Supplementary file

Hidden Aggregation Hot-Spots on Human Apolipoprotein E: a Structural Study

Paraskevi L. Tsiolaki[#], Aikaterini D. Katsafana[#], Fotis A. Baltoumas, Nikolaos N. Louros, Vassiliki A. Iconomidou*

Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15701, Greece

Figure S1. Amyloid propensity histograms of apoE2, apoE3 and apoE4, based on AMYLPRED [1]. Two apoE regions, namely ¹³³LRV¹³⁵ and ¹⁵⁹LAV¹⁶¹, were recognized as "aggregation-prone" segments (orange boxes). ApoE2 (blue line) has a slightly different profile in comparison to two other isoforms. Residues that differ between isoforms are coloured in magenta on the3D - NMR structure of apoE.

Figure S2. Molecular dynamics simulation diagrams. (a) All three domains are compared with the RMSD of the full-length apoE over time. (N-terminal domain in green, C-terminal domain in blue, hinge domain in red). **(b)** Structural deviations of ¹³²ELRVR¹³⁶ and ¹⁵⁸RLAVY¹⁶² as compared with full-length apoE 300 ns simulation over time. ¹⁵⁸RLAVY¹⁶² exhibits 8 to 10 Å structural fluctuations.

Figure S4. Amyloid propensity histograms of A β according to AMYLPRED [1]. Predicted A β "aggregation-prone" interfaces (orange) are also represented in the misfolded A β form obtained by 2BEG NMR structure [2].

Figure S5. Molecular Dynamics simulations of A β -apoE complex for 300 ns. Despite the critical structural rearrangements observed for the A β -apoE complex over time, the C-terminal aggregation-prone

epitope of A β anchors the amyloidogenic ¹³²ELRVR¹³⁶ peptide located at the N-terminal apoE domain. (N-terminal apoE domain; green, A β oligomer; navy blue, AMYLPRED hot-spots; orange)

References

- 1. Frousios, K. K.; Iconomidou, V. A.; Karletidi, C. M.; Hamodrakas, S. J., Amyloidogenic determinants are usually not buried. *BMC structural biology* **2009**, 9, 44.
- Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Dobeli, H.; Schubert, D.; Riek, R., 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. *Proc Natl Acad Sci U S A* 2005, 102, (48), 17342-7.