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Abstract: Some evidence shows that body mass index in humans and extreme weights in animal
models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and
embryo development failures. Adipokines are hormones mainly produced and released by white
adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also
involved in many other physiological processes including reproductive functions. Indeed, leptin and
adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin,
are expressed within the reproductive tract and modulate female fertility. Much of the literature
has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and
uterine functions. The purpose of this review is to summarize the current knowledge regarding the
involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and
embryo development in both mammals and birds.
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1. Introduction

In mammals and birds, the female reproductive functions are dependent on nutritional status and
body composition. Indeed, extreme body weight changes affect human fecundity through increasing
the probability of anovulation. For example, a rapid decline in fecundity was shown during the Second
World War when a military blockade resulted in a fall in rations to the population [1]. In birds, an
excessive food consumption in comparison to their needs in immature females leads to an accelerated
development of the reproductive system at the time of sexual maturity [2]. This excess of energy
decreases the production of functional oocytes due to a dysregulation of the follicular hierarchy [3].
Thus, as in mammals, an alteration of both nutritional status and body composition is associated with
reproductive disorders and embryo development failures in birds. This connection between metabolic
and reproductive functions involves many signals called energy sensors that bind specific receptors on
the cell surface. Among them are adipokines, which are cytokines that are predominantly produced by
white adipose tissue (WAT) and include leptin, adiponectin, visfatin/PBEF (Pre-B-cell colony-enhancing
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factor), and chemerin. In addition to the WAT, some of these adipokines are present and released by
endothelial, immune, and reproductive cells. They play important roles in metabolic homeostasis,
cellular inflammation, immunity, angiogenesis, and reproductive functions [4,5]. Indeed, some in vitro
and in vivo evidence shows that adipokines are able to control ovarian steroidogenesis, late embryo
development, including embryo implantation, and fetal growth [4,6-10]. In mammals, many of
these adipokine effects have been described in several reviews [4,6-12]. However, the roles of leptin,
adiponectin, visfatin, and chemerin in oocyte maturation, fertilization, and early embryo development
(cleavage and blastocyst formation (before implantation in mammals)) have rarely been summarized.

In the present review, we will focus on these four adipokines that have been the most studied
in chicken.

2. Oocyte Maturation, Fertilization, and Early Embryo Development in Mammals

2.1. Oocyte Maturation and Fertilization

In many mammalian species, the first meiosis of the oocyte is initiated during fetal life and is
arrested at the diplotene stage of prophase before birth (Figure 1A,B). Oocyte maturation is defined as
the reinitiation and completion of the first meiotic division, subsequent progression to metaphase II,
and the nuclear and cytoplasmic processes which become essential for fertilization and early embryo
development (Figure 1A,B). During these processes, the oocyte has undergone extensive growth in
cellular interaction with the granulosa and theca cells. The oocyte undergoes asymmetric cytokinesis
and extrudes the first polar body containing a haploid chromosome complement (Figure 1A,B).
The first meiotic division is completed, and the second meiotic division is initiated, but oocytes arrest
in metaphase II until contact with a spermatozoon (Figure 1A,B). The initiation of maturation in fully
grown oocytes present in antral follicles is based on the mid-cyclic onset of the luteinizing hormone
(LH) surge or the external administration of human chorionic gonadotropin (hCG). Mechanisms of
oocyte maturation in vivo and in vitro are still under investigation.
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Figure 1. (A) Oocyte maturation and fertilization in mammals. (B) Description of the different steps of
oocyte development from fetal life, birth, ovulation to fertilization.

The journey of Early Embryo Development (EED) begins at ovulation when a LH surge induces
oocyte expulsion from the follicle and oocyte maturation accompanied by first polar body formation.
This step belongs to EED, since the oocyte is not in direct physical contact with the female organism.
At this point, the oocyte is mature and able to be fertilized by a single spermatozoon. For this crucial
phenomenon, the zona pellucida of the oocyte plays a very important role as a mediator of the
oocyte-spermatozoon interaction. Indeed, this glycoprotein layer surrounding the oocyte is formed
during folliculogenesis. It is composed of four main types of glycoproteins called Zona Pellucida
glycoproteins (ZP) or ZP1, ZP2, ZP3 and ZP4 in humans and mice. These glycoproteins have a critical
role in fertilization since they take part in the interaction between the two gametes. In mice, ZP
glycoprotein-3 (ZP3) acts as the primary sperm receptor and ZP glycoprotein-2 (ZP2) as the secondary
sperm receptor. In humans, ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) bind to the
capacitated human sperm and induce acrosomal reaction. ZP2 binds to the acrosome-reacted human
spermatozoa [13]. The acrosomal reaction is the release of the contents of the acrosome that reorganize
the zona pellucida and permit the spermatozoon to reach the oocyte. This reaction also induces
modifications of the ZP proteins that are very important to avoid polyspermia [13,14]. At these stages,
the embryo is still surrounded by the zona pellucida to avoid ectopic implantation. The fertilized
oocyte, now called a one cell zygote, undergoes second polar body extrusion to remove its remaining set
of extra chromosomes. Subsequently, the maternal and the paternal pro-nuclei, each containing haploid
genomes, appear and migrate towards one another and fuse during a process called syngamy [15].

2.2. Cleavage and Blastocyst Formation

Following syngamy, the zygote undergoes a series of mitotic cell divisions (cleavages) that occur
within the oviduct and that produce an exponential number of progressively smaller cells called
blastomeres (Figure 2), without changing the total volume of the embryo [16]. Data related to cleavage
rates in vitro for the human [17,18] and mouse [19] are available and show an average cell cycle time of
13-16 and 10 h, respectively, over the first three or four cleavage divisions. In general, mouse zygotes
reach the fully expanded blastocyst stage after 84-96 h of culture and human embryos take another
24-30 h. The average diameter of mouse embryos at 70 pm is about half that of human embryos,
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thus making the volume of the human embryo ~8-fold larger than the mouse embryo. These mitotic
divisions continue until the morula stage, when the embryo cells start the process of intracellular
adhesion called compaction. This step is very important since it will affect future cell specification or
cellular morphogenetic events [20,21]. The timing of compaction is different between rodents and large
mammals such as ovines, porcines, bovines, and primates including humans. Indeed, compaction
occurs earlier in rodents at the 8 cells stage instead of 16 to 32 cells for the large animals [17,22-24]. Until
the morula stage, blastomeres are homogenous and considered as totipotent cells potentially giving
embryonic cells or extraembryonic cells. The compaction process will induce the apparition of two
cellular subpopulations during the following division. The first population will divide symmetrically
according to the inner/outer axis to give two polarized daughter cells. The second population will
divide asymmetrically on a perpendicular axis to the previous one to produce an external polarized
cell and an internal non-polarized cell. Therefore, at this stage of development, two cell types, different
from their inner or outer positions, compose the embryo. While the cells on the inside of the embryo will
become a part of the inner cell mass (ICM), the cells on the outside will contribute to the trophectoderm
(TE) layer. From the compaction step at day 3 in mice and later at day 4 for other mammals, a liquid
cavity called blastocoel is formed inside the embryo. Because of this delay, the human embryos are also
likely to undergo at least one additional round of cell division to form a 256-cells blastocyst (Figure 2),
whereas mouse blastocysts typically comprise 164 cells. At this stage, the embryo is composed of the
external layer of TE, the blastocoel and the ICM. The mouse embryo reaches this developmental step at
day 4. Similar to the human species, the majority of the mammals like rat, rabbit, ovine, porcine, and
primate species reach the multicellular blastocyst stage on day 5 to day 7 [25-28]. For bovine species,
the embryo does not reach the blastocyst stage until day 7 to day 9 [29]. In preparation for implantation
into the uterus, the blastocyst then ‘hatches’ from the ZP to allow for increased embryo growth and
development as well as TE adhesion to the lining of the uterine wall. This latter step occurs at day 4.5
in mice, day 7 for the majority of mammals and around day 20 in bovine species [30].

Zygote 2 blastomeres 4 blastomeres 8 blastomeres Morula Blastocyst
(cleavage or (totipotent (totipotent (inner cells will (After
cellular division cells) cells) become the inner compaction
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Figure 2. Different steps of the early embryo development in mammals.
3. Oocyte Maturation, Fertilization, and Early Embryo Development in Birds

3.1. Oocyte Maturation

In most avian species, the female retains only the left part of her reproductive system. Indeed, in
birds except raptors, the right ovary of females, present at hatching, gradually regresses. Thus, only the
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left ovary is functional in adulthood. Despite a different follicle location between birds and mammals,
the maturation process of the ovarian follicles is similar in chickens and mammals.

The mature avian ovary contains follicles of different sizes and developmental stages, including
primordial follicles, prehierarchical growing follicles (1-4 mm) called white follicles, and large yolk-filled
follicles (9—40 mm) recruited to the preovulatory hierarchy [31] (Figure 3). In the primordial follicle,
the oocyte contains a large and prominent germinal vesicle (oocyte nucleus). In the yolk-filled follicle,
the oocyte contains a large amount of yolk and is surrounded by the perivitelline layer (equivalent to
the mammalian ZP) [32]. This perivitelline layer starts to appear between the plasma membrane of the
oocyte and the granulosa cell layer during the growth of follicles. The germinal disc containing the
oocyte nucleus and cytoplasmic organelles is located at the animal pole. One of the peculiarities of
the avian follicle is the presence of 5-7 hierarchical follicles before ovulation. Like the mammalian
oocyte, the avian oocyte is arrested in prophase of meiosis I during follicular development. It resumes
from meiosis I a few hours before ovulation. However, it is again arrested in metaphase of meiosis II
until ovulation. The mature oocyte from the largest yolk-filled follicle (F1, 40 mm) is released into the
infundibulum and becomes the ovulated ovum or the egg.

Yellow follicles

10 mm
White follicles O Q
000 OO O
a b ¢ d e F5 F4 F3 F2 F1
PP EE R CRTELPEELRED R e e e e e e LT L L O CE LT LT L LL LU EORI TR =
Around 2 months Between 7 to 10 days

Folliculogenesis
Figure 3. Different steps of the folliculogenesis in birds.

The follicle is surrounded by perivitelline membrane (PM), granulosa cells, and theca cell layers [33].
It contains only the inner layer of the PM since the outer layer of the PM is secreted at the start of the
oviduct following ovulation. The internal PM exerts a similar role to the zona pellucida of mammalian
follicles. There is more maternal mRNA within the avian oocyte than in mammals [34]. The ovulation
involves the Hypothalamus-Pituitary-Gonadal (HPG) axis and the secretion of gonadotropin hormones
(luteinizing (LH) and follicle-stimulating hormones (FSH)) [35]. Not all follicles develop at the same
time [36-38]. When a follicle reaches the last stage of development, a trigger stimulus (the switching
on or off the light, respectively in Japanese quail and hen) induces a LH surge, leading to the synthesis
of progesterone by the mature follicle. Through positive feedback, progesterone (but not estradiol as
observed in mammals) induces a second LH surge, called the pre-ovulatory surge. Significant secretion
of ovarian steroids, including progesterone, accompanies the pre-ovulatory discharge. Progesterone
allows for the release of enzymes responsible for the rupture of the follicular membrane, resulting in
the release of the follicle into the oviduct.

Unlike mammals, the late avian embryo development takes place outside the mother’s uterus.
Thus, the egg must contain all the nutrients to allow for embryo development. The oviduct will allow
for the formation of the egg but also its fertilization. The avian oviduct is made up of 6 successive
anatomical area (Figure 4).
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Figure 4. Structure of an avian oviduct with reference to sperm storage sites.

The infundibulum (also called pavilion), is located in the upper part of the oviduct. It captures
the oocyte at the time of ovulation. Its wall is particularly thin and its mucosa contains several cell
categories, some of which have a secretory function (deposition of proteins forming the perivitelline
outer membrane of the egg), and for others, a storage function of sperm (infundibular glands).
The infundibulum is the region where the egg is fertilized. The secretory activity of the infundibulum
allows for the deposition of the outer layer of the perivitelline membrane. The completion of this
thin membrane is made up of fibrils having a composition very close to that of gelatinous white egg.
This composition plays an important role in the protection of yellow by limiting the exchanges between
the latter and white egg.

The magnum, 30 to 35 cm long in an adult hen, is the area where the albumen (or white) is
synthesized. In its lower part, the magnum is separated from the isthmus by a clear narrowing
in diameter.

The isthmus is shorter (about 15 cm), and slightly narrower than the magnum. The internal folds
of its mucosa are also less pronounced. Its color is very comparable to that of the magnum in the upper
part and the mucosa becomes reddish in the area near the uterus. These two areas are called white
isthmus and red isthmus, respectively.

The uterus (also called the shell gland), is the thickest part of the oviduct. More or less rounded in
shape, its thick walls are surrounded by a highly developed musculature. The uterine lining, dark
red in color, is formed-16-numerous folds covered with a surface epithelium, dotted with numerous
branched tubular glands responsible for the secretion of the shell constituents. This lining is clearly
distinguished from the utero-vaginal lining by the lack of orientation of the folds.

The utero-vaginal junction, only 1 to 2 cm long, is attached to the uterus by a thick fibrous structure.
This junction plays an essential role in the prolonged storage of spermatozoa [39].

The vagina, about ten centimeters in length, is the most distal part of the oviduct and opens into
the cloaca. It consists of a large layer of muscle tissue that allows for the final expulsion of the egg.

3.2. Fertilization

For fertilization, birds must copulate. Unlike mammals, most birds do not have external genitalia.
Instead, they have cloacae, common openings for both reproduction and excretion. In most birds,
copulation only lasts a few seconds, in which the male bird mounts the female from behind and their
cloacae touch. The sperm swim up to the ovum where fertilization occurs.
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Fertilization takes place in three stages [40]:

1. Penetration of the spermatozoon in the ovular cytoplasm;
Activation of the oocyte;
3. Fusion of the haploid nuclei of the two gametes and the reconstitution of a new diploid cell: the zygote.

In birds, after mating, the preservation of sperm takes place in the specialized tubular glands
located at the base of the infundibulum and especially at the uterovaginal junction. Bird spermatozoa
survive within the female genital tract and retain fertilizing power there for longer than that recorded
in most mammals. This duration is however very different from one species of bird to another (from 4
to 30 days at least). The spermatozoa are stored within the oviduct in specialized tubular invaginations
called sperm storage tubules [41] and released before subsequent ovulation by progesterone-mediated
stimulation [42]. The penetration of the yolk (follicle) into the oviduct is favored by the infundibulum
thanks to its funnel shape, animated by muscle contraction during ovulation and coming to cap the
follicle ready to ovulate. The spermatozoa preferentially agglutinate in front of the germinal disc and
insert between the fibers of the membrane. A tryptic enzyme named acrosin, released by the acrosome,
allows for spermatozoa to penetrate. Fertilization in birds, including chickens, is different to mammals
in that it requires multiple sperm to fertilize an egg cell. Indeed, polysperm is very common, but a
single nucleus of sperm obviously fuses with the nucleus of the oocyte [43].

3.3. Early Embryo Development

After fertilization, the chicken eggs remain for about 3 h inside the magnum to acquire albumen,
1.5 h inside the isthmus to acquire shell membranes, and 20 h inside the shell gland to acquire a
calcium-enriched shell. The zygote undergoes intrauterine embryo development with the initiation
of cell division parallel to the egg position in the shell gland (Figure 5). The embryo development
in birds, and particularly in chickens, is classified into stages by two major criteria: Eyal-Giladi and
Kochav (EGK) criteria [44,45] and Hamburger and Hamilton (HH) criteria [46]. The EGK criteria
classifies the intrauterine embryonic development, while the HH criteria classifies the post-ovipositional
development in chickens. According to the EGK criteria, intrauterine embryo development in chickens
is classified into stages from EGK.I (early cleavage stage) to EGK.X (showing complete formation of
the area pellucida and area opaca) (Figure 5). After fertilization, shell formation, and egg laying, there
is an incubation period, which varies in length for each species. During incubation, major embryo
development occurs that we will not detail here.

Ovulation

: Infindibulum : Magnum Isthmusj .. Vagina
4 e Uterus e

Fertilization ST T

1.5h 55h 8.5h 15.5h 20.5h 25h
N ©
-

Oocyte Zygote EGK.I EGK.II EGK.VI EGK.VIII EGK.X
Oviposition

Figure 5. Some steps of early embryo development (intrauterine) in chicken.
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4. Adipokines and Their Receptors

Before describing the effects of adipokines on oocyte maturation, the fertilization, and the early
embryo development processes, we will first briefly describe the gene and protein structure of the four
main adipokines studied in this review (leptin, adiponectin, visfatin, and chemerin), their receptors in
mammals, and then, their peculiarities in birds.

4.1. Leptin

In mammals (humans), leptin is a peptide containing 167 aa (Table 1) that is known as a key
regulator of satiety, metabolism, and energy homeostasis mainly in the central nervous system [47]. Six
leptin receptor (LEPR) isoforms are generated by alternative splicing of the LEPR gene located on the
chromosome (Chr) 7 (Table 1). LEPR-a, -b, -c, -d and -f are membrane-bound receptors but only LepR-b
is full length with an intracellular signaling domain (Figure 6). Indeed, LEPR-b contains the intracellular
domains necessary to mediate signal transduction through the signal transducer and activator of
transcription 3 (STAT3) pathway [48,49]. Other pathways, including the mitogen-activated protein
kinase [48,49], protein kinase C [50], and phosphoinositol 3-kinase pathways [51], are also activated by
leptin. STATS3 signaling is required for leptin regulation of energy balance, but not for reproduction [52].
LEPR-b is the most important receptor in the hypothalamus and it is responsible for the control of
energy intake and expenditure. LEPR-e is a soluble receptor, which binds circulating leptin.

Table 1. Genelocation, protein expression, and synthesis of adipokines and its receptors in mammals (humans).

Protein Gene Gene Location Protein (Description) Synthesis References
(Name)
Leptin LEP/OB 7q32.1 167 aa WAT but also placenta [53]
1.165 aa (6 isoforms, a to f). LepR-b: strongly
Lentin LepR-b has intracellular expressed in
P LEPR 1p31.3. signaling. LepR-e is a soluble hypothalamus, but [54,55]
Receptor . ;
receptor and binds plasma also in skeletal muscle.
leptin. Ubiquitous
244 aa

Full-length and Globular
adiponectin (f and gADN)
Three types of complex:Low
Adiponectin  ADIPOQ 3q27.3. molecular weight (LMW, 67 Adipocytes [56]
kDa), Middle molecular
weight (MMW), 136 kDa), High

molecular weight (HMW,
>300 kDa).
ADIPOR1 ~ APIPO 19321 375 aa Skeletal muscles and [56,57]
R1 ubiquitously
ADIPOR2 A[;{IZPO 12p13.33 386 aa Liver and ubiquitously [56,57]
Visfatin NAMPT 7q22.3 491 aa ubiquitously [58]
Chemerin  RARRES? 7q36.1 163 aa White adipose tissue [59,60]
and liver
CMKLR1 CMKLR1 12q23.3 373 aa ubiquitously [60-62]
GPR1 GPR1 2q33.3 355 aa ubiquitously [60-62]

CCRL2 CCRL2 3p21.31 344 aa ubiquitously [60-62]
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In birds, the occurrence of the leptin gene had been a matter of debate over recent decades [63-65],
but has recently been clarified by the finding of a true chicken leptin orthologue [66], which has
been located on chromosome 1 [67] (Table 2). Chicken leptin and leptin receptor have an amino acid
identity of 30% and 10% with human leptin and leptin receptor, respectively (Table 3). The hormone
was reportedly expressed in non-adipose tissues [68,69] (Table 2). Indeed, as recently reported by
Friedman-Einat and Seroussi, 2019, leptin is missing from the adipose tissue, observed under a variety
of physiological and feeding conditions, indicating that in birds, leptin is not the signal by which the
adipose tissue announces the amount of fat stores [70]. The dominant level of avian leptin receptor
expression in the hypothalamic-pituitary-gonadal and -adrenal axes suggests its implication in the
regulation of reproduction and stress response rather than appetite. However, further investigation is
needed to establish this possibility. Chicken leptin was claimed to be undetectable in chicken blood [66].
Despite this, the availability of a functional chicken leptin receptor prompts studies targeting leptin
receptor, which substantially augmented leptin bioactivities in both chicken hens and pullets [71,72].

Table 2. Gene location, protein expression, and synthesis of adipokines and its receptors in

birds (chicken).
Protein (Name) Gene Gene Location (Delll;(;:;itlilon) Synthesis References
Leptin LEP Chr 1 (1p) 198 aa mainly in brain and pituitary [67,70,73]
Leptin Receptor LEPR Chr8 1146 aa ubiquitously [74]
mainly fat tissue, heart,
Adiponectin ADIPOQ Chr9 244 aa stomach and skin and [75]
ubiquitously
ADIPOR1 ADIPOR1 Chr32 376 aa ubiquitously [76,77]
ADIPOR2 ADIPOR2 Chrl 387 aa ubiquitously [76,77]
Visfatin NAMPT Chrl 493 aa ubiquitously [78-80]
Chemerin RARRES2 Chr2 162 aa mainly liver (turkey) [79]
CMKLR1 CMKLR1 Chr15 360 aa ubiquitously [79]
GPR1 GPR1 Chr7 420 aa ubiquitously [79]
CCRL2 CCRIL2 Nd nd Pectoralis muscle and [79]

ubiquitously

Chr: chromosome, aa: amino acids.
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Table 3. Amino acid sequence identity between chicken and human species.

Leptin

Protein Leptin Receptor Adiponectin ADIPOR1 ADIPOR2 Visfatin Chemerin CMKLR1 GPR1 CCRL2
Id’f;‘my 30 47 57 91 82 94 36 56 64 nd
:jfg;’“ron [51] P‘;ii? (52] 771 - (o] Q9969and  Q99788and  FINYBO and

© AOAOKOPUH6 AOAIDSP7P2  P46091
or ref. QII8V6

nd: undetermined.

4.2. Adiponectin

In mammals, the human adiponectin cDNA was isolated from WAT in 1996 by Maeda et al. (1996)
as apM1 (adipose most abundant gene transcript 1 protein) [83] and in parallel, from murine fibroblast
cell lines (ADIPOQ) by Hu et al. (1996) [84]. The adiponectin gene codes for a 26 kDa protein (244 aa)
described for the first time by Scherer et al. (1995) [85] (Table 1). The adiponectin protein has also
been extracted from human plasma [86], where it is considered to be the most abundant adipokine
(between 5 and 30 mg/L). Adiponectin is secreted into the blood by white adipocytes with a higher
serum level in women as compared to men and it is negatively associated with body weight. It is found
in cells and plasma in three main forms: trimers, hexamers, and high molecular weight (HMW) [87].
In addition, a smaller fragment generated by the proteolytic cleavage of complete adiponectin generates
a globular domain of the protein, gAd, which is secreted in plasma. Adiponectin is able to bind two
main receptors, called ADIPOR1 and ADIPOR?, that have seven transmembrane domains, with a
C-terminal extracellular region and an N-terminal cytoplasmic region [57] (Figure 6). These receptors,
although ubiquitously expressed, have different tissue distributions. ADIPOR1 has a predominant
localization in the skeletal muscles and the endothelial cells, while ADIPOR2 is mainly expressed in the
liver. Adiponectin is also able to bind T-cadherin, which is a glycosyl-phosphatidylinositol receptor,
belonging to the family of cadherins, which has no transmembrane domain. The intracellular signaling
linked to this receptor seems to require other unidentified co-receptors or ADIPOR1 and ADIPOR2.
In mammals, studies have shown beneficial effects of adiponectin on various physiological functions,
including glucose homeostasis, food intake, apoptosis, and oxidative stress. This molecule is generally
a beneficial adipokine [88,89].

In chickens, the adiponectin coding region shares 67% and 65% identity with humans and mice,
respectively [75] (Table 3). Furthermore, the avian ADIPOR1 receptor cDNA sequence has 80-83%
homology with the human, mouse, rat or pig cDNA sequences, while its deduced protein sequence is
similar to 91% in mammalian forms. Similarly, the avian cDNA sequence of the ADIPOR?2 receptor is
76-78% homologous with the human (Table 3), mouse or pig sequences, while its protein sequence
is similar to 82% in the mammalian forms [77]. Adiponectin and its receptors are ubiquitous [76,90].
The expression of the adiponectin system (adiponectin, ADIPOR1, and ADIPOR2) in WAT and muscle
depends on the sex and age of animals [91] (Table 2). In WAT, the expression of the adiponectin
transcript is higher in females than in males, while the transcript of ADIPORI is higher in males than
in females. In muscle, adiponectin and ADIPOR2 are more expressed in females than in males, and the
opposite is observed for ADIPOR1 [82]. In addition, the adiponectin gene may be associated with the
initiation and growth processes of WAT deposition in chickens [92,93].

4.3. Visfatin

In humans, the visfatin gene is found on the long arm of chromosome 7 and encodes for a secreted
protein of 52 kDa [94] (Table 1). To date, no visfatin receptor has been identified (Figure 6). Visfatin is
a pleiotropic protein involved in a broad spectrum of physiological processes, including metabolic
functions [95]. In humans, visfatin was first discovered as a growth factor called PBEF (Pre-B cell
colony enhancing factor) in 1994 from human peripheral blood lymphocytes capable of initiating the
maturation of the precursors of B cells [94]. Visfatin is also considered to be a NAMPT (Nicotinamide
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phosphoribosyl transferase) type 2 due to its ability to synthesize NMN (mononucleotide nicotinamide)
from nicotinamide and 5'-phosphoribosyl-1’-pyrophosphate. NMN is a therapeutic target for the
treatment of metabolic disorders by improving glucose clearance in obese and diabetic mice [96-98].

In chickens, the full length of the visfatin gene has been cloned from adult liver. Avian visfatin
protein has strong amino acid sequence similarities to that of humans (94%) Table 3), rodents (94%) [80],
and other agronomical species (94%) [99]. Avian visfatin mRNA has been detected in many tissues
such as the brain, heart, intestine, kidneys, liver, lungs, muscles, and spleen [80,100] (Table 2). Visfatin
is also expressed in WAT without any difference between subcutaneous WAT and visceral WAT in
chicken [80]. There is increasing evidence in birds that visfatin is involved in the regulation of muscle
growth [101], metabolism [102], and food intake [103,104]. Thus, unlike mammals, visfatin is more a
myokine than an adipokine in chicken.

4.4. Chemerin

In mammals, chemerin is a cytokine which is also known as TIG2 (tazarotene-induced gene 2) or
RARRES?2 (retinoic acid receptor responder 2) [105] (Table 1). It is an adipokine closely linked to the
pathogenesis of metabolic syndromes [106]. Chemerin is secreted in the form of an inactive prochemerin
of 143 amino acids, which is then hydrolyzed by the enzymatic cleavage of 5 to 7 amino acids from its
carboxyl end in the extracellular compartment. Two neutrophil serine proteases, elastase and cathepsin
G, eliminate 6 and 7 amino acids, respectively, to generate an active form. Plasmin and tryptase
are also able to cleave 5 amino acids from the carboxyl end after cleavage of the carboxy-terminal
lysine by carboxypeptidases N and B, which also lead to active chemerin [61]. Chemerin is secreted
by fat adipocytes and it is expressed by several tissues, mainly WAT, liver and pancreas, but also
placenta, skin, kidneys, adrenal glands, lungs, and intestines [107-111] (Table 1). Chemerin exerts
its physiological functions by binding three receptors coupled to G proteins: CMKLR1 (chemokine
like receptor 1), GPR1 (G protein coupled receptor 1) and CCRL2 (CC motif chemokine receptor like
2) [107,108] (Figure 6). CMKLR1 is coupled to the Gi/o family of G proteins and inhibits the cAMP
signaling pathway (cyclic adenosine monophosphate), while promoting the PLC (phospholipase
C), PI3K, and MAPK pathways, calcium mobilization [61], and the recruitment of 3-arrestin which
activates MAPK ERK1/2 (Extracellular signal-Regulated Kinases 1 and 2) [112]. The sequence of GPR1
is closely linked to that of CMKLR1 with more than 40% identity and activates the same signaling
pathways [113]. However, CCRL2 does not seem to promote any signaling pathway, and does not
induce the internalization of receptors [112]. Chemerin is involved in the regulation of blood pressure,
inflammation, immune responses, differentiation of adipocytes, and carbohydrate metabolism, and
plays a key role in metabolic diseases such as obesity and diabetes [10].

In birds, very few data are available. In turkeys, chemerin mRNA is mainly found in the liver
compared to the heart and muscles, while CMKLR1 and GPR1 mRNAs are ubiquitous. The messenger
of CCRL2 is strongly present in the pectoralis muscle compared to the liver, heart, and leg muscle
(Table 2). The chicken chemerin gene sequence shares 81% identity with the turkey chemerin sequence.
Chicken chemerin, CMKLR1, and GPR1 have an amino acid identity of 36%, 56%, and 64% with human
chemerin and its receptor, respectively (Table 3). These results suggest that the chemerin system could
act on the avian carbohydrate and lipid metabolism.

5. Involvement of Adipokines in the Oocyte Maturation, Fertilization, and Early Embryo
Development in Mammals and Birds

In mice, genetic transformations of some adipokines or adipokines receptors genes induce
female infertility or subfertility (Table 4). This could point to an essential role of these hormones in
the hypothalamo-pituitary-ovarian axis regulation. For example, female mice with leptin KO are
sterile [114]. This sterility can be easily corrected by injections of human recombinant leptin [115] or
ovarian transplantation [116]. However, a lot of studies brought evidence that leptin, but also other
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adipokines, could exert specific roles in oocyte maturation, fertilization, and early embryo development
in various species.

Table 4. The consequences on the female fertility of targeted or total disruption or overexpression of
components of some adipokine signaling pathways.

Adipokine Component Modified Genetic Transformation = Ovarian Consequences References

no mature follicles or
corpora lutea were
detected
Leptin Total Knockout (KO) suppression of ovarian [117]
folliculogenesis and
increase in ovarian
granulosa cell apoptosis

-Reduction of ovarian

-Total KO (db mice) functions that are not
Leptin-R -Conditional deletion due to Leptin-R [118,119]
(cells expressing LH-f3) expression in ovary

-Reduction of litter size

-Reduction of oocytes
retrieval, disruption of
estrous cycle, elevation
of atretic follicles
number, and decrease in
late folliculogenesis

Adiponectin -Total KO [120]

5.1. Leptin

5.1.1. Oocyte Maturation

Leptin protein has been detected in the human, mouse, goat, and bovine oocytes ([121-123]
(Table 5), whereas some authors failed to show its mRNA [124,125], suggesting it may be produced
elsewhere and transported into the oocyte. Lep-R mRNA [124,126] and protein are found in mouse, rat,
goat, and bovine germinal vesicle (GV) and metaphase II (MII) oocytes, suggesting that the oocyte is
sensitive to leptin produced locally within the follicle (Table 5).

Table 5. Examples of adipokines and adipokine receptors expression in oocyte and embryos in
several species.

Protein Oocytes Embryos

Mice (protein, [123]), Goat
Leptin (protein, [127]), Human ([121,122];
Bovine [128]

Rodent (protein, [123]), Goat
(protein [127]), Bovine [128]

Adiponectin Rat [132], Bovine [9] Rabbit [133], Chicken [81]

Rat [132], Bovine [9], Pig [134], Rabbit [133], Chicken [81,136], Pig
and Human [135] [134]

Rodent [137], Human [138],

Mouse and Human [122], Bovine
[128], Rabbit [129], Chicken [130]

Leptin receptor Chicken [131], Bovine [128]

Adiponectin Receptors

Visfatin Bovine [139] Chicken [140]
Chemerin Bovine [141] Chicken [140]
Chemerin receptors Bovine [141] Chicken [140]

In mice, leptin administration in in vitro culture medium increases the rate of meiotic resumption
in preovulatory follicle-enclosed oocytes (Figure 7) [123]. Later study showed that leptin acts directly
on the bovine oocyte via cumulus cells to enhance meiotic maturation [142,143]. These beneficial effects



Int. ]. Mol. Sci. 2020, 21, 3581 13 of 29

are associated with lower cumulus cells apoptosis due to leptin treatment and differential regulation
of apoptosis-associated genes and genes involved in leptin signal transduction [144]. In vitro studies
also showed that the addition of leptin to IVM medium enhances meiotic maturation and embryo
development from calf oocytes and improves the quality of embryos derived from these oocytes [143].
Similar results showed that leptin treatment improves oocyte maturation and fertilization rates after
ICSI in equine species [145]. It is well known that oocyte developmental potential is a reflection
of proper nuclear and cytoplasmic maturation. In pigs, leptin enhances in vitro oocyte nuclear and
cytoplasmic maturation via the Mitogen-Activated Protein Kinase Pathway [146]. It also enhances
spindle assembly and accelerates pronuclear formation following fertilization [147]. This positive
effect on oocyte nuclear maturation has also been described in buffalo species [148]. Joo et al. 2010
showed that leptin administration with gonadotropins during superovulation in aged mice increases
the ovarian response, developmental competence of oocytes, and ovarian VEGF expression, suggesting
that the promoting effect of leptin on oocyte quality may be mediated by increased VEGF expression
within the ovary [149]. VEGF is well known to play a critical role in angiogenesis, and dysfunctional
ovarian angiogenesis is supposed as one of the major causes of age-related decline of oocyte quality.
Thus, the stimulation of angiogenesis by leptin-induced VEGF could contribute to the improvement
of oocyte quality in aged mice [150,151]. In fish, a recent study shows that fatty acid $-oxidation is
essential for leptin-mediated oocyte maturation [152]. Even if the role of lipid metabolism in oocyte
maturation is increasingly recognized in mammals [153], the link between fatty acid 3-oxidation and
leptin effects remains to be demonstrated in mammals and birds. In chickens, leptin attenuates the
negative effects of fasting on ovarian function. Injections of leptin during fasting delay cessation of egg
laying and attenuates regression of yellow hierarchical follicles [154]. Cassy et al. suggest that leptin
controls positively follicular maturation [155].

In vivo
ovulation

7\l (
@ &g

\\\\\\
e \§

N @\\) Zyébte 2 cells 4 cells 8 célls Morula Blastocyst
| In vitro
\ 6% |

N\ 4 fertilization In vivo embryo development
In Wtr? Leptin  pronuclear Role of leptin in embryo-endometrium crosstalk (human) [164]
maturation formation following ICSI
(pig) [149]

: : In vitro embryo development
In vivo oocyte maturation

Beneficial effects during superovulation treatment on ovarian
response and oocytes quality in aged mice (mouse) [151]

High plasma concentration of leptin impairs fertility in ART (human) [162]

Ratio leptin/adiponectin in FF related to succesfull embryo development

1 leptin concentration due to food deprivation leads to poor (human) [162]

oocytes quality (sheep) [168]
Leptin in IVM enhances embryo development (mouse [125], human [165], bovine

LEPR mutation leads to 3 oocytes quality (pig) [169] [171], equine [147], pig [170] and sheep [167])
In chicken, positive effects of leptin on follicular maturation LepR mutations linked with embryo loss and implantation failure (pig) [169]
(chicken) [157]

In vitro oocyte maturation
Leptin oocytes maturation (mouse [123, 180], bovine [145,
146,171,177, 178], buffalo [150, 174, 175], equine [147],
sheep [173, 176), pig [148], rabbit [179] and fish [154])

Leptin  cumulus cells apoptosis (bovine) [146]

Figure 7. Effects of leptin on in vivo or in vitro oocyte maturation (IVM), in vitro fertilization, and
in vivo or in vitro embryo development in different species. ICSI: Intracytoplasmic Spermatozoon
Injection FF: Follicular Fluid. ART: Assisted Reproductive Technology.
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Thus, in many mammalian species, leptin has positive in vitro effects on oocyte maturation by
reducing apoptosis and minimizing cellular damage to oocyte and/or cumulus cells, increasing ovarian
angiogenesis and fatty acid oxidation. After fertilization, leptin improves pronuclear formation that is
crucial for a good embryo development. As in mammals, leptin could exert positive effect on follicular
maturation in chicken.

5.1.2. Fertilization and Embryo Development

In embryos of mouse, human, bovine, chicken, and rabbit species, leptin is present and has
specific spatial localization [121,122,128,156-158] (Table 5). In these studies, authors demonstrated that
after fertilization, leptin becomes differentially distributed among the inner and outer blastomeres of
the morula stage embryo in a pattern that persists with respect to the ICM and trophoblast through
the hatched blastocyst stage, suggesting an important role of leptin in early embryo development.
In humans, the ratio between leptin and body mass index (BMI) appears to be highly predictive of
in vitro fertilization (IVF) success [159]. Still, in humans, the ratio between leptin and adiponectin in
follicular fluids of the preovulatory follicles, is related to successful in vitro embryo development [160].
Human endometrium produces leptin and leptin secretion is influenced by the blastocyst [161],
suggesting that the actions of leptin may be important during the preimplantation and implantation
time windows. Thus, the leptin system may play an important role in the crosstalk between the
preimplantation embryo and the receptive endometrium during the human implantation process
(Figure 7) [162]. Later, in vitro studies revealed that the addition of recombinant leptin to the embryo
culture media promotes the development from 2-cell stage embryos to the hatched blastocysts in mice
and humans [125,163]. These results are abolished by using an antibody against the extracellular
domain of LEPR. Moreover, results showed that leptin significantly increased the total cell number of
blastocysts with a highest effect in the trophectoderm suggesting a paracrine effect of this hormone.
However, other studies suggested a contrary role of leptin on embryo development [164]. Indeed,
authors showed that significantly fewer leptin-exposed than control embryos hatched by day 5 and
by day 6 of development. In addition, cells of leptin-exposed day 5 blastocysts showed a higher
rate of DNA fragmentation, which is a sign of apoptosis. These positive and negative effects seem
to be dose- and stage-dependent. In sheep, the concentration-dependent regulation pattern was
confirmed, although sheep embryos appeared to be more sensitive in responding to leptin [165]. In this
same species, food deprivation linked with low leptin production induces lower oocyte quality [166].
In pigs, polymorphism in LEPR gene sequence induced leptin resistance in the Iberian pig breed
itself leading to a lower ovulation rate, early embryo loss, and implantation failure of embryos [167].
Another study in pigs demonstrated that embryo development was stimulated when cultured in the
presence of leptin, and development was further enhanced when leptin was present during both oocyte
maturation and embryo development [168]. In bovine, leptin treatment during oocyte maturation
improved developmental potential, resulting in increased development to the blastocyst stage with
reduced numbers of apoptotic cells [169]. Further, increased LEPR mRNA levels were detected in
blastocysts originating from oocytes treated with leptin. Authors concluded that physiological doses
of leptin during oocyte maturation may have long-term effects on the expression of developmentally
important genes in early embryos. In chickens, the mRNA expression of leptin receptor was identified
in embryonic ovaries [131] as well as in developed ovaries [154,170]. These findings suggest that leptin
may contribute in ovarian development during embryogenesis.

Thus, most of the in vitro studies demonstrated that leptin exerts beneficial effects on oocyte
maturation and early embryo development. However, some data are sometimes contradictory. These
controversies can be explained by different experimental conditions. A summary of the leptin effects
described in the literature is shown in Figure 7 and Table 6 for more details concerning the doses used,
cell type studied, timing and period of treatment of the dose, and the cell type used. However, these
data remain to demonstrate under in vivo conditions.
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Table 6. Description of experiments (cell type, species, time of incubation, dose and origin of leptin, etc.,)

investigating the effect of leptin treatment on in vitro oocyte maturation and/or embryo development.

Time of

Dose

Origin of

Effects on Oocyte

Cell Type Species Incubation ng/mL Leptin Medium and/or Embryo References
_Si;(fl?g:ry sheep 18 days 25 human o«-MEM+ Avir (%) [171]
24h (IVM), 48 h
(cleavage rate) 3
COCs buffalo and day 8 post 10 nd F;CI\{,I AlI?I? gxg/[) fcleavage and [172]
IVF (blastocyst er ) blastocyst rate
rate)
COCs buffalo 24 h (IVM) 10 and 50 mouse TCM-199 foocyte ngclear [173]
maturation
Preantral
follicles and sheep 6 daf);sr 211{1/;1/[24 h 10 human TCM-199 fMH (%) [174]
COCs
COCs buffalo 24 h (IVM) 10 mouse TCM-199 fMH (%) [148]
COCs calf 24 h (IVM) lor10 nd TCM-199 AMIT (%) [143]
Prepubertal 482§ (hl(IVM) ) 10,100 or TCM-199 No effect on
COCs EPZI fe a 8 cdzavage ’1 000 © human (IVM)FerTALP cleavage and [175]
¢ s (Ive) blastocyst levels
(blastocyst)
‘cleava e rate
. 24h (IVM) TCM-199 d bl gt t
COCs bovine 7 days 10, 100 human FerTALP (IVC) and blastocyst [176]
(blastocyst) € yield with leptin
100 ng/mL
AMIr (%)
COCs rabbit 16 h (IVM) 1,10, 100 nd TCM-199 (nuclear oocyte [177]
maturation)
COCs horse 28030 h (IVM) 100 human TCM-199 Rin vt oocyte [145]
maturation
COCs mouse 24 h (IVM) 10 mouse M16 foocyte nuclear [178]
maturation
COCs bovine 20-22 h (IVM) 1,10 human TCM-199 fMH (%) [144]
#No effect on th
22-24 h (IVM) o ettect on the
Cocs bovine 7 days 1,10,100  human  CMIAYFrTALP cleavage ratebut 140
(blastocyst) avae) number of cells in
blastocysts
10, 100 A (%)
COCs pig 24-48 h (IVM) 1’000 ! human TCM-199 with 10 and 100 [146]
ng/mL
Preovulatory 10, 100
follicle-enclosed ~ mouse 24 h (IVM) 1’000 ! human TCM-199 AcveD (%) [123]
oocytes

Notes: FerTALP: Tyrode-albumin-lactate-pyruvate fertilization media; IVC: in vitro embryo Culture, MII: metaphase
II, GVBD: Germinal Vesicle Breakdown; IVM: in vitro maturation; COCs: Cumulus-Oocyte-Complexes; IVF: In

Vitro Fertilization. ’: increase; ‘: decrease.

5.2. Adiponectin

Adiponectin KO mice are subfertile (Table 4). In mice and rabbit species, adiponectin and its
receptors ADIPOR1 and ADIPOR?2 are expressed in blastocysts [133]. Its expression remains low
or undetectable in granulosa cells in mice and human (Figure 8) [135,179]. In human, adiponectin
increases IGF-1-induced P4 and E2 secretion in primary human GCs [135]. Adiponectin differentially
regulates the expression of specific genes in granulosa cells and cumulus cells indicating that the
effects of this adipokine are cell context specific and dependent on the stage of granulosa/cumulus cell
differentiation [179]. As an example, adiponectin alone increases AdipoR1 and AdipoR2 expression in
COCs but not in granulosa cells whereas it blocks the ability of FSH to increase AdipoR2 expression in
both granulosa cells and cumulus cells. Adiponectin alone markedly suppresses the expression of
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Cypl1lal in COCs but not in granulosa cells. It does not alter forskolin (FSH)- mediated induction
of Cypllal or granulosa cell release progesterone. In PCOS patients, the successful development of
human early embryo is associated with the up-regulation of AdipoR1 and AdipoR2 [180]. These results
suggest that adiponectin could positively modulates embryo development in humans. They are in a
good agreement with the data of Richards et al., 2012, showing that adiponectin enhances in vitro oocyte
maturation and in vitro early embryo development in mice and humans [179]. In mice, adiponectin
can directly influence the in vitro development of the preimplantation embryo, and the effects are
isoform dependent [181]. Indeed, the full-length adiponectin improves early embryo development,
whereas the globular form has no effect, and the truncated form inhibits early embryo development.
The adiponectin system (adiponectin, AdipoR1 and AdipoR?2) is strongly expressed in rat theca cells,
corpus luteum, and oocyte [132]. AdipoR2 and mainly AdipoR1 are also present in rat granulosa
cells and enhance IGF-I-induced steroidogenesis. In porcine species, adiponectin, AdipoR1 and
AdipoR2 are expressed in the cumulus cells, the oocytes from large follicles, and also in the early
embryos [182]. Moreover, recombinant human adiponectin has a positive effect on oocyte meiotic
maturation through the activation of the p38MAPK pathway and on the in vitro embryo development
in pigs [182]. In granulosa cells, adiponectin modulates steroidogenesis by inhibiting Star expression
and by stimulating p450scc expression. Moreover, it enhances LH effect on periovulatory genes
expression by stimulating COX2 and PGES expressions through the MAPK ERK1/2 signaling pathway.
In this species, several SNPs for adiponectin and its receptors have been identified as associated with
a lower litter size and increased stillborn [183]. It appears also that adiponectin could be involved
in a transgenerational effect of maternal undernutrition with a downregulation of AdipoR1 and an
upregulation of AdipoR?2 in early embryo as DNA methylation levels in embryos may be altered in
response to female nutritional restriction [184]. Results are quite different in bovine species since
this adipokine decreases insulin-induced steroidogenesis and increases IGF-1-induced proliferation
of cultured GC through a potential involvement of the ERK1/2 MAPK pathway. However, it did
not modify in vitro oocyte maturation and embryo development [185]. Finally, in birds, adiponectin,
AdipoR1 and AdipoR2 mRNAs are expressed in chicken theca and granulosa cells from preovulatory
follicles. However, adiponectin is higher expressed in theca cells than granulosa cells and could be
involved in the development of chicken preovulatory follicle and oocyte maturation [186].

Figure 8. Effects of adiponectin on in vitro oocyte maturation, fertilization, and embryo development in
different species. GC: Granulosa cells; P4: Progesterone; E2: Estradiol; PCOS: Polycystic Ovary Syndrome.
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5.3. Visfatin

Very little information is available about the role of visfatin in early embryo development. The KO
mice for visfatin are not viable since the embryos die at day 10 after conception [187], making harder
the study of this adipokine. In vivo study demonstrated that visfatin expression declines in the
ovaries of old mice but visfatin administration significantly increases embryo developmental rate
(Figure 9) [137]. Visfatin-administered aged mice deliver significantly higher numbers of offspring
than controls. Authors suggest the possibility that the promoting effect of visfatin on oocyte quality
and fertility may be associated with the stimulation of ovarian angiogenesis. This adipokine has also
an indirect beneficial effect on the embryo quality since it has been demonstrated that visfatin increases
IGF-1-induced steroidogenesis and cell proliferation [138]. In birds, visfatin is expressed in the ovarian
follicles of hens and it has a negative impact on steroidogenesis and P4 production by granulosa
cells, and so, it could play a negative role on oocyte maturation [78]. However, until now, there is no
evidence that visfatin has a direct action on early embryo development in mammals and birds.

In vivo
ovulation

P O\

In vitro
maturation

In vivo oocyte maturation

Visfatin expression 4 in ovaries of aged mice (mouse)
[139]

In m ion

Visfatin treatment ¥ IGF1 induced steroidogenesis in GC
(human) [140]

Visfatin treatment § IGF1 induced steroidogenesis in GC
(chicken) [78]

Figure 9. Effects of visfatin (in blue) and chemerin (in red) on in vivo and in vitro oocyte maturation,
fertilization, and embryo development in different species. GC: Granulosa cells; IGF1: Insulin Growth
Factor 1; FF: Follicular Fluid; ART: Assisted Reproductive Technology.

5.4. Chemerin

A role for chemerin in early embryo development remains to be demonstrated. In human
species, a recent study highlighted a relation between chemerin concentration in follicular fluid
and embryo quality after IVF procedures. It appears that in PCOS women, the chemerin system is
significantly overexpressed compared to the control and this is associated with the poorest embryo
quality [188]. This adipokine has also a negative impact on in vitro oocyte maturation in bovine species
(Figure 9) [141]. In chicken, it appears that chemerin concentrations in plasma are negatively correlated
with egg hatchability, suggesting a potential role of this adipokine on egg [189]. In turkey, chemerin is
expressed by granulosa cells and increases in the mature follicle before ovulation, thus, potentially
influencing the EED [79].
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6. Conclusions

Adipokines (leptin, adiponectin, chemerin and visfatin) and their cognate receptors (LEPR for
leptin, ADIPOR1, ADIPOR? for adiponectin and CMKLR1, GPR1, CCRL2 for chemerin) are expressed
in the oocyte and in the embryo of mammalian and avian species (Figure 10). In mammals, leptin
exerts beneficial effects on IVM and embryo development in numerous species (Figure 7, Table 6).
Similar data are shown for adiponectin in pigs (Figure 8), whereas chemerin reduces significantly
IVM in bovine (Figure 9). Until now, even if total visfatin invalidation in mice leads to embryo
lethality, no studies demonstrated a direct action of visfatin on IVM or/and early embryo development
(Figure 9). Regarding data concerning the expression of adipokines in the blastocyst, the literature
supports potential paracrine interactions/dialog between embryo and the mother via adipokines in
early pregnancy. Indeed, several studies also show that adipokines and their receptors are present in
the endometrial tissue. Thus, variation of adipokines or/and adipokine receptor expression or/and
adipokine receptor signaling could be involved in embryo implantation. Concerning fertilization, not
only the content in adipokines in egg but also those in spermatozoon have to be considered. Indeed,
recent studies show potential effects of leptin and new adipokines on the quality of sperm [11,12].
In birds, and more precisely in chicken, a positive effect of leptin has been suggested on follicle
differentiation whereas opposite data have been found concerning visfatin. No data are available
concerning the role of chemerin and adiponectin on IVM and embryo development. The avian egg
presents an opportunity to directly manipulate the developmental environment and study the role
of the adipokine on embryo development via in ovo injections. The main problem is the lack of
specific avian tools (antibodies, recombinant molecules, etc.,) to investigate the effects of adipokines
in this species. Indeed, as showed in this review, adipokines in humans or rodents and chicken
have low amino acid sequences identities. Finally, all the data suggest that additional studies are
necessary to better understand the role and the molecular mechanism of adipokines in IVM and
embryo development in mammals and birds, in order to determine their potential involvement in
fertilization failures and embryo development disorders.

FOLLICLE

Adiponectin : Low expression of adiponectin in GC (mouse, human) [137, 173]
Strong expression of adiponectin, AdipoR1 and AdipoR2 in TC (chicken) [181],
CL and oocytes (rat) [134]

Strong expression of adiponectin, AdipoR1 and AdipoR2 in cumulus cells and
oocytes of large follicles (pig) [176]

Visfatin is expressed in ovarian follicles (chicken) [78]

Chemerin expressiont with follicular growth (turkey) [79]

Granulosa cells
(GC)

EMBRYO

Expression of adiponectin, AdipoR1 and AdipoR2 found in
blastocysts (mouse, rabbit, pig) [135, 176]

Figure 10. Expression of adipokines and their receptors in the ovarian follicle and embryo.
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ADIPOQ Adiponectin

ADIPOR1 Adiponectin receptor 1

ADIPOR2 Adiponectin receptor 2

apM1 Adipose most abundant gene transcript 1 protein
BMI Body Mass Index

CCRL2 CC motif chemokine receptor like 2
cDNA Complementary deoxyribonucleic acid
CMKLR1 Chemokine like receptor 1

COCs Cumulus-Oocyte-Complexe

COX2 Cytochrome c oxidase subunit II
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EGK Eyal-Giladi and Kochav
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FSH Follicule stimulating hormone
GPR1 G protein coupled receptor 1

GV Germinal vesicule

hCG human Chorionic Gonadotropin
HH Hamburger and Hamilton

HMW High molecular weight

HPG Hypothalamus pituitary gonadal
ICM Inner cell mass

IGF-1 Insulin like Growth Factor alpha
IVF In Vitro Fertilization

IVM In Vitro Maturation

KO Knockout

LEPR Leptin receptor

LH Luteinizing Hormone

MAPK Mitogen-Activated Protein Kinases
mRNA Messenger Ribonucleic acid
NAMPT Nicotinamide phosphoribosyltransferase
NMN Mononucleotide nicotinamide

P4 Progesterone

P450ssc P450 side-chain cleavage enzyme
PBEF Pre-B-cell colony-enhancing factor
PCOS Polycystic ovary syndrome

PGES Prostaglandine E synthase

PI3K Phosphoinositide 3-kinase

PM Perivitellin membrane

RARRES 2 Retinoic Acid Receptor Responder protein 2
STAT3 Signal transducer and activator of transcription 3
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SNPs Single nucleotide polymorphisme

TE Trophectoderm

TIG2 Tazarotene-induced gene 2

VEGF Vascular endothelial growth factor

WAT White adipose tissue

zpP Zona pellucida
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