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Abstract: Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs), hold a huge promise for regenerative medicine, drug development, and disease
modeling. PSCs have unique metabolic features that are akin to those of cancer cells, in which
glycolysis predominates to produce energy as well as building blocks for cellular components. Recent
studies indicate that the unique metabolism in PSCs is not a mere consequence of their preference for
a low oxygen environment, but is an active process for maintaining self-renewal and pluripotency,
possibly in preparation for rapid response to the metabolic demands of differentiation. Understanding
the regulatory mechanisms of this unique metabolism in PSCs is essential for proper derivation,
generation, and maintenance of PSCs. In this review, we discuss the metabolic features of PSCs and
describe the current understanding of the mechanisms of the metabolic shift during reprogramming
from somatic cells to iPSCs, in which the metabolism switches from oxidative phosphorylation
(OxPhos) to glycolysis.
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1. Introduction

Pluripotent stem cells, such as embryonic stem cells (ESCs) [1–3] and induced pluripotent stem
cells (iPSCs) [4], are characterized by their ability to proliferate indefinitely (self-renewal) and to
differentiate into virtually all types of cells that comprise an organism (pluripotency). iPSCs generated
from somatic cells by introduction of transcription factors greatly increased the likelihood of applying
iPSCs to regenerative medicine, disease modeling, and drug development [5]. To ensure the quality and
safety of iPSCs, it is critical to understand the mechanisms that underlie the reprogramming of somatic
cells into iPSCs [6], which is accompanied by massive changes in gene expression and epigenetic status
as well as cellular structure and functions. In addition to the epigenetic, morphological, and functional
transformations, reprogramming also entails major metabolic changes as a consequence of the intrinsic
differences in metabolism between iPSCs and somatic cells.

ESCs are derived originally from the cells of the inner cell mass of an embryo at the blastocyst
stage. Embryos develop in a low oxygen condition before and immediately after implantation and thus
rely predominantly on glycolysis for producing ATP [7]. The metabolic state of naïve and primed ESCs,
which are derived from preimplantation and postimplantation blastocysts, respectively, show some
distinction in accord with the drastic environmental change at the implantation [8,9]. As implantation
further reduces oxygen availability, primed ESCs are even more dependent on glycolysis for ATP
production than naïve ESCs. By contrast, differentiated somatic cells within the embryo reside and
proliferate in a high oxygen condition, and as such, utilize oxidative phosphorylation (OxPhos) as the
main source of energy production.

Int. J. Mol. Sci. 2019, 20, 2254; doi:10.3390/ijms20092254 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-5795-3115
http://www.mdpi.com/1422-0067/20/9/2254?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20092254
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2254 2 of 16

Metabolism supplies cells with not only metabolites for cellular functions but also energy in the
form of ATP, which can be generated from glycolysis (anaerobic) and OxPhos (aerobic). Whereas
OxPhos produces ATP more efficiently in terms of the number of ATP per one glucose moiety, glycolysis
produces ATP more rapidly than OxPhos. Moreover, the glycolytic pathway is connected with other
pathways that supply the building blocks for nucleic acids, amino acids, and lipids, which are in
especially high demand in rapidly proliferating cells [10,11]. In addition to its role for efficient ATP
production, the TCA cycle also supplies essential intermediate metabolites for other pathways such as
lipid synthesis and epigenetic modification [9,12,13] (Figure 1). Thus, as the cells differentiate during
development, they respond to the intrinsic requirements for energy and metabolites while adapting to
the extrinsic environment where the cells reside. Accordingly, generation of iPSCs from somatic cells,
which may be considered a reversal of differentiation, entails dramatic metabolic changes during the
process [8,14–20].

In this review, we describe how the cells change their metabolism when they undergo
reprogramming from somatic cells to iPSCs, especially focusing on recent developments that shed
light on the mechanisms of metabolic changes induced by the reprogramming factors.

2. Metabolic Characteristics of Pluripotent Stem Cells

2.1. Pluripotent Stem Cells (PSCs) in a Hypoxic Environment

Mammalian eggs fertilized in the lumen of the oviduct are transported passively to the uterus,
where the embryo (blastocyst) implants in the uterine wall [21,22]. The blastocyst thus develops in an
environment where oxygen supply is poor [23]. Although PSCs can be cultured under high oxygen
in vitro [24,25], they adapt well, or even better, to low oxygen concentration in vitro [26]. In fact,
a hypoxic environment promotes expression of core pluripotency genes and enhances self-renewal and
pluripotency of PSCs, partly through expression of Hypoxia-inducible factor 2-alpha (HIF2α) [7,27].
HIF2α upregulates expression of C-terminal binding proteins (CTBPs), which then promote expression
of the core pluripotency factors, Oct4, Sox2, and Nanog, probably as a transcriptional coactivator [28].
When ESCs are adapted from normoxic to hypoxic conditions in cell culture, they switch from OxPhos
to glycolysis and produce ATP anaerobically [29].

2.2. Glycolysis in PSCs

One common feature among ESCs and iPSCs is high metabolic flux through glycolysis [30–32].
Metabolite analyses demonstrate that ESCs utilize glycolysis as a main source of ATP production and
produce a large amount of lactate, which is secreted into cell culture medium [16]. After the start of
differentiation, ESCs diminish the high rate of glycolysis and increase OxPhos for ATP production as
they differentiate into somatic cells [33,34]. The high glycolysis also shunts the metabolites through the
pentose phosphate pathway in ESCs and iPSCs [35], which is important for rapid cell proliferation.
Indeed, when glycolysis is inhibited by 3-bromopyruvate (3BrP), an analog of glucose that inhibits
hexokinase II (HK2), ESCs undergo a metabolic switch from glycolysis to OxPhos and lose pluripotency
even when cultured in the presence of leukemia inhibitory factor (LIF) [36]. Conversely, when glycolysis
is maintained at a high level by overexpression of HK2 and pyruvate kinase M2 (PKM2), ESCs retain
pluripotency even in the absence of LIF [37]. Thus, high metabolic flux through glycolysis is responsible
for their potential for unlimited proliferation [30,32,35] and maintenance of pluripotency [36].

To maintain a high flux of metabolites in the glycolytic pathway in ESCs, the enzymes in this
pathway are expressed at higher levels in ESCs than in somatic cells. Moreover, ESCs achieve the
high flux of glycolysis by regulating key glycolytic enzymes including HK2, pyruvate dehydrogenase
(PDH), and PKM2. High levels of HK2 and PKM2 [37,38] as well as inactive PDH [35] maintain the
high glycolytic rates of ESCs (Figure 1).

Core pluripotency factors, OCT4, SOX2, and Nanog, occupy many regions of glycolytic enzyme
genes and are implicated for direct transcriptional regulation of glycolysis [37]. One well-characterized
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core pluripotency factor is OCT4, which directly governs Hk2 and Pkm2 in ESCs [37]. The myc genes,
c-myc and N-myc, are highly expressed in the inner cell mass of a blastocyst in vivo and also regulate
self-renewal and pluripotency of ESCs in vitro [39]. Conditional knockout of both c-myc and N-myc
severely compromises self-renewal and pluripotency of ESCs and results in down regulation of genes
related to cellular metabolism [40]. Given the critical role for c-MYC in regulating glycolysis in cancer
cells [41], ESCs also employ the myc genes to regulate metabolism probably by similar mechanisms to
those used for maintaining rapid cell proliferation.

In addition to the core pluripotency transcription factors, a recent study showed an important
role for a non-coding RNA, Lncenc1, for expression of glycolysis-associated genes [42]. Ablation
of the Lncenc1 gene significantly reduces the expression of glycolysis-associated genes and lowers
glucose consumption and lactate production by over 50%, which indicates impaired glycolysis.
Lncenc1 interacts with two RNA-binding proteins, polypyrimidine tract-binding protein 1 (PTBP1)
and heterogeneous nuclear ribonucleoprotein K (HNRNPK), both of which regulate the expression
of glycolytic genes to maintain the self-renewal ability of ESCs. Because a complex containing
Lnecn1, PTBP1, and HNRNPK occupies the promoter regions of the glycolysis genes, Lncenc1, PTBP1,
and HNRNPK may directly enhance transcription of these genes.
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Figure 1. Outline of the glycolytic pathway and TCA cycle. The cell uses glucose transporter, GLUT1, 
to take up glucose, which is metabolized ultimately to pyruvate in the glycolytic pathway, producing 
2 ATP molecules per one glucose molecule. In pluripotent stem cells (PSCs), a majority of glucose-
derived pyruvate is converted to lactate and secreted out of the cell while some of pyruvate is 
transported into mitochondria and converted into acetyl-coenzyme A (acetyl-CoA). The pathways 
that are connected with the glycolytic pathway produce ribose, nicotinamide adenine dinucleotide 
(NADPH), and amino acids, which are required for rapidly proliferating cells such as PSCs and cancer 
cells. In mitochondria, acetyl-CoA is converted into citrate, which, in addition to oxidization in the 
TCA cycle, will be transported out of the mitochondria into the cytosol and converted back into acetyl-
CoA. The cytosolic acetyl-CoA is important for reactions such as lipid synthesis and histone 
acetylation. Key enzymes that are regulated in the glycolytic pathway are indicated in red. Arrows 
indicate the flow of metabolites, and the T bar indicated negative regulation of PDH by PDHK1. 
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Figure 1. Outline of the glycolytic pathway and TCA cycle. The cell uses glucose transporter, GLUT1,
to take up glucose, which is metabolized ultimately to pyruvate in the glycolytic pathway, producing 2
ATP molecules per one glucose molecule. In pluripotent stem cells (PSCs), a majority of glucose-derived
pyruvate is converted to lactate and secreted out of the cell while some of pyruvate is transported into
mitochondria and converted into acetyl-coenzyme A (acetyl-CoA). The pathways that are connected
with the glycolytic pathway produce ribose, nicotinamide adenine dinucleotide (NADPH), and amino
acids, which are required for rapidly proliferating cells such as PSCs and cancer cells. In mitochondria,
acetyl-CoA is converted into citrate, which, in addition to oxidization in the TCA cycle, will be
transported out of the mitochondria into the cytosol and converted back into acetyl-CoA. The cytosolic
acetyl-CoA is important for reactions such as lipid synthesis and histone acetylation. Key enzymes that
are regulated in the glycolytic pathway are indicated in red. Arrows indicate the flow of metabolites,
and the T bar indicated negative regulation of PDH by PDHK1.
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2.3. Structural Features of Mitochondria in PSCs

Consistent with their lesser reliance on OxPhos for ATP production, PSCs have fewer small
mitochondria [31,43], as indicated by low copy numbers of mitochondrial DNA [43], and mitochondria
are usually localized in the perinuclear region [30,44–50]. Mitochondria in PSCs also differ from
those in somatic cells in their morphology and internal structure [31,35,50]. Electron microscopy
shows that mitochondria in PSCs have a globular shape and their cristae are poorly developed
and immature [51–54], which can be used as an indicator of high pluripotency [30,44–50]. Despite
their lower oxidative activity, mitochondria in primed ESCs are more elongated and have more
developed cristae than those in naïve ESCs [31,50,53–55]. When cells become terminally differentiated,
mitochondria undergo further maturation to adopt more elongated and tubular morphology with
numerous, highly developed cristae [35,50].

2.4. Functional roles for Mitochondria in PSCs

Consistent with their immature morphology, mitochondria in PSCs show lower levels of respiration
and oxidative reserve capacity than those in differentiated somatic cells [30–32]. However, the immature
and apparently underdeveloped morphology of mitochondria in PSCs does not necessarily mean
that they are less functional. The importance of mitochondrial functions in PSCs [56] is corroborated
by the fact that knockdown of DNA polymerase subunit γ (POLG), a subunit of mitochondrial
DNA polymerase, impairs mitochondrial homeostasis and permits ESCs to lose pluripotency and
differentiate [49]. In addition, ablation of growth factor erv1-like in ESCs increases expression of
GTPase dynamin-related 1 (Drp1), a factor that is involved in mitochondrial fission, which then causes
extreme mitochondrial fission and poor cell viability, accompanied by concomitant loss of pluripotency
and impaired capacity to differentiate [57]. Thus, mitochondrial morphology reflects their essential
functionality in self-renewal and pluripotency of PSCs.

Although its contribution to ATP production is low, mitochondrial electron transport chain (ETC)
is fully functional in ESCs, consuming oxygen at its maximal level. Despite the maximally functioning
ETC, however, mitochondrial production of ATP is kept at a suboptimal level. Uncoupling protein
2 (UCP2) in ESCs shunts pyruvate out of mitochondria, thus shifting ATP production from OxPhos
to glycolysis [15]. In addition, UCP2 uncouples ETC from ATP production presumably in order to
reduce generation of reactive oxygen species (ROS). OxPhos in mitochondria is known to generate
ROS, which may potentially damage proteins, lipids, and nucleic acids in the cells. Because of UCP2,
ESCs maintain production of ROS at a low level [48] and possess relatively low levels of oxidized
proteins, lipids, and DNA [34]. The maximally active ETC in mitochondria in ESCs, although not
necessarily coupled with ATP production, may be a prerequisite for rapid metabolic shift once ESCs
initiate differentiation and shift to OxPhos for ATP production. In accord with this, UCP2 rapidly
decreases its expression when ESCs exit from their pluripotent state [15].

Mitochondria are also important for producing metabolites that are used for purposes other than
ATP production. Instead of oxidizing pyruvate completely in the TCA cycle, ESCs generate metabolic
intermediates, which are then exported outside mitochondria for other purposes [58]. For example,
citrate generated from mitochondrial acetyl-CoA is exported from mitochondria and then catalyzed
by ATP-citrate lyase to generate cytosolic acetyl-CoA. Cytosolic acetyl-CoA is an essential substrate
not only for biosynthesis of fatty acids but also for acetylation of histones [59], which is necessary for
maintaining the open chromatin structure characteristic of ESCs [58] (Figure 1).

2.5. High Mitochondria Membrane Potential

PSCs have high mitochondrial membrane potential, which is vital for pluripotency as well as
self-renewal [48,60–62]. ESC clones with a high mitochondrial membrane potential can differentiate
into all three germ layers whereas those with a low mitochondrial membrane potential differentiate
mostly into mesodermal cells [60]. Fully reprogrammed iPSCs are also observed to acquire a high
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mitochondrial potential [30]. Inhibition of mammalian target of rapamycin (mTOR) by rapamycin
lowers the mitochondrial membrane potential, which reduces self-renewal capacity of ESCs. This
high membrane potential is actively maintained by ATP synthase, which functions in reverse as ATP
hydrolase using ATP derived from glycolysis. [15]. Although the role of high mitochondrial membrane
potential in maintenance of pluripotency remains an enigma, it may be required for maintaining a
network of fragmented mitochondria [9,63], maintaining redox potential optimal for synthesizing
lipids and amino acids [64], or preparing ESCs for the energetic demands of differentiation [14]. Thus,
it appears that high mitochondrial membrane potential in PSCs is not a passive consequence of low
OxPhos but is actively maintained for pluripotency.

3. Mechanisms behind the Metabolic Shift during Reprogramming

3.1. Gradual Transition from OxPhos to Glycolysis

Consistent with the enhancing effect of hypoxia on reprogramming [65], PSCs rely mainly
on glycolysis for ATP production, even in the presence of oxygen [53], in a manner reminiscent
of the Warburg effect in cancer cells [10]. Similar to cancer cells, ESCs require high glycolysis
also for shunting metabolic intermediates to various anabolic pathways [10,11,15,18] (Figure 1).
Thus, the overall trend of the metabolic changes during reprogramming consists of decreasing
OxPhos and increasing glycolysis [18,34], which are accompanied by alterations in the amounts of
corresponding metabolites [66]. This trend of decreasing OxPhos and increasing glycolysis is amply
confirmed by genome wide analyses of gene expression and protein levels as well as metabolomic
profiling [30,45,66–69]. Immediately after the initiation of reprogramming, cells induce many genes
relevant to metabolism and proliferation before they induce the ESC-specific genes including the
core pluripotency genes [30,45,66–69]. This supports the notion that these early metabolic changes
prepare cells for varying cellular demands for energy and metabolites during the subsequent process
of reprogramming. The metabolic changes during reprogramming may occur gradually [30,35,70],
perhaps as a response to changing demands during reprogramming. However, a series of recent
findings suggest that the metabolic shift entails more complex phenomena and may even play regulatory
roles during reprogramming. One such dramatic phenomena is a transient hyper-energetic metabolism,
which is a hybrid of high OxPhos and high glycolysis.

3.2. Transient Hyper-Energetic Metabolism

Unbiased classification of the gene expression patterns during reprogramming found that
metabolism-related genes show peak levels of expression at an early stage of reprogramming [68].
Consistent with this finding, a study by Prigione et al. reported that OxPhos increases as early as day
3 of reprogramming [45]. Proteomic analysis by Hanson et al. revealed a transient upregulation of
mitochondrial proteins at an early stage of reprogramming [71]. Concomitant with these changes
of metabolism related genes shortly after the start of reprogramming, cells undergo a transient
hyper-energetic metabolism that shows characteristics of both high OxPhos and high glycolysis [72–74].
This hyper-energetic metabolism is somewhat reminiscent of the metabolic state observed for naïve ESCs,
in which both OxPhos and glycolysis are more active than in primed ESCs [53,75]. This metabolic state
of OxPhos burst generates ROS, which initiate a cascade of transcription factor induction that elicits
the subsequent metabolic shift (see below). Thus, the hyper-energetic metabolism may be a regulatory
cue for the overall metabolic shift during reprogramming. However, a study by Ji et al. reported that
radical scavengers, N-acetyl-cysteine or Vitamin C, promote cell survival during reprogramming without
altering the reprogramming efficiency and reduce DNA damage, especially de novo copy number
variations [76]. This study suggests that the hyper-energetic metabolism may even be detrimental
for the genomic integrity of the derived iPSCs and could be bypassed without a significant effect on
the reprogramming efficiency [76]. Thus, although this hyper-energetic metabolism may accompany
reprogramming, it remains to be determined if it is essential for reprogramming per se.
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3.3. Morphological and Numerical Changes of Mitochondria

During reprogramming of somatic cells to iPSCs, mitochondria undergo a significant remodeling
to adopt a rejuvenated state [30,34,35,46]. The amount of mitochondrial DNA becomes lower as
reprogramming progresses toward iPSCs [77], in accord with the overall metabolic switch from
mitochondrial oxidation to glycolysis during reprogramming [30,71,78]. In fully reprogrammed iPSCs,
mitochondria adopt immature morphology, small in size with underdeveloped cristae, and become
localized around nucleus [61].

The mechanisms behind the dramatic reorganization of mitochondria still remain elusive. However,
recent reports showed that it entails mitophagy, which is selective clearance of mitochondria by
autophagy (Figure 2). Autophagy of intracellular proteins or organelles is mediated by either an
autophagy-related protein 5 (ATG5)-dependent or independent pathway [79]. Addition of mTOR
inhibitors (i.e., rapamycin, pp242, or spermidine) to repress the mTOR signaling pathway increases
the efficiency of reprogramming [80,81]. As rapamycin stimulates mitophagy via inhibition of
mTOR, it implicated mitophagy as a probable mechanism for reduction in the mitochondrial content.
Indeed, Atg5−/− MEFs do not reduce the mitochondrial number upon reprogramming and fail to
undergo proper reprogramming, which indicates that the ATG5-dependent mitophagy is essential
for mitochondrial reduction and the progression of reprogramming [82]. Mechanistically, SOX2, one
of the reprogramming factors, represses expression of the mTOR gene transiently at an early stage
of reprogramming, and this repression of mTOR expression allows ATG5-dependent autophagy of
mitochondria [82]. A more recent study, however, shows that activation of AMP-activated protein
kinase (AMPK) or inhibition of mTOR may employ alternate ATG5-independent autophagy rather than
canonical ATG5-dependent autophagy. This ATG5-independent autophagy appears to remove mature
mitochondria as new immature mitochondria are generated during reprogramming, and this process
is essential for the metabolic shift during reprogramming [77]. However, another study indicates
that different reprogramming factors regulate autophagy-related genes in an opposite manner during
reprogramming [83]. Thus, the mechanistic relationship between the reprogramming factors, mTOR
pathway, autophagy, and mitophagy is probably more complex than currently understood and awaits
further study.

In addition to the decline in the mitochondria number, reduction of the mitochondrial content
during reprogramming may occur as a consequence of reduced mitochondrial size. Indeed,
mitochondria appear to reduce their size by active fragmentation, which peaks 3–4 days after
expression of reprogramming factors. This mitochondrial fragmentation is caused not by mitophagy
but by mitochondrial fission, elicited by phosphorylation of the dynamin-related protein 1 (DRP1)
GTPase, a pro-fission factor that is essential for mitochondrial fission. DRP1 is recruited to mitochondria
and constricts them to elicit mitochondrial fission [84], and the activity of DRP1 is regulated positively
by phosphorylation via activation of the extracellular signal-related kinase (ERK)1/2 signaling (Figure 2).
During reprogramming, expression of a mitogen-activated protein kinase (MAP kinase) phosphatase,
dual specificity protein phosphatase 6 (DUSP6), is reduced, which results in activation of the ERK1/2
signaling [74]. A more recent study showed that c-myc elicits induction of CDK1, which then
phosphorylated DRP1 to promote mitochondrial fission [85] (Figure 2). This mitochondrial fission
generates small mitochondria with high OxPhos ability, which likely corresponds to the hyper-energetic
metabolism at an early stage of reprogramming [72–74].

These somewhat contradicting, but not necessarily mutually exclusive, mechanisms may relate to
differences in employed reprogramming methods or multiple mechanisms that underpin the changes
in mitochondrial structure and function during reprogramming. Nevertheless, these studies point to
an essential, and possibly regulatory, role for mitochondrial changes during reprogramming. Indeed,
the morphological differences between partially and fully reprogrammed can be quantifiable in live
cells by a modified retardation modulated-differential interference contrast (RM-DIC) microscope and
can be used to accurately predict the pluripotency of derived iPSCs [86]. All of these studies indicate a
close relationship between remodeling of mitochondria and acquisition of pluripotency, and further
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study is warranted for understanding more precise mechanisms of mitochondrial remodeling and its
role in reprogramming.

3.4. Changes in Mitochondrial Subunit Composition

Temporal proteomic profiling has revealed complex changes of mitochondrial protein levels
during reprogramming. The cells at an early reprogramming stage show a complex wave of protein
level changes in ETC, with decreased expression of the subunit proteins in complexes I and IV
but increased expression of them in complexes II, III, and V [30]. This inevitably results in altered
stoichiometry of the complexes I, II, III, IV, and V, which causes functional changes of mitochondria
in addition to mere reduction of the mitochondrial content [30,71]. Given the mechanism of electron
transport in ETC, low activity of complex I and high activity of complex II may favor use of flavin
adenine dinucleotide (FADH2) over nicotinamide adenine dinucleotide (NADH) for capturing electrons,
and low activity of complex IV, which converts oxygen to water, is consistent with decreased oxygen
consumption [53]. High activity of complex V, namely ATP synthase, appears to promote ATP
production in mitochondria, but this enzyme may also function partly as ATP hydrolase to help
maintain high membrane potential [15]. Whether or not these functional changes occur simultaneously
with the burst of OxPhos and the morphological changes of mitochondria is an intriguing question
to be resolved, but the compositional change of mitochondrial proteins strongly suggests that cells
require functional changes in mitochondria to transit through the reprogramming process.

3.5. Regulation of Mitochondrial Functions

The changes in the mitochondrial functions mentioned above are tightly linked to a cascade
of regulation by transcription factors (Figure 2). As a part of the early changes in gene expression,
the estrogen-related nuclear receptors (ERR), Errα and Errγ, as well as coactivator Pgc-1α β are
upregulated transiently around day 3 of reprogramming at a peak of OxPhos, and ERRα/ERRγ and
PGC-1α β induce the transient hyper-energetic metabolism [72]. One notable feature of this transient
hyper-energetic metabolism is increased production of ROS, which was corroborated by independent
studies [76,87]. The generated ROS apparently have a regulatory role and activates nuclear factor
kappa B (NF-κB), activator protein 1 (AP-1), and nuclear factor (erythroid-derived 2)-like-2 (NRF2).
The expressions of these transcription factors precede the peak of hypoxia-inducible factor 1-alpha
(HIF1α) induction. A study by Hawkins et al. showed that, among these factors, NRF2 is required for
induction of HIF1α expression because preventing NRF2 from entering nucleus by overexpression of
Kelch like-ECH-associated protein 1 (KEAP1), which retains NRF2 in cytoplasm, attenuates induction
of HIF1α. The induced HIF1α in turn promotes the metabolic shift to glycolysis [73]. Another study by
Jang et al. showed that NRF2 is important for reprogramming because knockdown of NRF2 reduces the
reprogramming efficiency. NRF2 increases proteasome activity partly via upregulation of proteasome
maturation protein (POMP), which plays a key role in reprogramming [88]. It remains to be determined
if a heightened proteasome activity is involved in the metabolic shift by degrading metabolism-related
proteins as well.

A study by Prieto et al. showed a critical role for the endogenous c-myc for the metabolic shift at
an early stage of reprogramming and that c-MYC plays a pivotal role for establishing a metabolic state
that is high in both OxPhos and glycolysis [85], which probably corresponds to the peak of OxPhos
described by another study [72] (Figure 2). The importance of c-MYC is further corroborated by the
fact that c-MYC alone mimics robust OxPhos induced by OCT4, SOX2, KLF4, and c-MYC [85]. The
cells with increased OxPhos and glycolysis possess high membrane potential in mitochondria, which
is one notable indicator of the cells that will transit to the late stage of reprogramming and acquire
the pluripotent state [85] As c-MYC and HIF1α cooperate to reprogram metabolism in cancer cells
under hypoxic conditions [89,90], these transcription factors probably cooperate similarly to induce
the metabolic shift during reprogramming.
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In addition to c-MYC, a study by Nishimura et al. showed that KLF4 plays an important role
for the metabolic shift during reprogramming (Figure 2). The effect of KLF4, however, occurs only
when cells begin to acquire the fully pluripotent state because, leukemia/lymphoma 1 (Tcl1), one of the
target genes of KLF4, is only induced at a late stage of reprogramming [78]. Tcl1 is normally expressed
only in cells of an early developmental stage including ESCs but will drive lymphomagenesis upon
deregulated activation [91]. TCL1 interacts directly with mitochondrial polynucleotide phosphorylase
(PnPase) and suppresses its activity [92]. PnPase is an RNAase localized in the intermembrane space
of mitochondria [92] and facilitates RNA imports into mitochondria to maintain their homeostasis [93].
TCL1 induced by KLF4 or exogenously introduced TCL1 lowers the mitochondrial content and OxPhos
during reprogramming [78,94]. Given its timing of induction during reprogramming, TCL1 probably
lowers the mitochondrial content and OxPhos at a late stage of reprogramming [78,94].
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Figure 2. Mechanisms of mitochondrial changes during reprogramming. Mitochondria contribute
to the hyper-energetic metabolism that generates reactive oxygen species (ROS) at an early stage or
reprogramming. The generated ROS serve as a signal to activate nuclear factor (erythroid-derived
2)-like-2 (NRF2), which then induces HIFs. Mitochondria also undergo fission, autophagy (mitophagy)
as well as functional inhibition, ultimately becoming less active in producing ATP.

3.6. Upregulation of Glycolytic Enzymes

Similar to mitochondrial genes, upregulation of glycolytic genes occurs early during
reprogramming before pluripotency genes are induced [30,45,69] and continues throughout the
course of reprogramming [30]. The levels of proteins involved in glycolysis also increase during
reprogramming [71], and the majority of glycolytic enzymes eventually show higher expression
in iPSCs than their somatic counterparts [30]. Consistent with the gradual shift from OxPhos to
predominantly glycolytic metabolism, glucose usage and lactate production increase in parallel with
the progression of reprogramming [30,34,35,70,78,85].

Hypoxia-related genes are upregulated during the early stage of reprogramming [45,69] (Figure 2).
Concurrent with the increased reprogramming efficiency in hypoxia [69], HIF1α and HIF2α are
stabilized by hypoxic conditions during reprogramming, and knockdown of HIFs in human fibroblasts
prevents reprogramming [45,69], indicating the pivotal role for HIF1α in reprogramming. Just as
in cancer cells [95], HIF1α promotes glycolysis during reprogramming by increasing the expression
levels of the glycolysis-related genes [45,69]. The stabilization of HIFs is specific to the early phase
because prolonged HIF2α stabilization into a later stage reduces the reprogramming efficiency in part
via upregulation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand [69].
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The increase in the metabolic flow of glycolysis is controlled not just by increasing the expression
levels of the enzymes but also by posttranscriptional regulation of key regulatory enzymes in the
glycolytic pathway [45] (Figure 1). One crucial mechanism to regulate the relative metabolic activities
between glycolysis and the TCA cycle is phosphorylation of the PDH complex, which catalyzes pyruvate
into acetyl-CoA. The PDH activity is negatively regulated through phosphorylation by pyruvate
dehydrogenase kinase (PDHK1) [96]. While the Pdhk1 mRNA expression level remains unchanged,
its protein level increases during reprogramming [61], probably by stabilization of PDHK1 [35]. Because
the PDH complex becomes more phosphorylated and thus less active in derived iPSCs [35], conversion
of pyruvate to acetyl-CoA decreases and thereby the glycolytic activity becomes higher.

Stimulation of the AKT activity increases the reprogramming efficiency [97], and consistently,
modulating the activity of 3-Phosphoinositide-dependent protein kinase-1 (PDK1), which activates the
AKT activity, increases the reprogramming efficiency probably through the effect on metabolism [98]
(Figure 3). For example, PDK1 activator, PS48 [99] promotes reprogramming whereas its inhibitor,
UCN-01 [100], decreases the reprogramming efficiency through their effect on the AKT activity. In these
studies, the AKT activity was shown to correlate with increased expression of the glycolysis-related
genes and higher lactate production [98].

Pyruvate kinase catalyzes conversion of phosphoenolpyruvate to pyruvate, which is the final
step of glycolysis (Figure 1). One of the four pyruvate kinase (PK) genes, the PKM gene, produces
two isoforms PKM1 and PKM2 via alternative splicing [101]. The shift from PKM1 to PKM2 promotes
glycolysis because PKM2 has a lower catalytic activity than PKM1. This switch from PKM1 to PKM2
occurs during reprogramming and contributes to the enhanced glycolytic activity [61].
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Figure 3. Regulation of glycolysis by AKT. Phosphoinsitide 3-kinase (PI3K) associated with a
receptor, such as a receptor tyrosine kinase, phosphorylates phosphatidylinositol (4,5)-bisphosphate
(PIP2) to generate phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 then binds and activates
3-Phosphoinositide-dependent protein kinase-1 (PDK1), which then activates AKT by phosphorylation.
The phosphorylated AKT elicits activation of the mTOR complex, which leads to higher glycolysis.
Leukemia/lymphoma 1 (TCL1) binds to AKT directly and promotes phosphorylation of AKT.

At a late stage of reprogramming, induction of Tcl1 by KLF4 plays an additional role for promoting
the metabolic shift [78]. As a coactivator of AKT, TCL1 enhances the AKT activity, which further
elevates some key glycolytic enzymes. Exogenous expression of the oocyte factors TCL1 or TCL1b1,
a protein related to TCL1, also increases the reprogramming efficiency by promoting the metabolic
shift at this stage [78,94], which occurs independent of changes in cell proliferation [94]. TCL1 is shown
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to promote phosphorylation of AKT by direct interaction and its polymerization [102] (Figure 3). This
mechanism may function cooperatively with the PDK1-mediated phosphorylation of AKT to further
enhance the AKT activity that has already become high during the preceding stages of reprogramming.

4. Perspectives

Although the metabolic shift has been documented in many reprogramming systems and
occurs throughout the reprogramming process, its molecular mechanism is only beginning to be
deciphered. As outlined in this review, modulating the metabolism in general impacts the efficiency
of reprogramming, and conversely, when the reprogramming efficiency is altered, it is usually
accompanied by an altered metabolism. This suggests that metabolic shift may not be a mere byproduct
of the reprogramming process, but rather plays a more active or regulatory role in this process.

Although recent studies clarified the general trend of the metabolic shift during reprogramming,
analysis of metabolic regulation is still faced with challenges because the metabolic system is tightly
linked to complex networks of feedback and feedforward loops, both at the transcriptional and
posttranscriptional levels, to maintain homeostasis. These regulatory networks render interpretation
of the results difficult, especially with regards to causality. In addition, reprogramming progresses
asynchronously in a heterogeneous population of cells, and individual cells may take different paths
when they transit from one metabolic state to another. Thus, analyses using a population of cells
may only provide an average picture of events, in which details may be blurred or escape detection.
Furthermore, the sequence of events during the metabolic shift may depend on, and therefore differs
among, the employed reprogramming system.

One important difference in the reprogramming system is the use of human or mouse cells.
In general, human ESCs are more similar to primed mouse ESCs rather than to naïve mouse ESCs.
Because it is often difficult to determine if derived human or mouse iPSCs in the literature correspond
to the naïve or primed state, this review did not mention the differences in the metabolic states between
naïve and primed ESCs. For the detailed metabolic differences between naïve and primed ESCs, which
are also relevant to the differences between human and mouse iPSCs/ESCs, we refer readers to excellent
reviews on this topic [8,103].

Despite these difficulties of investigating the metabolism during reprogramming, recent
developments of analyzing gene expression [104] and metabolomics at a single-cell resolution [105]
provide an exciting possibility of understanding the metabolic shift and its complex regulations in
unprecedented clarity and detail. Understanding the metabolic basis of stemness, both in embryonic
and adult stem cells, should provide crucial information for applications of stem cell therapies in
the future.
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3BrP 3-bromopyruvate
Acetyl-CoA Acetyl-Coenzyme A
AMPK AMP-activated protein kinase
AP-1 Activator protein 1
ATG5 Autophagy-related protein 5
CTBP C-terminal binding protein
Drp1 Dynamin-related 1
DUSP6 Dual specificity protein phosphatase 6
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ERK Extracellular signal-related kinase
ERR Estrogen-related nuclear receptor
ESC Embryonic stem cell
ETC Electron transport chain
FADH2 Flavin adenine dinucleotide
HIF1α Hypoxia-inducible factor 1-alpha
HIF2α Hypoxia-inducible factor 2-alpha
HK2 Hexokinase II
HNRNPK Heterogeneous nuclear ribonucleic protein K
iPSC induced pluripotent stem cell
KEAP1 Kelch like-ECH-associated protein 1
LIF Leukemia inhibitory factor
MAPK Mitogen-activated protein kinase
mTOR mammalian target of rapamycin
NADH Nicotinamide adenine dinucleotide
NADPH Nicotinamide adenine dinucleotide phosphate
NF-kB Nuclear factor kappa B
NRF2 Nuclear factor (erythroid-derived 2)-like-2
OxPhos Oxidative phosphorylation
PDH Pyruvate dehydrogenase
PDHK1 Pyruvate dehydrogenase kinase 1
PDK1 3-Phosphoinositide-dependent protein kinase-1
PGC-1 Peroxisome proliferator-activated receptor-1
PIP2 Phosphatidylinositol (4,5)-bisphosphate
PIP3 Phosphatidylinositol (3,4,5)-triphosphate
PKM2 Pyruvate kinase M2
PnPase Polynucleotide phosphorylase
POLG DNA polymerase subunit γ
POMP Proteasome maturation protein
PSC Pluripotent stem cell
PTBP1 Polypyrimidine tract-binding protein 1

RM-DIC
Retardation modulated-differential interference
contrast

ROS Reactive oxygen species
TNF Tumor necrosis factor
UCP2 Uncoupling protein 2
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