
pontine infarcts or other lesions, a thread can be passed under the internal carotid. Alternatively, the
dorsal dura can be used as an anchoring point. The specimen is not must to touch the bottom or sides
of the bucket.

The options for correctly cutting a brain after fixation are many. The goal of preparing brain slices
to permit abnormalities to be recognized, located anatomically, and described accurately. Consequently,
description, not diagnosis, is essential. Tools reserved for brain cutting, should be stored separately
from others used for general autopsy or organ dissection. The coronal brain cutting technique is
probably the most frequently used and most reliable method. Fortunately, this approach is well
depicted in multiple anatomic atlases; hence, anatomic references are widely available.

Before slicing, carefully examine the fixed brain externally. If the dura is present, remove it,
preferably using blunt dissection; however, a scalpel can be used if needed. Then, carefully inspect
the outer surfaces of the fixed brain. Next, identify each of the first nine cranial nerves bilaterally;
most of the other cranial nerves, below the ninth, usually have been removed along with the brain.
Now, dissect the posterior cerebral arteries at the midbrain, identify the posterior communicators, and
inspect the posterior fossa arterial branches. Any lesion seen thus far should be taken. Of note, this
is the optimal point to perform any special studies of cerebral cortical areas if needed because easy
identification of these areas is now possible.

The cerebrum can be optimally separated from the brainstem at this time by inserting a scalpel
blade lateral to one cerebral peduncle and cutting through the midbrain horizontally. Next, the
midbrain section is usually cut along with the brainstem sections. By cutting serial coronal sections,
the brainstem can then be examined. So that the cerebrum can be easily visualized by the pathologist,
it should be oriented with the base side upwards before cutting because all the important anatomic
structures are located on the base. Then, serial coronal sections are cut; each cut should be made
smoothly, not sawed; start cutting with the base of the knife and end at the tip. Because sawing can
crush tissue, it should be avoided. Begin the first sectioning at the temporal tips, so hydrocephalus, if
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present, can be seen on this section. Make sections 0.5-cm thick; thicker sections are needed in the case
of massive hemorrhage and if the brain is softened.

Occasionally, for special purposes, alternative approaches to preparing sections may be required.
Examples for visualizing midline abnormalities that are often better demonstrated using a midsagittal
cut of the whole brain, or in order to make parasagittal or steep angular cuts to identify anatomic
fiber tracts. Alternatively, the cerebellum can be cut along the horizontal plane or in along planes
perpendicular to the folial orientation. A combination of both methods also can be used. Preparing
sections of the brain stem and cerebellum should be consistent with the principles used for the
cerebral hemispheres.

For examination of the spinal cord, after the dura has been opened along the anterior midline and
the cord surface has been examined, a series of cross-sections are prepared. The dura should be left
attached to the cord to keep the sectioned spinal cord and roots together. When specific radicular-level
involvement has been reported premortem, the involved roots should be identified and processed
separately. Use a blade to section the spinal cord at about at 1-cm intervals. Occasionally, longitudinal
sections can be cut to visualize the rostral–caudal extent of a lesion, such as in traumatic contusion.
However, achieving a straight plane in a longitudinal section is often difficult.

5.3. Selection of Tissue Blocks for Histologic Examination

When the lesions in the brain are obvious, selection of the appropriate blocks is simple.
No universally accepted standards exist, but whatever choices are made, selection of blocks should be
topographically consistent (Figure 4).
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Figure 4. (A) After accurate sections, spinal cord roots and vertebral levels can be counted. (B) Subacute
traumatic injury of the spinal cord: clearly visible, in B and C, ferrous particles deriving from hemoglobin
colored by the method of Perls (arrows) (B ×60; C ×100). (D) In fluorescence, small hemorrhagic
collections in subjects with acute cervical medullary injury (arrows) (×200).

In presence of spinal cord lesions, pathologists should attempt to locate the radicular-segmental
or vertebral body level of the lesion. To correctly locate the spinal levels, the dural sac and nerve root
exits must be intact.
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6. Animal Models for the Understanding of SCI

Protocol of Study

Worldwide, animal models represent a developing research area, since they hold promise in
improving human therapeutic iter. For SCI research, the need for a reliable animal model is peremptory,
being possible to cause a trauma and monitor carefully all variables involved, but this does not mean
that satisfactory results can be easily obtained. Ideal models should reach high levels of reproducibility,
stability, and feasibility, as well as similarity to clinical SCI. Methods for reproducible and controlled
SCI models have been well described [80,81], together with many behavioral outcome measures [82–84].
All these studies have clarified the pathophysiology of SCI, ameliorating the current perspective of
functional recovery. So far, many animal models have been developed, of which murine models are
undoubtedly the most rapid and least expensive ones.

Of these, rats are most frequently used for their low cost, availability, and similarity to human SCI
functional outcomes [85]. Obviously, various animal models own advantages and disadvantages, but
no one can completely satisfy both research and clinical needs, although many progresses have been
made in the last two decades.

Furthermore, clinical trials have revealed the significant dissimilarity between animal and human
SCI. Although quite similar in theory, the pathology of human SCI presents distinctive elements.
In other words, as exciting as the findings from animal studies are, they are multifaceted and often
contrasting those from clinical studies, lowering model translational impact on human outcomes [86,87].
This is probably because human SCI is heterogeneous in nature [88], besides anatomic differences
between the species.

The spinal region most frequently studied through animal models is the thoracic one, whereas
cervical zone is analyzed to a lesser extent. This is quite surprising, since human SCIs commonly occur
at the cervical level, mainly due to motor vehicle accident and sport injury, and thus should deserve
particular attention [89].

This is mainly due to the fact that cervical SCI can be lethal for the animal, causing impairment of
respiratory functions [90,91].

SCI models can be classified on the basis of the mechanism of injury as contusion, compression,
distraction, dislocation, transection, or chemical [92].

In contusion models, a transient force applied through weight-drop, electromagnetic, or
compressed air instruments causes spinal cord injury [93,94], while in compression models, the
spinal cord injury is achieved through prolonged compression [95]. In distraction models, traction
forces extend the spinal cord with opposite trends [96]; lateral displacement of vertebra is obtained in
dislocation models [97]; transection implies spinal cord severing [98], and finally, chemicals are used to
dissect secondary signaling cascades caused by SCI [99–101].

7. The Role of miRNA after SCI

7.1. miRNAS: Stucture and Function

MicroRNAs (miRNAs) consist of endogenous, noncoding, single-stranded, 22-nucleotide-long
RNAs, which are responsible for the post-transcriptional genic regulation [102]. MiRNAs are estimated
to regulate more than half of all genes in the human genome [103], and increasing evidence demonstrates
that a large number of miRNAs are expressed in the central nervous system [104]. Some miRNAs are
involved in several neurological disorders, including traumatic CNS injuries and neurodegenerative
diseases [105–107], thus, their role in regulating SCI-related signaling networks is supposed to be
crucial. Many authors have claimed that miRNAs are potential new targets for the treatment of SCI.
Since miRNAs can regulate many genes at the post transcriptional level, they are attractive candidates
as upstream regulators of the secondary SCI progression [108].
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7.2. miR-20a and miR-29b

Since miRNAs regulate a plethora of genes at the post-transcriptional level, their involvement in
apoptosis regulation after SCI is not surprising. Among all, miR-20a and miR-29b have been proved
to target two important mediators of neuronal apoptosis, BH3-only family genes, and myeloid cell
leukemia sequence-1 (Mcl-1), belonging to Bcl-2 family [109–111]. An animal model of neuro-2A
neuroblastoma cells has been employed to assess the involvement of miR-20a and 29b in neuronal
apoptosis of SCI. The authors demonstrated that miR-20a and miR-29b mimics were able to decreased
Mcl-1 expression and Bad/Bim/Noxa and Puma, respectively. The authors injected miR-20a and miT-29b
inhibitors in two distinct animal groups (C57BL/6 mice) during laminectomy at the 10th thoracic spinal
vertebrae (T10) [109]. As explained in the previous section (animal models), the vast majority of in vivo
studies about miRNA involved in SCI opt for thoracic injuries (in particular, laminectomy at the 10th
thoracic spinal vertebrae), since it is possible in this way to avoid fatal cases, on the one hand, and
analyse the effects of rehabilitation exercise on gene expression, on the other. Another study showed
that abnormal expression of miR20a is able to induce secondary injury in adult female mice subjected
to T9-T10 laminectomy. In this study, authors injected miR20a in surgically exposed spinal cord and
demonstrated miR20a to induce apoptotic neural cell death after two days of infusion. Interestingly,
miR20a was able to induce a type of SCI very similar to the traumatic one. Concomitantly, miR-20a
target genes, such as Ngn1, Ngn2, DCX, SMAD1, E2F1, PBXO6, CDK2, and CDK4, were reported to
decrease in expression [112]. All these findings suggest that miR20a could be a potential target for
therapeutic intervention after SCI.

7.3. miR-223

MiR-223 is a highly conserved miRNA, which was first characterized as a myeloid-specific
miRNA among all hematopoietic cells [113]. Although its function has been only partially described,
miR-223 was proved to regulate granulocyte differentiation and activation [114]. The involvement of
miR-223 in boosting inflammatory response through modulation of NLRP3 inflammasome activity
was also demonstrated (NLRP3 inflammasome activity is negatively controlled by miR-223). MiR-223
is involved in post-SCI apoptotic pathway. Again, an in vivo model of thoracic SCI was built (in
this case trauma was inflicted at thoracic vertebra 8); the injection of antagomir-223 reduced Bax and
caspase-3 expression levels, ultimately reducing cell apoptosis [106]. Furthermore, the silencing of
miR-223 also improved recovery after trauma, making miR-223 a candidate for the development of
new therapeutic strategies for SCI. Another study involving microarrays for the detection of miRNA
alteration after SCI demonstrated the increase in miR-223 levels 14 days after SCI [107]. Other reports
confirmed the increase in expression of miR-223 post-SCI, although shortly after trauma (6 to 12 h
after SCI) [108]. Overall, accumulating evidence indicates miR-223 as a potential therapeutic target to
achieve functional recovery, angiogenesis and anti-apoptosis after SCI [115]. Besides being involved
in the apoptotic pathway, miR-223 has been also linked to inflammation-related pathways after SCI.
In particular, miR-223 was demonstrated to increase in response to neutrophil recruitment [116], which
occurs soon after SCI [54], and its association with myeloid cell differentiation was also assessed [114].
Similarly, other authors confirmed the increase in miR-223 RNA levels 6 h, 12 h, and 3 days after SCI.
They hypothesize this upregulation to be related to inflammatory reactions after SCI [117]. Furthermore,
miR-223 was also proved to be involved in neurotoxicity, since its upregulation is able to silence the
expression of NMDA and AMPA receptor subunits [118].

7.4. mir-21

The sequence of miR-21 is well conserved across species. So far, this miRNA has been mainly
characterized for its implication in carcinogenesis [119]. MiR-21 has been shown to exert an antiapoptotic
function: it is upregulated in the vast majority of solid cancers. In fact, its most important direct
targets are apoptotic-related genes, such as PDCD4 (programmed cell death protein 4) and RECK
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(Reversion-inducing-cysteine-rich protein with kazal motifs). Tumor suppressor tropomyosin 1 (TPM1)
has been confirmed as a target of miR-21 [120].

TPM1 and TPM2 isoforms are suppressed in malignant cells, thus being implicated in neoplastic
transformation [121]. PTEN (phosphatase and tensin homologue) is probably the most well-studied
tumor suppressor gene, which is inactivated by increased levels of miR-21 [122]. Finally, APAF1
(apoptotic protease activating factor-1), which is the molecular core of the apoptosome, was reported
to contain a strong miR-21 binding site, prompting the authors to propose it as a direct target of
miR-21 [119]. All these findings suggest miR-21 to act as an antiapoptotic factor, which would protect
neural cells from death through the silencing of proapoptotic molecules [123].

The abnormal expression of miR-21 has been demonstrated in many injury models of SCI.
For example, in a rat model of T10 contusive SCI, the upregulation of miR-21 has been established by
microarray analysis [105]. The same results were reported in another microarray analysis involving rat
thoracic models of SCI (contused at T8). This increase in expression was also observed seven days
postoperation [106]. Another study implying rat models subjected to laminectomy at T12-T13 level
reported an initial increase in expression of miR-21, followed by a deep switching off. The increase
in expression of miR-21 was hypothesized to exert a protective effect for neural cells [124], since
its silencing was reported to induce apoptosis [119,125,126]. In accordance with this study, Bhalala
and colleagues reported an upregulation of miR-21 in astrocytes in the site of trauma, which was
responsible for the suppression of the hypertrophic response to SCI [127]. The overexpression of
miR-21 was demonstrated to impair ischemic neuronal death, prompting researchers to suggest it
as a candidate for the development of new therapeutic strategies for stroke. This mechanism was
demonstrated to involve Fas ligand gene (FASLG) silencing [123]. In accordance with these findings,
the use of antagomiR-21 was also demonstrated to increase Fas ligand (TNF-a family) expression
at day 3 after SCI [128]. A recent transcriptomic study made use of a microarray screen to identify
miRNAs altered in expression after sciatic nerve injury. Among others, miR-21 showed an upregulation;
furthermore, miR-21 promoted neurite outgrowth in rat dorsal root ganglion neurons, demonstrating
its involvement in regenerative processes [129].

7.5. mir-15 and mir-16

miR-15 and miR-16 are clustered at the 13q14.3 genomic region, which is frequently deleted
in high-stage tumors. Besides deletions and translocation events involving these miRNAs, their
downregulation was reported in B cell of patients suffering chronic lymphocytic leukemia [130].

Members of this miR family are involved in crucial cellular pathways, such as cell division,
metabolism, stress response, and angiogenesis. At the pathological level, they were demonstrated to
play crucial roles in carcinogenesis, cardiovascular diseases, and neurodegenerative diseases [131]. They
also act as tumor suppressor genes inhibiting BCL2 expression, and thus favoring apoptosis [132]: their
increase in expression is concomitant to the decrease in expression of Bcl-2, an antiapoptotic factor [133],
and the increase in expression of caspases 3, 8, and 9, the final effectors in the apoptotic pathway [134].
The crucial role of miR-16 and miR-15b on apoptosis has been investigated through multiple approaches,
such as miRNA profiling assays, TUNEL staining, and annexin-V/PI labeling flow cytometry [132]. In rat
models of SCI, the upregulation of miR-16 and miR-15b after injury was demonstrated to be linked to
Bcl-2 silencing [135]. Furthermore, exercise after SCI increased the expression of miR-16, while miR-15b
levels decreased, with concomitant change in expression of their target genes [136].

7.6. miR-124

MiR-124 is an highly conserved miRNA. Its expression is restricted to the muscle and the central
nervous system. MiR-124 is almost absent in neural progenitors, while it is highly expressed in neuronal
cells after differentiation [137] until becoming the most abundant miRNA in the adult brain [138].
MiR-124 is hypothesized to exert a crucial function in the differentiation of progenitor cells to mature
neurons [139]. Nonetheless, miR-124 was demonstrated to promote ectoderm differentiation towards a
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neuronal lineage. This effect is achieved through a negative feedback loop inhibiting REST-mediated
repression of neuronal genes, with concomitant shutdown in expression of non-neuronal genes [140].
In a rat model of SCI, in situ hybridization localized miR-124a expression in the gray matter. Expression
assays showed a decrease in miR-124a levels 12 h after trauma lasting for a week [44]. The authors
concluded that the trend in expression of miR-124a expression may reflect cell death after SCI.
The expression of miR-124a was investigated in a mouse model of SCI and monitored for seven
days after trauma. Expression levels of target miRNA were confirmed by in situ hybridization [117].
Results showed a decrease in expression of miR-124a after SCI. In a rat model of cervical SCI and in
cell cultures, miR-124 delivery was demonstrated to reduce the activation of microglial cells, reducing
MHC-II, TNF-α, and ROS production in bone marrow derived macrophages [141]. The decrease in
miR-124 expression in contused animals could be attributed to the high degree of neuronal death
resulting from the primary injury [117]. However, Sox2 and REST genes show upregulation in large
motor neurons in which miR-124 expression has been silenced, letting researchers to hypothesize
cellular dedifferentiation to be responsible for the decrease in miR-124 expression [124].

7.7. miR-200c

MiR-200c belongs to the miR-200 family, which regulates the epithelial-to-mesenchymal transition
in various cancer types. MiR-200 levels were reported to decrease in various tumors and this event
increase cancer cell aggressiveness. On the contrary, the introduction of miR-200 is detrimental for
cancer cell growth. [142–144]. The mechanism by which miR-200c is able to induce apoptosis involves
the regulation of FAP-1 [145]. In accordance with these findings, a significant increase in expression of
miR-200c due to post-SCI apoptosis has been recently assessed by Yu and coworkers, concomitantly
to the downregulation of Fas-associated phosphatase-1 (FAP1). Another study dealing with murine
microglial cell lines reported that the upregulation of miR-200c promoted apoptosis and impaired
functional recovery [145]. These findings may suggest new therapeutic strategies for recovery after SCI.

7.8. miR-486

MiR-486 has been recently demonstrated to silence the expression of neurogenic differentiation 6
(NeuroD6), a neuroprotective protein that triggers the expression of ROS scavenger proteins (GPX3,
thioredoxin). NeuroD6 is a target of miR-486 in the motor neuron; this protein is responsible for
neuronal differentiation and the oxidative stress response [146]. It induces the expression of GPx3
(glutathione peroxidase 3) and TXNL1 (thioredoxin-like 1) in SCI, which contrast ROS (reactive oxygen
species) dangerous effects and inflammatory reactions [147]. In murine models of SCI, the increase in
expression of miR-486 was noticed in motor neurons seven days after injury. This event was responsible
for the repression of NeuroD6. The ultimate effect was the decrease in ROS scavenger proteins
and increased neurodegeneration mediated by oxidative stress. This mechanism was confirmed by
administration of miR-486 and silencing assays in the same animal model [147]. In fact, the infusion of
miR-486 into the spinal cord of healthy animals was able to decrease the motor function and to promote
neuronal death. Silencing assays were performed knocking down miR-486 in a mouse SCI model; here,
functional recovery was promoted, suggesting new therapeutic avenues in clinical treatment of SCI.

7.9. Let-7

The Let-7 family is highly conserved and is composed by 12 members, one of which is let-7a.
Various human let-7 genes map to regions which are subjected to deletion in human cancers [148].
These findings, together with others reporting let-7 downregulation in tumors [149], suggest that this
family could act as tumor suppressors. In accordance with these findings, the overexpression of let-7
was able to stop cell growth in a cancer cell line [149]. Despite these evidences, the exact mechanism by
which let-7 regulates cell cycle is only partially known. The antiapoptotic genes RAS [150,151], and MYC
are both targeted by let-7a, which ensures their silencing in physiological conditions. For these reasons,
let-7a could cooperate with miR-21 in their regulation [152]. Several members of this family, specifically
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let-7a, let-7d, and let-7g, were found to be downregulated after SCI [106]. The increased levels of
cytokine IL-6 during the first days after SCI correlates with the decrease of its regulator, let-7a [153].

7.10. miR-96 and miR146a

Mir-96 and miR-146a belong to the let-7/miR-98 family, a highly conserved family that consists
of 12 members [154], and plays a key role in cell proliferation, differentiation, and oncogenesis [155].
MiR-96 and miR-146s are known to decrease after SCI [99,100]: this trend favors apoptosis through
the concomitant increase in expression of their targets, proapoptotic proteins caspase3 [156], and
Fas/CD95 [157]. Interestingly, an increased expression of miR-146a is observed seven days after
SCI [106,146], and this event exerts its inhibitory effect on NF-κB expression [158] through a negative
feedback that ultimately cause the inactivation of NF-κB pathway.

7.11. miR-107

Bcl-2 is a target for many miRNAs, one of which is miR-107. A recent work made by Liu et al.
demonstrated the upregulation of this miR 4 h after SCI. The authors suggested this event to cause the
increase in Bcl-2 levels thus promoting apoptotic pathway. After seven days, miR-107 levels decreased
in expression, inverting this trend [105].

7.12. miR-1

MiR-1 exerts different roles in cell proliferation and differentiation [159]. Furthermore, miR-1 is
able to arrest the already initiated differentiation process of neuronal cells [160]. These characteristics
render miR-1 an interesting candidate for the study of neural responses after SCI.

A significant decrease in miR1 expression after spinal cord contusion has been reported [124],
although these alterations were not confirmed after SCI [161].

Experimental findings on SCI regarding miR-1 are controversial. In fact, upregulation after
SCI was reported by Liu et al. [105], while downregulation was noticed by other authors in similar
experimental conditions [106,124]. Since miR-1 plays crucial roles in sensory reactivity and inhibition
of angiogenesis [162] its change in expression reported in SCI could be attributed to a vascular response
to trauma [161]. Despite the fact that this hypothesis was reliable, RT-PCR assays in heart and carotid
arterial tissue did not confirm an alteration in expression of miR-1, suggesting that changes in miR-1
expression after spinal cord contusion [124] were confined to the injury site rather than reflecting a
systemic adaptation.

7.13. miR-129

Human miR-129-1 is located in the genomic regions near FRA7H: this is one of the 7q32
chromosome fragile sites that is subjected to deletion in several solid tumors. miR-129 is hypothesized
to exert a tumor suppressor activity. Its downregulation was evaluated in many tumor cell lines (with
respect to normal counterparts) [163–166]. Moreover, miR-129 expression appears to correlate with
tumor differentiation status [167–169]. Together with miR-1, miR-129 presides over transcription,
differentiation, and cell cycle-related processes, and may promote an aberrant mitotic phenotype
at the injury site after SCI [170]. In fact, miR129 family suppresses the expression of CDK6, a G1/S
phase-specific regulator, thus miR129 silencing is a permissive situation for cellular proliferation of cells
arrested at the G1 phase [171]. In the study conducted by Wu in 2010, miR129-2 and miR129-1 were
downregulated four days after SCI [171]. Similarly to these findings, miR-129 showed a downregulation
in the injury sites of contused rat spinal cords [124].

All the discussed data about the role of miRNAs after SCI are summarized in Table 1.
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Table 1. Roles of different miRNA in SCI.

ID Model Expression Experimental Setup Method Site of Injury Targets References

mir20a mir29b Adult female
C57BL/6 mice

mir20 upregulated
mir-29b

downregulated

Injection of mir20a and
mir-29b in two animal groups

of during SCI
Contusive T10

downregulation of antiapoptotic myeloid cell
leukemia sequence-1 (Mcl-1) and up-regulating

proapoptotic BH3-only proteins.
[109]

mir-223

Adult male
Sprague

Dawley rats
upregulated 1, 3, 7, and 14 days after SCI Contusive T8

the injection of antagomir-223 reduced Bax and
caspase-3 expression levels, ultimately reducing

cell apoptosis
[115]

Male C57BL/6
mice upregulated 12 h after SCI

Compressing the cord
laterally from both sides for
10 s with a number 5 forceps

T11–12 miRNA-223 may reflect inflammatory responses [117]

Adult male
C57BL/6 mice upregulated from 6 to 12 h after SCI

Compressing the cord
laterally from both sides for
10 s with a number 5 forceps

T11

miR-223 is expressed in neutrophils that relate to
the inflammation in the epicenter after SCI, and

inflammatory cytokines were also highly
expressed within the same range.

[116]

mir-21

Adult female
SD rats upregulated 4 h, 1 day, and 7 days after SCI Contusive T10 Inflammation, oxidation and apoptosis [105]

Adult female
Wistar rats upregulated 1, 3, and 7 days after SCI Contusive T8 TPM1, PTEN [148], PDCD4 [98],

proapoptotic [149] [106]

Male Sprague
Dawley rats upregulated 4 and 14 days after SCI Contusive T12–T13

Suppression of miR21 has been shown to cause
apoptosis in both cortical progenitor cells

and gliomas
[124]

mir-15 mir-16
Adult female

Sprague
Dawley rats

downregulated 12 h after SCI
Compressing the cord

laterally from both sides for
10 s with a number 5 forceps

T9–T10

Target genes: proapoptotic (decreased PTEN,
PDCD4 and RAS mRNA) and antiapoptotic

(increased Bcl-2 mRNA). Down regulation of
mRNA for caspase-7 and caspase-9 and reduced

levels of caspase-7 protein.

[136]

mir-124 Male C57BL/6
mice downregulated 12 h after SCI

Compressing the cord
laterally from both sides for
10 s with a number 5 forceps

T11–12
reduce the activation of microglial cells,

reducing MHC-II, TNFa and ROS production in
bone marrow derived macrophages

[117]

mir-486 Adult female
ICR mice upregulated 0, 1, 2, 3 and 7 days after SCI Transection T11 miR-486 targets NeuroD6 and reflects apoptosis [147]

mir-96 mir146a Adult female
SD rats upregulated 4 h, 1 day, and 7 days after SCI Contusive T10 apoptosis through the concomitant increase in

expression of the proapoptotic proteins caspase3 [105]

mir-107 Adult female
SD rats upregulated 4 h, 1 day, and 7 days after SCI Contusive T10 Apoptosis [105]

mir-1 Adult female
SD rats upregulation 4 h, 1 day, and 7 days after SCI Contusive T10 Inflammation, oxidation and apoptosis [105]

mir-129 Male Sprague
Dawley rats downregulated 4 and 14 d after SCI Contusive T12–T13 cell cycle, cell proliferation, cell differentiation [124]
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8. The Future of SCI-Related miRNAs

In the last few years, miRNAs have attracted scientific interest in the field of forensic pathology.
This is certainly due to their intriguing characteristics, such as their high resistance to external factors,
their tissue/fluid-specificity, or disease-specificity. Last but not least, miRNA research is not quite
expensive [172]; all the above mentioned features make miRNAs the ideal candidates for daily practice
of the forensic laboratory. Here, it is the norm to work with degraded samples [173,174]. So far, forensic
studies investigating miRNA expression have tested their specificity to serve as an alternative tool for
body fluid identification [173–178]. However, results are often controversial. MiRNA dysregulation has
been reported in almost all physio and pathological conditions, including traumatisms. Traumatic brain
and spinal cord injuries (SCI) are the most common causes of disability in young adults. Several studies
regarding miRNA expression in these multiple traumas have been conducted [105,179–183]. Therefore,
the study of miRNAs may provide new insights into the molecular mechanisms of SCI. Almost all
these studies deal with animal models, whereas clinical studies are rare. One exception is a study
that analyzes miR-185 expression and its target—TGF-β1—in bone tissue, blood, and cerebrospinal
fluid [184].

9. Conclusions

SCI is featured by different forms of injury, and after investigating the pathology and degree of
clinical diagnosis and treatment strategies, animal models have allowed us to better understand this
entity and, finally, the role of new diagnostic and prognostic tools such as miRNA could improve
our ability to manage this pathological entity. Autopsy could benefit from improvements in miRNA
research: the specificity and sensitivity of miRNAs could help physicians in determining the cause of
death, besides the time of death [185]. The literature describes specific microRNAs that may provide
indications for understanding some crime scene investigations and pathological processes in the
cadavers. Forensic research using microRNA has been primarily used for the identification of body
fluids, but its use in understanding pathological processes in postmortem pathology has not been
exhaustively studied [186]. Again, it has been hypothesized that miRNAs present in vitreous humor
could be a sort of “biological black box”, storing information about physiological and environmental
circumstances at death. Authors support the potential forensic utility of the analysis of miRNAs in the
vitreous humor in applications such as determining the time of death [187].

For all the above-mentioned reasons, miRNAs could become in the next future reliable forensic
biomarkers for the diagnosis and prognosis of SCI. Specifically, those miRNAs involved in the
SCI-related pathways, which were discussed earlier in the present review, could become part of the
routinary clinical practice integrating current histological and immunohistochemical investigations.
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94. Marcol, W.; Ślusarczyk, W.; Gzik, M.; Larysz-Brysz, M.; Bobrowski, M.; Grynkiewicz-Bylina, B.; Rosicka, P.;
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