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Abstract: Retention in gas–liquid chromatography is mainly governed by the extent of intermolecular
interactions between the solute and the stationary phase. While molecular descriptors of computational
origin are commonly used to encode the effect of the solute structure in quantitative structure–retention
relationship (QSRR) approaches, characterisation of stationary phases is historically based on
empirical scales, the McReynolds system of phase constants being one of the most popular. In this
work, poly(siloxane) stationary phases, which occupy a dominant position in modern gas–liquid
chromatography, were characterised by theoretical molecular descriptors. With this aim, the first five
McReynolds constants of 29 columns were modelled by multilinear regression (MLR) coupled with
genetic algorithm (GA) variable selection applied to the molecular descriptors provided by software
Dragon. The generalisation ability of the established GA-MLR models, evaluated by both external
prediction and repeated calibration/evaluation splitting, was better than that reported in analogous
studies regarding nonpolymeric (molecular) stationary phases. Principal component analysis on the
significant molecular descriptors allowed to classify the poly(siloxanes) according to their chemical
composition and partitioning properties. Development of QSRR-based models combining molecular
descriptors of both solutes and stationary phases, which will be applied to transfer retention data
among different columns, is in progress.

Keywords: gas chromatography; poly(siloxane) stationary phases; QSRR modelling; molecular
descriptors; retention prediction; McReynolds constants

1. Introduction

Quantitative structure–retention relationship (QSRR) method is a specialised branch of quantitative
structure–activity(property) relationship (QSA(P)R) approach aimed at relating the retention of the
analytes in separation chromatographic systems to their molecular structure [1–3]. Multilinear
regression (MLR) and, less often, partial-least square or artificial neural network regression have
been used to establish the relationship between the solute structure, encoded by a set of molecular
descriptors, and the retention time (or a related parameter) observed in liquid or gas chromatography [1].
A QSRR model, once calibrated on a sufficiently large set of representative solutes by multivariate
regression of the measured retentions against the molecular descriptors, can be applied to deduce
the chromatographic behaviour of unseen compounds solely from their chemical structure, although
prediction is restricted to the same column/mobile phase pair and separation mode used in calibration.
With the aim of extending retention prediction to a useful domain of separation conditions, which can
be of great help in the optimisation of the chromatographic methods usually based on time-consuming
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empirical approaches, QSRR-based comprehensive models combining solute molecular descriptors
and descriptors of the mobile phase [4–6] or the column [7,8] have been recently proposed.

Retention in gas chromatography (GC) is mainly governed by the extent of the intermolecular
interactions between the solutes and the stationary phase, since the gaseous mobile phase is not involved
in the partition mechanism under the typical experimental conditions of analytical separations [9].
In this regard, the ability of the stationary phase of being involved in inductive, dispersive, orientation,
lone-pair electron and H-bonding interactions determines the column polarity, while selectivity is
related with its capacity to participate in specific intermolecular interactions. In linear free energy
relationships (LFERs) and LFER-based QSRRs [9,10], empirical or semiempirical molecular descriptors
have been conceived to quantify the abilities of the solutes to take part in the postulated intermolecular
interactions with the chromatographic phases. In spite of their conceptual and historical importance,
the LFER molecular descriptors are not readily available for most solutes of current analytical interest.
On the other hand, structural properties provided by quantum chemistry or thousands of molecular
descriptors determined by a large spectrum of other computational methods are nowadays available
for encoding the effect of molecular structure in QSAR modelling. As regards QSRRs, several classes
of theoretical molecular descriptors, often with no simple physical identity, have been employed in
the last decades to model the retention behaviour of many different chemical classes on specific GC
separation systems [1,11–15].

While theoretical characterisation of solutes is a consolidated practice in QSRR modelling,
description and classification of the GC stationary phases is historically based on empirical approaches
enduring until recently [9]. One of the most popular empirical scales is the McReynolds system of
phase constants [16], which is based on the difference in the retention index values for prototypical
solutes on the stationary phase to be characterised and on squalane, taken as a nonpolar reference
phase. Apart from classification of columns, in terms of polarity/selectivity, empirical descriptors of
the stationary phase, including the McReynolds constants, were previously used in combination with
theoretical molecular descriptors of solutes with the aim of transferring retention data among different
columns [17–19]. In this context, the possibility of describing by computational molecular descriptors
not only the effect of the solute structure on the retention but also the main partitioning properties of
GC stationary phases is an attractive objective.

Poly(siloxane) stationary phases (Tables 1 and 2) occupy a dominant position in modern liquid–gas
chromatography (LGC), because of excellent thermal and chemical stability coupled with high solute
diffusivity [20]. Moreover, the polarity and selectivity of LGC poly(siloxane) columns can be widely
tuned by varying the kind and content of the functional groups incorporated into the structure [21].
In this paper, a QSSR method focusing on the column rather than on the solute was developed with the
aim of characterising the poly(siloxane) stationary phases by means of theoretical molecular descriptors.
To identify among the large number of structural properties provided by popular software Dragon [22]
a small set able to represent the partitioning ability of poly(siloxanes), the McReynolds constants were
considered as QSRR responses. We established a specific QSRR for each of the first five McReynolds
constants, X, Y, Z, U and S, based on the prototype solutes benzene, butanol, 2-pentanone, nitropropane
and pyridine, respectively, selected to characterise the principal intermolecular interactions responsible
for retention. The ability of the McReynolds solutes to represent individual intermolecular interactions
has been sometimes criticised [21]. Nevertheless, X, Y, Z, U and S seem the adequate responses of
a QSRR model focused on the stationary phase chemical structure, regardless of their capability of
providing a quantitative measure of the stationary phase selectivity, since each quantity refers to a
specific solute and was determined with a standardised experimental protocol in which any other source
of variability, related for instance with the column geometry or the elution conditions, was removed.
The McReynolds constants of molecular (nonpolymeric) stationary phases were previously modelled
by QSRR using quantum chemical descriptors [23,24], while the molecular descriptors here employed
were obtained by less sophisticated and faster computational methods. The polymeric structure of
poly(siloxane) stationary phases, by contrast, makes their theoretical characterisation not so obvious
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as in the case of the molecular stationary phases previously investigated. The QSRR models were
generated by MLR coupled with genetic algorithm (GA) variable selection. Principal component
analysis (PCA) was applied to the set of the significant molecular descriptors to support the physical
interpretation of the final QSRR models and attempt classification of poly(siloxane) columns.

Table 1. Molecular structure of poly(methylphenylsiloxane) stationary phases and related
McReynolds constants.

POLY(METHYLPHENYLSILOXANES)
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Column
Composition (%) McReynolds Constants
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OV-1 100 0 0 16 55 44 65 42
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OV-3 80 20 0 44 86 81 124 88
OV-7 60 40 0 69 113 111 171 128

DC-550 50 50 0 74 116 117 178 135
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OV-17 0 100 0 119 158 162 243 202
SP-392 0 90 10 133 169 176 258 219
OV-22 0 70 30 160 188 191 283 253
OV-25 0 50 50 178 204 208 305 280
Rtx-20 80 0 20 67 116 117 174 131

OV-61 67(70)
a 0 33(30)

a 101 143 142 213 174

Rtx-35 65 0 35 101 146 151 219 202
Rtx-65 35 0 65 125 175 183 268 220

a nominal composition and in brackets that of the geometric model.

Table 2. Molecular structure of poly(methyltrifluoropropylsiloxane) and
poly(cyanoalkylmethylphenylsiloxane) stationary phases, and related McReynolds constants.

POLY(METHYLTRIFLUOROPROPYLSILOXANES)
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Table 2. Cont.
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Column
Composition (%) McReynolds Constants

t u v w x y X Y Z U S

SILAR
5CP 0 0 0 0 100 0 319 495 446 637 530

SILAR
7CP 0 0 0 0 50 50 440 638 605 844 673

SILAR
9CP 0 0 0 0 20 80 489 725 631 913 778

SILAR
10CP 0 0 0 0 0 100 523 755 659 942 801

OV-105 90 0 0 10 0 0 36 108 93 139 86
OV-225 0 50 0 50 0 0 228 369 338 492 386

p-NSKT-100 0 0 0 100 0 0 276 461 405 584 473
NPS-100 0 0 100 0 0 0 297 502 451 644 512
NSKI-25 75 0 25 0 0 0 122 261 237 345 244
NSKT-33 67(65) a 0 33(35) a 0 0 0 135 275 251 363 259

XE-60 50 0 50 0 0 0 204 381 340 493 367
a nominal composition and in brackets that of the geometric model.

2. Results and Discussion

2.1. QSRR Dataset

The dataset investigated in this work consists of 29 poly(siloxane) stationary
phases belonging to poly(methylphenylsiloxane), poly(methyltrifluoropropylsiloxane) and
poly(cyanoalkylmethylphenylsiloxane) subgroups displayed in Tables 1 and 2 together with the
first five McReynolds constants X, Y, Z, U and S, taken from scientific [25] or commercial literature [26].
The code of a GLC commercial column is associated to each stationary phase, but it must be noted that
many equivalent poly(siloxane)-based columns can be provided by different manufacturers [20].

Poly(dimethylsiloxane) (column OV-1) is a nonpolar and low-selectivity phase that can be
regarded as the basic structure of the stationary phases here investigated. Substitution of methyl groups
with phenyl, trifluoropropyl and cyanoalkyl groups in variable concentration permits extending the
selectivity of the poly(siloxanes) over a wide range [25], which makes them the most versatile in GLC
analytical separations.

In previous analogous investigations [23,24] aimed at modelling the McReynolds constants of
nonpolymeric stationary phases (esters of dicarboxylic acids, for instance) the molecular descriptors
were determined using a standard procedure, consisting of a preliminary geometry optimisation
followed by the computation of the structural properties. Polysiloxane stationary phases, by contrast,
are polymers with a high molecular weight (generally in the range of 103 to 106) [25], and therefore a
simplified geometrical model must be generated. In this work, each stationary phase was represented
by an oligomer formed by 20 siloxane units ending with trimethylsiloxy groups. This choice represents
a good compromise between the needs of an acceptable computation time and adequate representation
of the bulk properties of the stationary phase. In variously-substituted poly(siloxanes), the different
comonomers were uniformly positioned within the polysiloxane backbone. In few cases (columns
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OV-61, FS-328, FS-169 and NSKT-33), the requisite of having an integer number of each comonomer
resulted in a slight deviation of the geometrical composition in the geometrical model compared to the
nominal one. Figure 1 displays the optimised molecular models of poly(dimethylsiloxane) (column
OV-1) and 65% diphenyl-35% dimethyl poly(siloxane) (column Rtx-65). Regardless of the chemical
composition, the polysiloxane backbone in the optimised structures is coiled to favour the attractive
intrachain interactions. In spite of the much lower polymerisation degree and the absence of interchain
interactions, the optimised geometrical models should provide a reliable representation of the reciprocal
position of the siloxane substituents within the real stationary phases which governs the retention
of solutes and column selectivity. The optimised structures were processed by computer package
Dragon 6 which provides 4885 molecular descriptors belonging to various classes [27]. However,
to avoid including redundant variables in the QSRR dataset, the descriptors with little variance were
removed, and only one descriptor was retained among groups of highly correlated ones (r > 0.85).
After this preliminary variable selection, 177 molecular descriptors were identified and stored for
further analysis.
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Figure 1. Geometrical models of OV-1 (a) and Rtx-65 (b) stationary phases. Grey, white, yellow and
red colours identify C, H, Si and O atoms, respectively.

2.2. QSRR Modelling of McReynolds Constants by GA-MLR

A specific QSRR model was established for each of the five McReynolds constants by multilinear
regression (MLR) coupled with genetic algorithm (GA) variable selection [28,29]. Before developing the
QSRR models, we designed an external prediction set by selecting five columns (OV-7, OV-25, SILAR
7CP, XE-60 and FS-328) covering as far as possible the structural variability of the 29 poly(siloxanes) in
terms of qualitative and quantitative composition. A preliminary GA-MLR exploration was carried
out to identify the optimal complexity of the QSRRs. We observed that including six descriptors
into the various QSRR models gave satisfactory results, while incorporation of a seventh descriptor
produced only a negligible improvement of Q2

loo-cv. Therefore, the maximum number of descriptors to
be selected by GA was set to six. Some hundreds of GA-MLR runs with different starting chromosome
populations were performed for each of the five responses and the descriptors selected at least one time
were collected together in a same data set that was subjected to a final GA-MLR analysis. The models
with the highest Q2

loo-cv values for each of the five different responses were finally chosen. These are
presented in Table 3, while the selected molecular descriptors are listed in Table 4.
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Table 3. Significant molecular descriptors of the established quantitative structure–retention relationship
(QSRR) models, multilinear regression (MLR) coefficients (b) and related standardised values (b’);
descriptive and predictive performance evaluated on the external prediction set and by Monte Carlo
(MC) validation.

Response Descriptors MLR Coefficients Calibration Prediction MC Validation

bi(±Sb) bi’ R2 SDEC Q2 SDEP SDEP (±SD)

X+

intercept −1996(±203) − 0.9964 9 0.9944 15 12 (±1)
RBN 3.83(±0.13) 0.93

Mor10m −4.6(±0.9) −0.08
R3u+ −4327(±1725) −0.06

BLTF96 −1.7(±0.8) −0.05
SpMAD_AEA(bo) 1132(±136) 0.19

H5u 22(±6) 0.07

Y

intercept −3861(±234) − 0.9984 9 0.9867 15 11 (±2)
RBN 199(±41) 0.86

SpMAD_AEA(dm) 5.18(±0.11) 0.14
Mor12m −4.4(±0.9) −0.07

R3u+ −10,190(±1998) −0.08
SpMAD_AEA(bo) 2190(±175) 0.24

H5u 22(±7) 0.04

Z

intercept −89(±23) − 0.9966 12 0.9900 18 14 (±5)
RBN 4.7(±0.1) 0.92

SpMax_B(s) 18(±2) 0.13
MATS7i 1635(±270) 0.14
Mor02v −0.7(±0.2) −0.07
Mor04p 2.1(±0.5) 0.08

B04[N-Si] 87(±9) 0.19

U

intercept −87(±25) − 0.9981 12 0.9920 21 15 (±4)
RBN 6.94(±0.12) 0.94

SpMax_B(s) 18(±3) 0.09
MATS7i 2449(±283) 0.17
Mor02v −0.9(±0.2) −0.07
Mor04p 2.9(±0.5) 0.08

B04[N-Si] 133(±10) 0.21

S

intercept −4119(±173) − 0.9986 9 0.9914 19 12 (±5)
RBN 6.16(±0.09) 0.98

SpMAD_AEA(bo) 2543(±111) 0.29
Mor10v −6.6(±1.4) −0.05
Mor04p 2.0(±0.3) 0.06

H5u 19(±5) 0.05
R3u+ −14,847(±1723) −0.13

Table 4. Meaning and class of the molecular descriptors of the QSRR models.

Name Description Kind

RBN number of rotatable bonds Constitutional indices
B04[N−Si] presence/absence of N–Si at topological distance 4 2D Atom Pairs

MATS7i Moran autocorrelation of lag 7 weighted by ionisation
potential 2D autocorrelations

SpMAD_AEA(dm) spectral mean absolute deviation from augmented edge
adjacency mat. weighted by dipole moment Edge adjacency indices

SpMAD_AEA(bo) spectral mean absolute deviation from augmented edge
adjacency mat. weighted by bond order

SpMax_B(s) leading eigenvalue from Burden matrix weighted by
I−State 2D matrix−based descriptors

H5u H autocorrelation of lag 5/unweighted GETAWAY descriptors
R3u+ R maximal autocorrelation of lag 3/unweighted

Mor02v signal 02/weighted by volume

3D−MoRSE descriptors
Mor10v signal 10/weighted by volume
Mor10m signal 10/weighted by mass
Mor12m signal 12/weighted by mass
Mor04p signal 04/weighted by polarisability
BLTF96 Verhaar Fish base−line toxicity from MLOGP (mmol/l) Molecular properties
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The agreement plots of the computed or predicted McReynolds constants and the experimental
values (displayed in Figure 2) reveal a distribution of both calibration and prediction data samples close
to the ideal line. The observed determination coefficients of calibration and external prediction, R2 and
Q2 (displayed in Table 3), fall within 0.9964 to 0.9986 and 0.9867 to 0.9940, respectively, suggesting
a good descriptive and predictive performance of the five QSRR models. The values of standard
deviation of the error in calibration (SDEC) and prediction (SDEP) are within 9 to 12 and 15 to 21,
respectively. In this regard, it must be noted that phases with McReynolds constants differing by within
±10 units generally exhibit a same separation performance [26]. The individual residuals associated
to the calibration columns (displayed in Table A2, Appendix A) are randomly distributed around
zero and only in a limited number of cases fall outside the ±10 range, which suggests a very good
fitting. As expected, the model residuals in prediction are higher than those observed in calibration
but worsening of the model performance is anyway acceptable. It must be noted that most of the
residuals in prediction are positive. This trend, however, was not observed in leave-one-out cross
validation, which leads to exclude the effect of systematic errors in QSRR prediction. It follows that the
partitioning properties of poly(siloxane) stationary phases can be predicted with acceptable accuracy
by QSRR modelling. Apart from using the preselected external set, the generalisation ability of the
QSRR models was further evaluated for different partitions of the columns between the calibration
and prediction sets. Following a repeated (or Monte Carlo) validation scheme, 30 random partitions
were generated with an average of 20% of columns in each prediction set. The mean SDEP value
and the associated standard deviation observed for each response is given in Table 3, while the SDEP
trend over the 30 repetitions is displayed in Figure 3. The number of external columns in repetitions
ranged from two to nine; it follows that structural variability may be not adequately represented by the
calibration set when a relatively high number of columns belonging to a same subgroup is transferred
in the prediction set. Nevertheless, the mean and individual SDEP values in repetitions confirmed the
good generalisation ability of the QSRR models observed in external prediction. The QSRRs previously
developed to model the McReynolds constants of nonpolymeric (molecular) stationary phases using
semiempirical quantum chemical descriptors can be considered for comparison. In a first study,
regarding 25 stationary phases (phthalates, adipates, sebacates, phosphates, citrates and nitrils) [24],
all the 10 McReynolds constants were simultaneously modelled by partial least-square regression and
the observed Q2 values related to various external sets consisting of six columns ranged between
0.9736 and 0.9834. In a successive investigation [23], the McReynolds constants of 36 nonpolymeric
stationary phases were modelled by MLR, seven of the investigated columns being selected for external
prediction. The SDEP values associated to the first five McReynolds were found to fall between 27 and
50. Therefore, generalisation ability of the QSRR models for the poly(siloxane) stationary phases here
developed is better than that reported in literature for nonpolymeric columns, despite poly(siloxanes)
are more complex structures and less sophisticated molecular descriptors were used to describe their
partitioning properties.
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2.3. Interpretation of the QSRR Models

The molecular descriptors selected in the QSRR modelling of the five McReynolds constants are
collected in Table 2. Table 3 displays the regression coefficient b of each significant molecular descriptor,
while its relative importance in defining the QSRR response is quantified by the standardised b value
(b’). The values of the selected molecular descriptors associated to the 29 poly(siloxane) stationary
phases are listed in Table A1 (Appendix A).

To facilitate the physical interpretation of the QSRR models, PCA was performed on the autoscaled
QSRR variables (descriptors and response) and both scores (columns) and loadings (variables) were
plotted in the plane of the first two principal components (Figure 4). Based on the three plots (not
shown) reporting the variance explained by each PC, the third principal component seems to be also
significant. Nevertheless, to have a simple graphical representation of the PCA results, we considered
only the first two PCs, that together account for a percentage of total variance ranging between 67% and
81% (Figure 4). The biplots associated to the QSRR model for Z and U are almost identical according
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to the fact that the same set of molecular descriptors was selected, and the two responses are highly
correlated, therefore, PCA results referring to the first case were not reported in Figure 4. PCA also
offers a graphical tool to rank the chromatographic phases, this approach being already used to classify
the columns based on various kind of empirical descriptors [9,21,30,31]. It must be noted that the plots
displayed in Figure 4 do not change appreciably if the experimental response is removed from the
variable set subjected to PCA.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 17 
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Figure 4 reveals that the 29 poly(siloxane) stationary phases are generally grouped according
to their chemical composition, but the reciprocal position of the columns in the PC1−PC2 plane is
also dependent on the QSRR response and, therefore, on the set of molecular descriptors entering
the model. To explain this finding it must be reminded that the first five McReynolds constants
X, Y, Z, U and S are associated to predefined compounds able to establish specific interactions [9]:
benzene (weak proton acceptor and π−π interactions), butanol (proton donor and proton acceptor
interactions), 2−pentanone (proton acceptor interactions), nitropropane (dipole interactions) and
pyridine (strong proton acceptor interactions), respectively. Regarding the stationary phases [21,25],
progressive introduction of phenyl groups in poly(methylphenylsiloxanes) influences the column
selectivity because of both a strong dispersion interaction and a high polarisability of the phenyl
groups compared to a methyl group. Poly(trifluoropropylmethylsiloxanes) are moderately polar; their
selectivity is based on the pronounced acceptor character of the 3,3,3−trifluoropropyl group that can
interact with free electron pairs. Cyanoalkyl-containing polysiloxanes are the most polar stationary
phases. The cyano group, attached to the siloxane backbone via two or three CH2 groups, is dipolar
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and strongly electron attracting. It is therefore able to display dipole−dipole, dipole-induced dipole
and charge-transfer interactions. Moreover, the unshared electron pair on the nitrile nitrogen can
promote hydrogen-bonding interactions with H-donor solutes. It follows that differentiation of the
columns in the subspace of the significant PCs extracted from the QSRR descriptors should reflect the
ability of the related McReynolds solute to interact with the various poly(siloxane) stationary phases.

The number of rotatable bonds (RBN) is the most influent molecular descriptor regardless of the
QSRR response, according to the higher b’ value of this variable in all the generated models (Table 3).
The contribution of the various siloxane substituents to RBN follows the order methyl < phenyl <

cyanoethyl < trifluoropropyl = cyanopropyl that closely reflects the polarity order for these groups.
B04[N−Si] (presence/absence of N−Si at topological distance 4) is the second most important descriptor
in QSRR models for Z and U (Table 3); its value is 1 for cyanoethyl-containing poly(siloxanes) (NPS−100,
NSKI−25, NSKT−33 and XE−60) and 0 for all the other phases (Table A1). The second most important
descriptor in QSRR models for X, Y and S is SpMAD_AEA(bo) (spectral mean absolute deviation
from augmented edge adjacency matrix weighted by bond order) that partially duplicates structural
information of B04[N−Si], according to the moderate correlation between these two quantities (r = 0.79,
Table A3); the other descriptors entering the various models seem to describe minor structural effects,
according to their relatively low b’ values.

About the ability of the selected molecular descriptors for the classification of the poly(siloxane)
stationary phases, Figure 4 reveals that poly(phenylcyanopropylsiloxanes)(SILAR 5CP, SILAR 7CP,
SILAR 9 CP and SILAR 10 CP) are well separated from the others along PC1, regardless of
the QSRR response which is almost colinear with PC1 itself. These four stationary phases are
also differentiated to each other along PC1 according to the increasing ratio of cyanopropyl to
phenyl substituents when the QSRR response is X (Figure 4a) or Y (Figure 4b). This finding
can be explained by the ability of the related prototype solutes benzene and butanol to strongly
interact with cyano groups by means of dipole-induced dipole and H bonding interactions,
respectively. Poly(methylcyanoalkilsiloxane) stationary phases, on the other hand, are always
separated from the others along a direction approximately parallel to PC2 and the most external
columns are those containing cyanoethyl groups (NPS−100, NSKI−25, NSKT−33 and XE−60), while
poly(methylcyanopropylsiloxanes) are closer to the origin of the PC1−PC2 graph. It follows that
poly(methylcyanoethylsiloxanes) and poly(methylcyanopropylsiloxanes) can be discriminated by the
selected molecular descriptors (B04[N−Si] or SpMAD_AEA(bo) in particular, as previously discussed).
The reciprocal position of poly(methylphenylsiloxane), poly(methyltrifluoropropylsiloxane) and
poly(methylcyanopropylsiloxane) columns along PC1, that, as previously discussed, is almost colinear
with the QSRR response, is moderately influenced by the kind of solute. These three subgroups
are poorly separated when the prototype solute is benzene (X, Figure 4a) or pyridine (S, Figure 4d),
which may be attributed to the ability of these two aromatic solutes to establish both π−π and
dipole-induced dipole interactions. By contrast, poly(methylcyanoalkylsiloxanes) retain butanol (Y,
Figure 4b) more than both poly(methyphenylsiloxanes) and poly(methyltrifluoropropylsiloxanes),
which indicates a relevant role of H bonding interactions between the alcoholic group of this prototype
solute and the cyano groups of the stationary phase. The difference between the behaviour of
poly(methylcyanoalkylsiloxanes) and poly(methyltrifluoropropylsiloxanes) is almost negligible when
U (Figure 4c) or Z is the QSRR response, but the two prototype solutes 2-pentanone and nitropropane
are less retained by the poly(methylphenylsiloxane) stationary phases. This pattern can be explained by
the dominant role of the dipole−dipole interactions between each of the two solutes and the stationary
phases. In summary, the theoretical molecular descriptors entering the QSRR models, apart from
allowing the accurate prediction of the McReynolds constants, can be used to classify the stationary
phases by means of PCA.
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3. Materials and Methods

3.1. Structure Generation and Molecular Descriptor Calculation

Starting geometries of the poly(siloxanes) were drawn by means of the MacroModel 7.1 molecular
modelling program package [32] assuming standard bond lengths and angles. The global energy
minimum of each molecule was searched using the MM2 force field. To avoid staking in local minima,
geometry optimisation was repeated on several starting conformers randomly generated. Software
Dragon 6 [22] was used to compute the molecular descriptors from the optimised geometrical models
of the stationary phases. The version utilised in this work provides 4885 descriptors classified as
zero- (0D), one- (1D), two- (2D) and three-dimensional (3D) descriptors depending on the fact they
are computed from the chemical formula, the substructure list representation, the molecular graph or
the geometrical representation of the molecule, respectively. After removal of constant and highly
correlated variables (r > 0.85), only 177 molecular descriptors were retained for further analyses.

3.2. Development of QSSR Models

A specific QSRR model was established for each of the five McReynolds constants, X, Y, Z, U and
S, by multilinear regression (MLR) combined with genetic algorithm (GA) selection to identify a small
subset of significant variables within the 177 molecular descriptors provided by Dragon. MLR is the
most convenient multivariate tool for QSRR modelling, because of simple statistical bases and easy
interpretation of the resulting models: the retention time or a related parameter is expressed as a
linear combination of molecular descriptors and the related coefficients are determined by ordinary
least squares regression [33]. However, when many molecular descriptors are available, MLR must
be combined with a suitable variable selection method to identify a small subset of significant and
uncorrelated descriptors. In the GA−MLR method, regression models are represented by chromosomes,
namely binary vectors in which the value 1 or 0 of each position (or gene) encodes the presence or
absence, respectively, of a descriptor in the model. A starting random population of chromosomes,
alias regression models, evolves for several generations by application of cross-over and mutation
rules inspired by principles of natural selection and genetics until an optimal or near optimal model is
identified. In the crossover process two mating chromosomes exchange their genetic material according
to the “uniform crossover technique”, in which for each gene a random number determines if it will
undergo crossover or not. Mutation is caused by a random change of the value of a gene based on very
low selected probability (here 0.1%). The chance for each chromosome of passing to the next generation
is quantified by a “fitness function”, which, in regression problems, is the model predictive performance,
expressed here by the determination coefficient in leave-one-out cross−validation (Q2

loo−cv). To avoid
the loss of highly predictive models, a predefined number of the best chromosomes (elitism, here fixed
to 1%) are passed unchanged to the next generation. In this work, the initial population consists of
100 chromosomes and evolution is carried out until no further improvement of Q2

loo−cv of the best
model occurs after five cycles.

3.3. Model Validation

The descriptive performance of each MLR model was evaluated by usual statistical parameters [33]:
the coefficient of determination and the standard deviation of the error in calibration (R2 and
SDEC, respectively). The predictive ability of the QSRR models was quantified by the coefficient of
determination and the standard deviation of the error evaluated on a predesigned external set (Q2 and
SDEP, respectively), Q2 being computed according to Todeschini et al. [34]. The predictive performance
of the established QSRRs was further evaluated by Monte Carlo or repeated test set validation [33].
In this method, a large number of training and test sets are randomly generated with a preselected
probability of assignment and the SDEP is computed on the total number of predictions.
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3.4. Principal Component Analysis

Principal component analysis (PCA) was used to help interpretation of the QSRR models and
attempt unsupervised classification of the stationary phases based on their molecular structure.
PCA [35] allows to represent multivariate information in a reduced subspace of principal components
(PCs), namely orthogonal directions, the first describing the largest variance, the second describing
the second−largest variance, and so on. PCs are obtained by a proper orthogonal rotation around the
centroid of the data after variable autoscaling, which produces the diagonalisation of the correlation
matrix. In the rotated space the new variables (the PCs) are not correlated and are ordered according
to their variance (eigenvalue). The coordinates of the objects in the space of PCs are called “scores,”
and the orthogonal rotation matrix with the direction cosines is called matrix of “loadings”. Projecting
the objects scores and variables loadings into the space of few significant PCs allows revealing patterns
in the original data matrix with minimal loss of information. All the statistical analyses were performed
using the program package V−PARVUS 2010 [36].

4. Conclusions

In the present study, poly(siloxane) stationary phases, the most widely used in liquid−gas
chromatography and historically classified by empirical polarity/selectivity scales, were characterised
using theoretical molecular descriptors. In spite of the polymeric nature of these stationary phases,
the selected molecular descriptors allowed for prediction of the McReynolds constants with acceptable
accuracy and are useful to classify the columns according to their partitioning properties. Further work
is in progress to evaluate the performance of QSRR−based predictive models combining molecular
descriptors of both stationary phases and solutes.
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Abbreviations

GA Genetic algorithm
GC Gas−chromatography
GLC Gas−liquid chromatography
QSRR Quantitative structure−retention relationship
QSA(P)R Quantitative structure−activity(property) relationship
MLR Multilinear regression
PCA Principal component analysis
SDEC Standard deviation of the error in calibration
SDEP Standard deviation of the error in prediction
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Appendix A

Table A1. Values of the significant molecular descriptors associated to the 29 poly(siloxanes) stationary phases.

Column RBN B04[N-Si] MATS7i SpMAD_AEA(dm) SpMAD_AEA(bo) SpMax_B(s) H5u R3u+ Mor02v Mor10v Mor10m Mor12m Mor04p BLTF96

OV-1 42 0 −0.053 1.545 1.545 4.809 7.117 0.008 42.211 −0.858 4.642 15.951 −21.884 2.37
SE-52 43 0 −0.053 1.542 1.556 4.814 7.083 0.01 35.619 −0.634 5.137 16.165 −15.074 1.76
OV-3 46 0 −0.042 1.536 1.573 4.837 6.703 0.012 38.626 −1.81 2.55 14.571 −19.435 −0.19
OV-7 50 0 −0.028 1.531 1.579 4.863 6.476 0.011 44.266 −2.377 2.13 18.579 −24.66 −1.77

DC-550 52 0 −0.025 1.528 1.579 4.875 6.469 0.011 72.16 −2.163 2.082 15.778 −19.586 −2.51
OV-61 54 0 −0.032 1.527 1.578 4.894 6.072 0.01 29.779 −2.072 1.723 17.356 −17.733 −3.22
OV-11 56 0 −0.021 1.525 1.576 4.9 6.27 0.009 73.701 −3.18 0.103 20.357 −25.407 −3.9
OV-17 62 0 −0.023 1.521 1.569 4.933 6.129 0.008 58.168 0.039 2.456 20.795 −28.92 −5.8
SP-392 64 0 −0.03 1.52 1.566 4.945 6.243 0.008 58.085 0.802 3.711 20.538 −16.688 −6.39
OV-22 68 0 −0.042 1.519 1.561 4.969 6.571 0.008 21.562 −2.996 −0.789 21.118 −21.29 −7.53
OV-25 72 0 −0.058 1.517 1.556 4.993 6.639 0.007 29.796 −2.231 −0.147 18.624 −17.043 −8.61
Rtx-20 50 0 −0.046 1.53 1.579 4.867 6.324 0.012 37.429 −0.593 3.002 17.031 −8.291 −1.77
Rtx-35 56 0 −0.034 1.525 1.576 4.903 6.167 0.009 35.2 −1.401 1.404 16.429 −17.796 −3.9
Rtx-65 68 0 −0.05 1.519 1.561 4.974 5.679 0.007 23.124 −0.382 2.383 21.372 −20.894 −7.53
OV-105 48 0 −0.049 1.63 1.558 6.817 6.945 0.009 36.061 −0.939 3.664 15.231 −19.314 2.92

NPS-100 82 1 −0.023 1.901 1.626 6.855 6.956 0.009 22.53 −2.242 −0.291 16.092 −9.307 −7.67
OV-225 82 0 −0.039 1.671 1.564 6.834 7.048 0.008 17.747 −2.293 −0.61 9.448 −4.936 0.7

SILAR 5CP 122 0 −0.079 1.669 1.543 6.857 6.763 0.006 2.658 2.693 4.434 18.009 −20.383 1.28
SILAR 7CP 142 0 −0.073 1.724 1.54 6.878 6.93 0.006 −7.61 1.753 1.886 13.495 −9.339 −4.96
SILAR 9CP 154 0 −0.068 1.754 1.537 6.89 7.259 0.006 −6.983 −2.676 −1.881 7.273 −11.534 −8.51
SILAR 10C 162 0 −0.065 1.779 1.536 6.898 7.205 0.005 −16.129 0.531 1.127 9.927 −22.813 −11.77

OV-210 82 0 −0.062 1.52 1.549 8.588 6.527 0.007 5.555 2.691 10.992 20.14 −8.637 −5.44
SKIFT-50X 62 0 −0.073 1.59 1.548 8.548 6.14 0.008 36.349 0.481 5.378 20.805 −12.166 −1.88

FS-328 54 0 −0.07 1.604 1.547 8.532 6.264 0.009 34.562 −1.088 4.363 17.002 −13.577 −0.3
FS-169 52 0 −0.069 1.603 1.547 8.528 6.319 0.008 15.486 −1.436 3.316 16.587 −18.31 0.12

NSKI-25 52 1 −0.038 1.726 1.595 6.823 6.785 0.007 33.814 −1.908 2.002 14.529 −23.779 −2.01
NSKT-33 56 1 −0.031 1.772 1.606 6.828 7.357 0.011 51.199 −1.89 2.213 15.363 −18.17 −2.77

XE-60 62 1 −0.026 1.822 1.617 6.834 7.326 0.01 33.34 −0.468 4.235 14.863 −15.124 −3.9
p-NSKT-100 103 0 −0.041 1.792 1.556 6.855 6.864 0.007 22.687 −0.329 1.201 10.956 −10.858 −5.52
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Table A2. Calculated and predicted residuals of the QSRR models.

Column
QSRR Response

X Y Z U S

OV−1 3 0 7 7 −2
SE−52 13 11 5 6 7
OV−3 −3 −5 −1 0 4

FS−169 0 2 −3 −1 11
DC−550 −8 −17 1 0 −14
OV−61 14 7 −4 −5 5
OV−11 −8 −1 16 22 −9
OV−17 0 −5 5 5 12
SP−392 12 −1 −5 −13 3
OV−22 0 4 −5 −6 3

NSKI−25 −2 0 3 9 −1
Rtx−20 5 12 −2 −3 0
Rtx−35 −1 −12 2 −3 14
Rtx−65 −5 2 0 −1 −12
OV−105 −10 −12 −25 −20 −16
NPS−100 7 6 11 9 −1
OV−225 15 13 −1 13 5

SILAR 5CP −2 2 6 10 −5
NSKT−33 −13 −8 −14 −19 −1

SILAR 9CP −4 4 −5 1 −2
SILAR 10C 6 −7 −2 −8 5

OV−210 0 −6 24 14 2
SKIFT−50X −9 1 0 −3 −10

p−NSKT−100 −11 −9 −14 −15 −4
OV−7 a

−4 2 2 5 0
OV−25 a 3 −12 16 22 −2

SILAR 7CP a 20 14 30 21 −9
XE−60 a 24 21 20 32 31
FS−328 a 11 17 12 17 26

a external set.
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Appendix B

Table A3. Correlation matrix of the molecular descriptors representing the poly(siloxane) stationary phases.

RBN B04[N-Si] MATS7i SpMAD_AEA(dm) SpMAD_AEA(bo) SpMax_B(s) H5u R3u+ Mor02v Mor10v Mor10m Mor12m Mor04p BLTF96

RBN 1.0000 −0.1153 −0.4768 0.5296 −0.4353 0.3243 0.3771 −0.7280 −0.7776 0.3623 −0.2683 −0.5350 0.2520 −0.5450
B04[N-Si] 1.0000 0.3848 0.6562 0.7943 0.2100 0.4322 0.1693 0.0907 −0.1816 −0.0750 −0.1283 0.0280 −0.0752
MATS7i 1.0000 −0.0462 0.7886 −0.5553 −0.0859 0.5546 0.6889 −0.5045 −0.2966 0.1581 −0.2872 −0.0897

SpMAD_AEA(dm) 1.0000 0.2934 0.5110 0.6866 −0.2749 −0.4441 0.0416 −0.2604 −0.6418 0.3264 −0.2119
SpMAD_AEA(bo) 1.0000 −0.2115 0.0933 0.5848 0.4669 −0.4036 −0.1746 0.1056 −0.0471 −0.0244

SpMax_B(s) 1.0000 0.2171 −0.3834 −0.4893 0.3587 0.3428 −0.2461 0.4437 0.0663
H5u 1.0000 −0.1077 −0.3377 −0.0359 −0.1340 −0.7048 0.2288 0.0616

R3u+ 1.0000 0.6582 −0.4222 0.0723 0.1889 −0.0307 0.4387
Mor02v 1.0000 −0.3809 0.0332 0.4743 −0.4028 0.2970
Mor10v 1.0000 0.6901 0.1487 0.1902 0.0083
Mor10m 1.0000 0.3833 0.0989 0.3848
Mor12m 1.0000 −0.3682 0.0184
Mor04p 1.0000 0.0109
BLTF96 1.0000
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