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Abstract: Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition
(EndMT) are physiological processes required for normal embryogenesis. However, these processes
can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye,
EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related
macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in
subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the
retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT,
respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early
stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT
and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD
have implicated a myriad of contributing factors including signaling pathways, extracellular matrix
remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction.
Questions arise as to differences in the mesenchymal cells derived from these two processes and their
distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD
microenvironment highlights the synergistic interactions between RPE and CECs that may augment
the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT
and EndMT and their contributions to both the dry and wet forms of AMD can aid the development
of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular
transdifferentiation processes, regenerate the retina and thus restore vision.

Keywords: age-related macular degeneration; epithelial–mesenchymal transition; endothelial–
mesenchymal transition; subretinal fibrosis; transforming growth factor-beta

1. Introduction

Subretinal fibrosis demarcates the end-stage of age-related macular degeneration (AMD), resulting
in permanent vision loss [1]. Fibrosis is the product of an aberrant and excessive wound healing response
characterized by the presence of motile and contractile mesenchymal cells termed myofibroblasts [2].
A dramatic remodeling of the extracellular matrix (ECM) is driven by the coordinated activity of
proteolytic enzymes called matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) [3].
This process restores the protective barrier, but can also progressively remodel and destroy normal
tissue leading to contracture and distortion of tissue architecture. Since retinal visual function is
achieved through highly organized anatomical layers and tightly coordinated cellular interactions,
subretinal fibrosis inevitably leads to profound and often irreversible visual impairment. Currently,
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the only treatment for subretinal fibrosis is through invasive surgical intervention and thus, research in
unravelling the molecular mechanisms underpinning aberrant retinal wound healing is imperative for
the development of non-invasive drug-based therapies [1].

Predominant in subretinal fibrotic lesions are myofibroblasts, which are not normally present in
adult tissues and thus, their cellular origins remain an ongoing debate. Extensive literature supports
the role of epithelial–mesenchymal transition (EMT) in myofibroblast production [3]. In the context of
AMD, retinal pigment epithelial (RPE) cells lose their cell–cell adhesions and apical–basal polarity,
transforming into mesenchymal cells through EMT [4]. Another emerging hypothesis is the role of
endothelial–mesenchymal transition (EndMT) in contributing to the mesenchymal cell population [5].
In neovascular AMD (nAMD), angiogenesis initiates inflammatory cell recruitment and increases
oxygen supply and nutrients to the macular region [6]. Neovessels sprouting from either the choroid
or the deep retinal vessels form choroidal neovascular membranes (CNV) or intraretinal angiomatous
proliferative lesions, respectively. EndMT of choroidal endothelial cells (CECs) or retinal endothelial
cells could contribute to the mesenchymal cell population in subretinal fibrotic lesions. These leaky
neovessels also contribute to retinal edema, hemorrhage and further potentiate the pathological wound
healing response.

Importantly, the process of EMT in RPE is not limited to subretinal fibrosis in AMD but rather,
has also been extensively studied and described in the context of proliferative vitreoretinopathy
(PVR) [7], epiretinal membrane (ERM) [8], and retinal fibrosis in proliferative diabetic retinopathy
(PDR) [9]. Similarly, EndMT has been studied in both choroidal and retinal endothelial cells in
numerous ocular angiogenic diseases in addition to nAMD, including proliferative diabetic retinopathy
and retinopathy of prematurity (ROP) [5,10]. Hence, mechanistic insights in EMT and EndMT gleaned
from studies outside of AMD may help to guide future AMD research.

In this review, we explore the roles of EMT and EndMT in the pathogenesis of AMD (Figure 1).
We provide evidence supporting EMT and EndMT as integral processes in the progression of dry
and wet AMD with a focus on signaling pathways, inflammation, oxidative stress, metabolism,
mitochondrial and autophagic dysfunction. We discuss the synergistic activity of RPE and CECs and
how this interaction may foment EMT and EndMT processes through a vicious cycle. We discuss
whether EMT and EndMT contribute differently to the retinal wound healing process or whether they
give rise to the same pool of mesenchymal cells. We conclude with a discussion on insightful directions
for future research opportunities in reversing subretinal fibrosis through mesenchymal–epithelial or
mesenchymal–endothelial transition (MET) to restore vision.
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Figure 1. Epithelial-mesenchymal transition (EMT) and endothelial-mesenchymal transition (EndMT)
in age-related macular degeneration (AMD). Schematic of EMT of retinal pigment epithelial (RPE) cells
and EndMT of choroidal endothelial cells (CECs) contributing to the mesenchymal cell population in
subretinal fibrosis of AMD.
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2. Definitions of EMT and EndMT

While EMT is a physiological process required for normal embryologic development, this process
can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis [11].
Thus, there are three categories of EMT: type 1 (embryology), type 2 (wound healing) and type 3
(cancer metastasis) [12]. The focus of this review is on type 2 EMT. Normally activated during tissue
regeneration in wound healing and repair, abnormal activation of type 2 EMT in a chronic and excessive
manner potentiates pathological tissue fibrosis. Initially discovered as a key mechanism in embryonic
cardiac development, EndMT research has now grown to encompass all three types of EMT including
fibrosis and cancer metastasis [13]. Importantly, EndMT is often considered a subcategory of EMT
since the endothelium is a specialized type of epithelial cell specifically lining blood vessels.

Both EMT and EndMT follow a highly coordinated sequence of events. The first step in EMT
involves downregulation of E-cadherin, a protein central to maintaining lateral contacts of neighboring
epithelial cells through adherens junctions [3]. Increased expression of mesenchymal markers such
as N-cadherin, vimentin, α-smooth muscle actin (α-SMA), ECM proteins (fibronectin and collagens),
as well as ECM remodelling proteins (MMPs and TIMPs) are concomitant to this cellular transition
into a mesenchymal phenotype [14].

An analogous process occurs in EndMT, where endothelial cells lose their endothelial markers,
including vascular endothelial-cadherin (VE-cadherin), CD31, platelet-endothelial cell adhesion
molecule 1 (PECAM-1), tyrosine kinase with immunoglobulin-like and EGF-like domains (TIE-1, TIE-2)
and von Willebrand Factor (vWF) [15]. Additionally, these cells gain the same mesenchymal markers
including N-cadherin, vimentin and α-SMA [15]. Aberrant angiogenic sprouting of endothelial
cells leads to rapid remodeling of the basement membrane through MMPs and plasminogen
activator-dependent proteolytic degradation of ECM components [16]. Such alterations of ECM
organization within the subretinal space may further drive EMT and EndMT by altering homeostatic
mechanochemical signaling [17] and promote TGFβ activation.

Ultimately, in both EMT and EndMT, a dramatic cytoskeletal reorganization results in an elongated,
spindle-shaped morphology characteristic of newly formed migratory mesenchymal cells. While both
RPE and endothelial cells are highly differentiated cells, their ability to undergo such drastic
morphological changes reveals immense cellular plasticity. The initial descriptions of EMT and
EndMT suggested that this conversion from epithelial or endothelial cell into mesenchymal cell was
a permanent conversion. However, more recently, these processes have lost the presumptions of
directionality and permanence, now reflecting the reversibility and spectrum of intermediary states
concomitant to these processes [18,19]. Partial EMT or EndMT permits hybridization of the EMT
or EndMT state, expressing both epithelial/endothelial and mesenchymal biomarkers concurrently.
Whether and how partial EMT and EndMT plays a role in AMD is yet to be investigated, but research
in cancer metastasis may lend a clue, showing that this transitional phenotype is metastable and highly
plastic with the capacity to undergo both partial or total reversal of the process [19]. Notably, cancer
metastasis is a type 3 EMT, whereas subretinal fibrosis is a type 2 EMT and thus, conclusions cannot be
directly drawn without proper investigation in appropriate AMD models.

During angiogenic sprouting, it is important to note that while endothelial cells express many
EndMT and ECM remodeling genes, they retain intercellular junctions and migrate as a connected sheet
of cells rather than as individual cells [18]. An emerging concept in understanding collective cellular
migration is “unjamming transition”, whereby epithelial cells move collectively and cooperatively.
This work has been pioneered by the Fredberg group in bronchial epithelial cells as a model to
understand lung fibrosis in asthma [20,21]. Differentiating parallels between unjamming transition
and collective endothelial cell migration in ocular angiogenesis provides an exciting subject for
future investigation.



Int. J. Mol. Sci. 2020, 21, 4271 4 of 26

3. TGFβ as the Master Regulator of both EMT and EndMT

Multiple extracellular ligands are involved in the initiation and progression of the EMT and
EndMT programs [14]. Robustly studied for its central role in governance of EMT and more recently,
EndMT, the ligand transforming growth factor-beta (TGFβ) is considered the master regulator of these
processes [22]. Other ligands involved in EMT include hepatocyte growth factor (HGF), fibroblast
growth factor (FGF), epidermal growth factor (EGF), connective tissue growth factor (CTGF), insulin-like
growth factor-2 (IGF-2) and inflammatory mediators such as interleukin-1 (IL-1) [23]. In EndMT, other
inducers include the inflammatory cytokines IL1-β, IL-6 and tumor necrosis factor-alpha (TNF-α) in
addition to the widely studied TGFβ [22].

TGFβ belongs to the TGFβ superfamily of growth factors implicated in several physiological
and pathological conditions. These span from embryological development to tumor metastasis,
autoimmune diseases and fibrotic diseases of the eye [3,24]. TGFβ is a tightly regulated signaling
molecule with complex transcriptional and translational processes. TGFβ is secreted from cells in
a latent form, comprising a dimeric pro-peptide (the latency-associated peptide, LAP) and a latent
TGFβ-binding protein (LTBP). Together, this tripartite complex of TGFβ, LAP and LTBP is termed the
large latent complex [25]. The LAP confers latency while the LTBP functions to direct and sequester the
growth factor into the ECM and assist in converting latent TGFβ into its active form. Sequestration of
latent TGFβ in the ECM is essential for proper mobilization of the latent cytokine and its activation [26].

Latent TGFβ can be activated in various ways such as heat, ultraviolet radiation, acidic pH,
proteolytic cleavage by MMPs, reactive oxygen species (ROS) and mechanical shear stress [27].
Once activated, TGFβ binds to specific transmembrane serine/threonine kinase receptors to transduce
its intracellular signal by phosphorylating the canonical Smad signaling pathway. TGFβ can also
activate an extensive host of non-canonical signaling pathways including the mitogen-activated protein
kinase (MAPK; p38, JNK, ERK), phosphatidylinositol-3-kinase/Akt (PI3K/Akt), mammalian target of
rapamycin (mTOR), Hippo/YAP, β-catenin/Wnt, protein kinase C and Rho-like GTPase that intricately
modulate distinct downstream TGFβ responses [28].

Of the three described mammalian TGFβ isoforms (TGFβ1/2/3), all have been detected in the
vitreous and aqueous humor of the human eye [29]. Approximately 90% of vitreal TGFβ is found in
the latent form [30]. TGFβ2 (both the latent and activated form) is the predominant isoform in the
eye, while TGFβ3 is present at low levels, and TGFβ1 is barely detectable in normal physiological
conditions [31–34]. The ratio of the three active TGFβ isoforms is 2.5:1:0 for β2:β3:β1 respectively in
human aqueous humor [31]. In the outer-retina, RPE constitutes the main source of TGFβ through
a large production and secretion of TGFβ2, while the expression of TGFβ1 and TGFβ3 is negligible to
null [35–37]. This makes the concentration of TGFβ2 in the RPE-Bruch’s membrane-choroid complex
10 times higher than levels normally observed in the neural retina [29]. Under physiological conditions,
the presence of TGFβ2 in the subretinal space serves as a potent immunosuppressant to ensure ocular
immune privilege, a special status in the eye to limit immune cell entry and inflammation to preserve
vision [38]. However, in pathological ocular conditions, a significant increase in TGFβ2 secretion
accompanies loss of cell–cell adhesions between RPE cells [37] and increased vitreal TGFβ2 has been
observed in EMT of RPE and PVR models [29].

4. Evidence and Molecular Drivers of EMT/EndMT in AMD

Histological studies on CNV membranes excised from patients with nAMD show a complex array
of cells and proteins including RPE, vascular endothelial cells, macrophages, pericytes, fibroblastic
cells, myofibroblasts and ECM [39–41]. During AMD, RPE cells degenerate, lose their characteristic
epithelial morphology and function, capacitating their migration into the retina and the sub-RPE
space [4,42]. Closer histological inspection of these “degenerating” cells suggests that they may not be
dying but rather, they may be reversibly transforming into mesenchymal cells via EMT to survive the
harsh microenvironment during AMD disease progression [42–44].
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A key family of transcription factors extensively studied in both EMT [45] and EndMT [46]
is the Snail superfamily of zinc-finger transcription factors. The Snail superfamily, including the
founding member, Snai1 (Snail) and later additions Snai2 (Slug) and Snai3 (Smuc), are key players in
the transcriptional repression of E-cadherin [45] and VE-cadherin [47]. Increased immunoreactivity for
mesenchymal markers (vimentin and Snai1) and reduced E-cadherin was found in RPE from donor
dry AMD tissues, characteristic of a type 2 EMT response [48]. Surgically excised CNV lesions contain
α-SMA-positive stromal cells believed to be transdifferentiated RPE [40]. Upregulated expression of
the EMT transcription factor, Snai1 was localized in RPE nuclei in CNV donor tissues from wet AMD
patients [49]. The importance of Snai1 has been validated in vitro by blocking EMT of RPE under
hypoxic conditions via silencing of Snail and TGFβ2 using a human RPE cell line, ARPE-19 [50].

Snai1 is also prominently described for its key role in angiogenesis. Snai1 is expressed on sprouting
vessels under both physiological conditions in the developing retinal vasculature and in pathological
angiogenic models of laser photocoagulation-induced CNV and oxygen-induced retinopathy (OIR)
mouse models [5]. Snai1 overexpression in human umbilical vascular endothelial cells (HUVECs)
induced cellular elongation and enhanced cell motility with lamellipodia formation, whereas Snai1
knockdown blocked migration, invasion and sprouting. RNA sequencing analysis showed that Snai1
knockdown reduces expression of genes governing cytoskeletal arrangement and ECM remodelling [5].
Moreover, intravitreal injection of small interfering RNA (siRNA) of Snai1 suppressed new vessel
formation in the developing retina and in mouse models of laser-induced CNV and oxygen-induced
retinopathy [5]. Activation of endothelial cells is an important initial stage in angiogenic sprouting,
whereby endothelial cells are required to generate a highly invasive phenotype much like the process
of EndMT. Endothelial cells must undergo a drastic transformation through cell–cell and cell–matrix
contact reconstruction, ECM degradation/synthesis, and migratory activity, as well as lamellipodia
and filopodia formation, to ultimately generate new blood vessels [18]. While further investigation is
required to unravel the link between EndMT and ocular angiogenesis, it is clear that Snai1, an EndMT
transcription factor plays an important role in promoting the early phase of ocular angiogenesis
including CNV development [5].

4.1. Role of Cytokine-Mediated Signaling Pathways

Both EMT and EndMT are regulated through a diverse network of signaling pathways such
as the canonical Smad and non-canonical TGFβ signaling pathways [51] (Figure 2). Critical to the
pathogenesis of CNV is the process of RPE detachment and dissociation. Disruption of RPE cell–cell
contact is required for TGFβ to initiate the EMT program [52]. Similarly, disruption of vascular
endothelial cell–cell contact is required for initiation of the EndMT program in models of organ
fibrosis [53] but is yet to be explored specifically for CECs in AMD. Junctional complexes such as
adherens junctions and tight junctions are crucial in maintaining structural integrity, apicobasal polarity
and barrier function of both epithelial [54] and endothelial cells [55]. These complexes are localized at
the plasma membrane and disrupted upon activation of EMT and EndMT signaling [13]. Disruption
of cadherins, the integral protein of adherens junctions (E-cadherin or P-cadherin for epithelial cells
and VE-cadherin for vascular endothelial cells) is an initiating factor in loss of cell–cell adhesion.

β-catenin is sequestered and maintained by cadherins at adherens junctional complexes [56].
However, once EMT or EndMT is activated, β-catenin takes on a new role as a signaling molecule for
the Wnt pathway as it disassociates from the cadherins at the membrane, translocates to the nucleus
and binds to the TCF/LEF family of transcription factors to activate EMT and EndMT transcription
factors including Snai1 [57,58]. Computational modeling of transcription factors regulating EMT in
RPE identified lymphoid enhancer-binding factor 1 (LEF-1) as one of the candidate nodes in the EMT
transcriptional regulatory network of RPE [59].
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Figure 2. Signaling pathways and mechanistic drivers of epithelial-mesenchymal transition (EMT) and
endothelial-mesenchymal transition (EndMT) in age-related macular degeneration (AMD). Various
extracellular cytokines and receptor tyrosine kinase (RTK) signaling pathways are involved in activating
EMT of retinal pigment epithelial cells and EndMT of choroidal endothelial cells. TGFβ is the master
regulator and activates both the canonical Smad signaling pathway and a host of non-canonical
signaling pathways. The Wnt/β-catenin signaling pathway also plays a key role in both EMT and
EndMT. Activation of EMT and EndMT results in the upregulation of various transcription factors
(TFs) such as Snai1 and mesenchymal genes and the downregulation of epithelial or endothelial genes,
respectively. This ultimately leads to myofibroblast transdifferentiation and excessive extracellular
matrix deposition observed in subretinal fibrotic lesions in AMD.

Nuclear localization of β-catenin has been observed in RPE cells undergoing EMT and inhibition
of β-catenin signaling prevented both EMT and proliferation [60,61]. Binding of cadherins to the cell
surface also activates a cascade of protein kinases including the Hippo signaling pathway [62] and
Src family kinases [63,64]. Blockade of Src kinases prevented EMT of RPE in vitro by maintaining
adherens junctional integrity [64]. The EMT gene, Zeb1, is a known target of the Hippo transcription
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factors, Yap and Taz. While Yap was not detectable in primary mouse RPE cells, Taz translocated to the
nucleus during EMT of RPE through activation of Zeb1 via the Taz-Tead complex [65].

The Jagged/Notch pathway has also been implicated in both EMT and EndMT. During
TGFβ2-induced EMT in RPE, a concomitant upregulation of Jagged-1, Notch-3 and their downstream
target genes Hes-1 and Hey-1 was observed [66]. Knockdown of Jagged-1 or treatment with DAPT,
a specific inhibitor of Notch receptor cleavage, blocked TGFβ2-induced EMT in RPE by suppressing
expression of Snail, Slug and Zeb1. Overexpression of Jagged-1 induced EMT in RPE like that of
TGFβ2. TGFβ2-induced upregulation of Jagged-1 in RPE was associated with activation of the
canonical Smad signaling pathway and non-canonical PI3K/Akt and MAPK pathways. A complex
interplay between ERK1/2, Smad and Jagged/Notch has also been reported in TGFβ2-induced EMT in
RPE [67]. Intriguingly, inhibition of p38 MAPK but not ERK1/2 blocked the increase in type 1 collagen
(COL1A1 and COL1A2) expression and transcriptional activity induced by TGFβ2 in ARPE-19 [68].
Further support for the role of p38 MAPK in EMT of RPE is highlighted in whole transcriptome RNA
sequencing of human PVR membranes and inhibition of p38 signaling effectively suppressed EMT of
RPE induced by the synergistic activity of TGFβ1 and TNFα [69].

TGFβ pathway activators were highlighted in a transcriptome wide expression profile analysis in
a RPE EMT model [4]. Many RPE wound response genes showed altered expression in wet and dry
AMD including key members of the TGFβ family. Notably, there was no representation of the TGFβ
pathway genes in the RPE-choroid GA data set [4]. This may be because GA is a disease state best
defined by cell death, where the actively involved cells are possibly restricted to the margins of the
diseased area. However, the TGFβ pathway was highly overexpressed in the CNV and GA data set,
highlighting the importance of the RPE wound response in advanced AMD [4]. This elevated TGFβ
expression in AMD corroborates data from a collaborative genome-wide association study that links
the TGFβ receptor type I (TGFBR1) polymorphism with risk of developing AMD [70].

A driving force for TGFβ in nAMD is inferred by animal models showing that TGFβ inhibition
effectively blocks CNV formation [71,72] and subretinal fibrosis [73]. The pro-angiogenic effects of
TGFβ are further shown in its capacity to upregulate the expression of vascular endothelial growth
factor-A (VEGF-A) in RPE through MAPK signaling [73]. Despite clear evidence of increased vitreal
and retinal TGFβ levels in clinical [70] and experimental CNV [74], its role in pathological angiogenesis
remains controversial. Increasing evidence shows that TGFβ can exert anti-angiogenic functions.
Surprisingly, the concentration and activity of TGFβ was found to be downregulated in the aqueous
humor of patients with nAMD [31]. This discrepancy may be linked to the fact that clinical samples
were taken from nAMD patients who were actively undergoing anti-VEGF therapy, which may impact
on TGFβ levels. Thus, the potential of TGFβ inhibitors to treat AMD should be met with caution until
further research is conducted to fully characterize the role of TGFβ in AMD. It is possible that TGFβ
may play different roles during the early, intermediate and late stages of AMD. The dual role of TGFβ
has been extensively studied in cancer metastasis with reports of acting as a tumor suppressor in normal
cells and early cancer development but as the tumors progress, the protective effects of TGFβ are lost
and instead, it switches to promote cancer invasion and tumor metastasis [75]. Currently, the role of
TGFβ in different stages of AMD is unclear and opens an important area of future investigation.

Besides TGFβ, other growth factors also play a key role in the progression from neovascularization
into fibrosis including VEGF and connective tissue growth factor (CTGF). The ratio of VEGF and
CTGF levels in the retina drive a so-called “angio-fibrotic switch”, whereby increased levels of
CTGF sequester VEGF. When the levels of CTGF sufficiently overcome VEGF levels, angiogenesis
ceases and excess CTGF drives scar formation [76]. CTGF correlates positively and VEGF correlates
negatively with the level of fibrosis. When the balance between these two factors shifts to a specific
threshold ratio, an angio-fibrotic switch occurs, and fibrosis ensues [77]. While CTGF itself does not
directly affect neovascularization, it may indirectly modulate VEGF levels [78,79]. In order to reduce
fibrosis-associated vision loss, supplementing anti-VEGF therapy with anti-CTGF targeting agents
may be required.
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Targeting CTGF, a more specific downstream regulator of the pro-fibrotic activity of TGFβ may
be a more feasible therapeutic option for eradicating fibrosis. In a rat model of diabetic retinopathy,
Hu et al. (2014) combined anti-VEGF (bevacizumab) and anti-CTGF therapy (using CTGF shRNA) and
showed that this dual-target intervention was more effective in improving microvessel ultrastructure
compared to single-target intervention [80]. While the angio-fibrotic switch has been extensively
studied in proliferative diabetic retinopathy where retinal neovascular membranes convert to retinal
fibrosis, a similar underlying process may be extrapolated to AMD and guide future research in
understanding the interplay of growth factors mediating CNV development and regression into
subretinal fibrosis.

4.2. Role of Inflammation in EMT/EndMT During AMD

The transition from early to advanced AMD has many features consistent with an aberrant wound
healing response resulting from underlying degeneration, oxidative stress and chronic inflammation.
Drusen disrupts the normal retinal tissue architecture, impedes transport between the RPE and choroid
and serves as sites of activation of the complement signaling cascade [81,82]. Immunohistochemical
staining for NLR Family Pyrin Domain Containing 3 (NLRP3) is found in RPE of patients with
advanced AMD, suggesting inflammasome activation in AMD pathogenesis [83,84]. Inhibition of the
interleukin-6 (IL-6) receptor suppressed a mouse model of subretinal fibrosis [85]. Injection of activated
macrophages into the subretinal space induced EMT in RPE, establishing a novel animal model of
focal subretinal fibrosis [86]. Overexpression of miR-194 suppressed TGFβ1-induced EMT in APRE-19
cells by functionally targeting ZEB1 and inflammatory pathways [87]. The anti-inflammatory drug,
NS-398 (COX-2-selective antagonist), blocked CNV in subretinal fibrosis with reduced macrophage
infiltration, reducing both VEGF and TGFβ expression in the RPE-choroid complex [88]. Another drug
with anti-inflammatory properties, resveratrol, also effectively suppressed TGFβ2-induced EMT in
RPE [89].

Pro-inflammatory cytokines can propagate their signals by activating endothelial cells into
mesenchymal cells through EndMT [53]. Two such pro-inflammatory cytokines, TNFα and interleukin-1β
induced human retinal microvascular endothelial cells to undergo EndMT with loss of endothelial cell
markers (VE-cadherin and endothelial nitric oxide synthase) and gain of mesenchymal markers (Snai1,
transgelin, calponin and fibroblast specific protein-1) [10]. Further investigation is needed to validate and
generalize these observations to determine whether similar mechanisms also exist for CECs.

4.3. Metabolic Dysfunction and Autophagy in AMD

As described above, abnormal RPE cells in AMD have morphologic features characteristic of
a type 2 EMT, a process that can be activated by oxidative stress-induced impairment of autophagy
and lysosomal function [90–92]. EMT can be considered a transcriptional program, allowing cells
to survive stresses including oxidative stress but at the cost of losing their specialized functions as
epithelial cells. Under homeostatic conditions, cells (RPE and neurons) within the macular region
are exposed to constant substantial oxidative and metabolic stress [93] and as such, mitochondrial
dysfunction has emerged as a key mediator in the pathogenesis of AMD [94]. Reduced mitochondrial
number [95], preferential mtDNA damage [96,97], higher levels of mtDNA rearrangements [98,99],
decreased total ATP synthase subunits [100,101] and decreased mitochondrial heat shock protein
(mtHsp70) [100] have been reported in RPE from AMD donors compared to control subjects. Reduced
mitochondrial bioenergetic function [102] and reduced ATP production [103] are evident in RPE cells
isolated from human donors with AMD compared to healthy controls. Moreover, defects in the major
energy sensor, AMP-activated protein kinase (AMPK), have been implicated in EMT of RPE [104].
Enhancing mitochondrial respiration using dichloroacetate, a structural analogue of pyruvate, blocked
TGFβ2-induced EMT in RPE [105]. High glucose induces both EMT [106] and EndMT [107] in
RPE and retinal endothelial cells, respectively, implicating the role of hyperglycaemia-induced
metabolic dysfunction.
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Mechanistic insights into mitochondrial dysfunction in AMD have highlighted a protective role
for proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in RPE during AMD [94,108].
Repression of PGC-1α in mice and exposure to a high-fat diet resulted in AMD-like abnormalities in the
RPE [109]. Work in our laboratory identified PGC-1α as a master regulator of mitochondrial biogenesis
and function in RPE, increasing in expression with RPE maturation [110]. Recently, we showed that
silencing PGC-1α in ARPE-19 profoundly disrupted mitochondrial function, redox state, energy sensor
activity and autophagic function [111]. Intriguingly, we discovered that silencing PGC-1α in RPE
ultimately induced an EMT response [111]. Our laboratory identified ZLN005 as a selective PGC-1α
transcriptional regulator in enhancing mitochondrial respiratory function in RPE and protecting RPE
from oxidative stress [112]. Investigations into whether ZLN005 may also block EMT in RPE are
currently underway in our laboratory.

Lysosomal dysfunction has been identified as a major pathogenic process in AMD [113] and may
also drive RPE into EMT to support cell survival in a stressful microenvironment. βA3/A1-crystallin,
encoded by the Cryba1 gene, is an important protein for lysosomal clearance in RPE [48]. Age-dependent
lysosomal deficiency has been implicated in numerous age-related diseases such as AMD as
well as Parkinson’s and Huntington’s diseases [114]. Genetically engineered mouse models with
a loss-of-function mutation in Cryba1 showed an AMD-like phenotype and also expressed key
molecular markers of EMT [48]. Autophagy guides the degradation of unwanted or dysfunctional
cellular components by delivering them to lysosomes. Reduced autophagic capacity has been
linked to AMD [115]. Defects in mitophagy, a selective form of autophagy that specifically removes
dysfunctional mitochondria from cells has also been implicated in AMD pathogenesis [116]. In cancer
studies, the activation of autophagy, mitophagy and impaired mitochondrial functionality have been
linked to both EMT [117] and EndMT [118], warranting further research into whether parallels exist
for RPE and CECs.

5. Role of the Extracellular Matrix in AMD-Associated EMT/EndMT

Sandwiched between the RPE and choriocapillaris is Bruch’s membrane, a pentalaminar structure
consisting of elastin- and collagen-rich ECM. Bruch’s membrane acts as a molecular sieve to regulate
the reciprocal exchange of biomolecules, nutrients, oxygen and metabolic waste products between the
retina and the general circulation. Since Bruch’s membrane is acellular, transport occurs primarily via
passive diffusion and depends on the hydrostatic pressure on either side of the membrane. On the
photoreceptor side of the RPE, the subretinal space is occupied by the interphotoreceptor matrix,
a highly organized, hydrophilic matrix composed of large glycoproteins and proteoglycans that play
a key role in retinal adhesion to the RPE and regulate nutrient transport [119].

Due to its anatomical position and functional role in retinal homeostasis, the significance of
Bruch’s membrane cannot be overlooked in AMD pathogenesis. The ECM acts as a supportive
framework for RPE and CECs, creating an internal environment for signal transduction, nutrient
transport, metabolism, structural integrity and scaffolding to regulate cellular adhesion, migration,
proliferation and differentiation. A physiological balance exists between the synthesis and degradation
of ECM components and any disruption of this homeostasis can initiate and propagate disease states.
As a result of CNV, vessels from the choroid proliferate and penetrate through the ECM border,
their immature vascular walls inducing an increase in leaks of serum, lipoproteins and hemorrhage
into the extracellular space.

5.1. ECM Remodelling During AMD Progression

One key event during EMT and EndMT is aberrant ECM remodeling and mounting evidence
suggests that age- and/or disease-associated alterations in ECM composition act as driving forces of EMT
and EndMT. RPE degeneration is preceded by age-dependent changes in Bruch’s membrane [120,121],
such as increased thickness, reduced permeability, and accumulation of lipids, extracellular material,
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local oxidation and glycation products [122–125]. This suggests that alterations of Bruch’s membrane
may be partly responsible for the subsequent RPE dysfunction.

This concept is supported by in vitro analysis showing that the culture of normal human RPE
on Bruch’s membrane collected from aged or AMD patients drastically changes their behavior and
gene expression profiles [126–128]. While cobblestone RPE have been successfully cultured on human
submacular Bruch’s membrane explants with an intact RPE basement membrane [129], attempts to
grow RPE on the deeper portion of the inner collagenous layer or elastic layer of Bruch’s membrane
have been less successful [129,130]. This may explain why patients who undergo submacular surgery
with CNV excision have poor visual recovery [131]. Proliferation of cobblestone RPE monolayers are
also reduced if RPE are grown on older donor Bruch’s membranes derived from AMD patients [128,130].
This lack of adhesion may also be explained by age-related deposits of anti-adhesive molecules and
reduced integrin ligands that typically promote RPE attachment [132].

Further ECM alterations occur during both early and advanced stages of AMD as an imbalance
of MMPs and TIMPs enhance pathological production, accumulation and degradation of ECM
proteins by RPE and CECs [133]. The most prominent ECM components in subretinal fibrosis are
collagen types I and IV and fibronectin, with small amounts of collagen types III, V and VI [134].
Collagen type IV surrounding RPE in the stroma is also a major component of the basal membrane
of normal RPE. Subretinal neovascular membranes are characterized by large “feeder” vessels with
many new capillaries in different stages of maturation, embedded in an abundant stroma. Within the
lesion, RPE-like pigmented cells and fibroblast-like cells form most of the non-vascular cell types.
As the new vessels sprout from the choroid, they induce a splitting between the RPE cells and Bruch’s
membrane, notably this only applies to type 2 CNV due to its anatomical location [6]. The newly
formed capillaries have morphologically ill-defined basement membranes that contain substantial
levels of collagen type IV and fibronectin, but unlike normal capillaries, lack laminin or heparan sulfate
proteoglycans [134].

5.2. TGFβ and ECM Changes in AMD

As noted, imbalances in MMP-2/9 and TIMP-1/2 in dysfunctional RPE play a key role in both early
dry AMD and advanced wet AMD [133,135]. MMP-2/9 digest the primary structural ECM proteins
including fibronectin, collagen IV, collagen V and laminin. Loss of MMP-2 leads to an accumulation of
collagen IV that manifests as deposits underneath the RPE layer. Indeed, MMP-2 is the most abundant
enzyme synthesized by RPE cells and disordered MMP-2 activity is a key pathogenic factor in early
AMD development [136,137]. MMP-1 degrades collagen I-III and its decreased activity favors soft
drusen development. Activation of MMP-1 by lysosomal enzymes in aged and dysfunctional RPE
cells leads to the development of advanced wet AMD in susceptible individuals. Increased MMP
levels have been reported in CNV membranes [138,139]. Exogenous TGFβ can stimulate the release of
MMP-9 by retinal capillary endothelial cells as can direct contact with astrocytes or Müller cells [140].
TGFβ increases permeability of bovine retinal endothelial cells by a mechanism that appears to involve
production of MMP-9 [140]. Evidently, MMPs play a key role in mediating the pathogenesis of AMD
and indeed, the efficacy of MMP inhibitors has shown promise in treating CNV [138].

5.3. uPA and ECM Changes in AMD

Another family of proteolytic enzymes, namely the urokinase-type plasminogen activator (uPA)
and its receptor (uPAR) have been implicated in ECM remodeling during advanced nAMD [141].
uPA is a serine protease that binds with high affinity to its cell surface receptor, uPAR, thus stimulating
the interaction between uPAR and transmembrane proteins such as integrins to regulate cytoskeletal
reorganization, cell migration, differentiation and proliferation. Both TGFβ1 [142] and TGFβ2 [143]
increased the expression of uPAR in RPE. Clinically, a visually devastating complication of nAMD
is the development of submacular haemorrhage [144] and may provide a potential source of blood
clotting factors such as uPA enzymes.
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Plasminogen activator inhibitor type-1 (PAI-1) is the primary endogenous inhibitor of uPA. PAI-1
is expressed in human CNV specimens [145] and was localized to migrating endothelial cells [146].
Increases in PAI-1 have been localized to newly forming retinal vessels in a laser-induced CNV
model [145] and an OIR mouse model [147]. In RPE, increases in PAI-1 occur concomitantly with
the mesenchymal marker, α-SMA, in a model of sphingosine-1-phosphate (S1P)-induced EMT [148].
In contrast, a rat model of OIR showed that high doses of recombinant PAI-1 could block new retinal
vessel formation [149]. This may be explained by the dual and dose-dependent role of PAI-1 in
angiogenesis with PAI-1 exerting pro-angiogenic effects at low concentrations and anti-angiogenic
activity at high concentrations [145,150]. This suggests that an optimal physiological level of PAI-1
may be required to ensure homeostasis of retinal vascular health.

5.4. Mechanotransduction in AMD

Altered mechanical properties of the ECM such as matrix stiffness can drive fibrosis [151]. Cells possess
the ability to sense their physical surroundings and convert mechanical cues into biochemical signals
triggering downstream intracellular events, a process termed mechanotransduction [152]. Integrins and
integrin-linked kinases are responsible for physically anchoring cells to the ECM of their underlying
basement membrane and in doing so, serve as bidirectional hubs transmitting biomechanical signals
between cells and their microenvironment [153]. In surgically excised human CNV specimens, expression
of integrins αvβ3, α1β1, α2β1 and α5β1 colocalized with endothelial cells in tissues obtained from early
to mid-stages of AMD [154]. Application of tensile forces to cultured RPE cells using collagen-coated
magnetite beads and magnetic fields was sufficient to upregulate EMT markers (MMP-2 and fibronectin)
and robustly activated p38 MAPK signaling [155]. The mechanosensitive ion channel, transient receptor
potential vanilloid 4 (TRPV4), is known to regulate matrix stiffness and mechanosensing in EMT in models
of skin fibrosis [156], breast cancer [157] and corneal fibrosis [158]. It is unknown whether TRPV4 also
plays a role in EMT and EndMT in AMD, but it is promising to note that this mechanosensitive channel is
expressed in RPE cells [159] as well as both retinal and choroidal endothelial cells [160].

Clinically, excessive mechanical stress can be induced by the presence of epiretinal membranes
(ERM) that may complicate AMD. ERM, a fibrocellular membrane that proliferates along the inner
retinal surface at the macular region can exert tractional forces that lead to macular folds, macular
edema and in advanced cases, foveal detachment [161]. Co-existence of an ERM has been observed
in 26% of eyes with nAMD [162]. Co-treatment of adult human RPE stem cells with TGFβ and
TNFα synergistically activated an EMT program, producing fibroblastic and contractile membranes
resembling ERM. Treatment of RPE cell suspensions with vitreous obtained from ERM patients induced
EMT following mechanical stress by cell scraping [163].

6. Therapeutic Considerations: Modulating Microenvironmental Signals

While extensive literature has investigated the roles of RPE and CECs in AMD separately,
the in vivo situation is far more complex. In the following section, we discuss how the microenvironment
may influence the processes of EMT and EndMT in vivo through synergistic effects between RPE and
CECs. We also discuss the promise of reversal and inhibition of EMT and EndMT as a therapeutic
approach for AMD.

6.1. Synergistic Interaction between RPE and CECs

During development, the RPE controls formation of the choriocapillaris and later its maintenance
during adulthood. Development of the choroidal vasculature depends on proper RPE differentiation.
The crucial relationship between RPE and CECs is not restricted to embryology but persists into
adulthood. Histopathological studies in atrophic AMD patients shows that early damage to the RPE
layer precedes atrophy of the choriocapillaris indicating that choriocapillaris loss is secondary to
RPE dysfunction [164–166]. When RPE are removed from Bruch’s membrane, degeneration of the
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choriocapillaris was observed, suggesting that RPE may produce and release vital tissue-specific
angiocrine factors [167–169].

In both clinical and experimental settings, choroidal atrophy and/or ischemia is associated with
corresponding regional RPE lesions and serous detachment [170,171]. Certainly, reduction in vascularity
inevitably leads to reduced oxygen, nutrients and circulating factors, hence altering cell function and
survival of surrounding tissues. However, in vitro experiments have also identified a synergistic
interaction between RPE and endothelial cells in enhancing the differentiation and functionality of
each cell type through the exchange of homeostatic paracrine factors [172,173]. Ocular overexpression
of TGFβ1 induced EMT in RPE and subsequent atrophy of the choriocapillaris [174]. Modulation of
RPE ECM deposition also plays a role in mediating the heterotypic trophic effects [172]. RPE integrin
receptors can sense these changes and trigger Rho GTPase signals to enhance RPE barrier function
and RPE tight junction formation [173]. Given this synergistic relationship between RPE and CECs,
a currently unanswered question is whether similar synergistic effects exist between EMT and EndMT
in the development of subretinal fibrosis.

One potential unifying target is oxidized lipoproteins that act on both RPE and CECs. Oxidized
low density lipoproteins (OxLDL) are known to preferentially accumulate in the macular region and
are important players in AMD pathogenesis [175]. OxLDL is a key contributor to inflammation and
oxidative stress in AMD by increasing ROS accumulation [176] and activating the NRLP3 inflammasome
in RPE [177], thus promoting RPE senescence and death [178]. Additionally, OxLDL enhances CNV
lesions by inducing EndMT in Rhesus monkey choroid-retinal vascular endothelial cells (RF/6A)
through the TGFβ2/Smad signaling axis [179].

Whether a similar crosstalk between RPE and CECs is involved in AMD progression by potentiating
EMT or EndMT is unclear. Few studies have explored whether any factors are released by these cells
to support the mesenchymal transdifferentiation of the other cell type. A recent study demonstrated
that exosomes released from EMT-induced RPE cells are enriched in pro-angiogenic factors and
promote endothelial cell migration and tube formation [180]. Whether similar pro-EMT signaling
factors are released by CECs during early AMD is unknown. However, evidence suggests that
RPE can produce thrombin from serum-derived prothrombin and that thrombin can act as a potent
inducer of EMT by RPE via autocrine activation of platelet-derived growth factor (PDGF)-receptor
signaling [181]. Thrombin reduced zonula occludens (ZO)-1 gene expression and increased expression
of mesenchymal markers, α-SMA and the pro-alpha1 chain of collagen type I, indicating an EMT
response. Taken together, these data highlight that the coagulation cascade may facilitate EMT of RPE
and contribute to subretinal fibrotic membrane formation.

Once successfully restored, an organized and functional RPE monolayer has the capacity to
produce a Bruch’s membrane-like matrix [182]. ARPE-19 cells cultured in the presence of dextran
sulphate to promote ECM secretion produced proteins found in the inner layers of Bruch’s membrane
such as fibronectin, vitronectin, collagen IV, collagen V and laminin-alpha-5 [182]. Proteins such as
elastin (found in the middle elastic layer) or the outer layers (collagen VI) were not produced by
ARPE-19 [182]. Since the elastic layer of Bruch’s membrane is prone to calcification with age [183] and
breakdown of elastic fibers can potentially release pro-angiogenic proteins [184], the lack of elastin
production by RPE in this model may be beneficial. This is a promising finding for future EMT-targeting
therapies as restoration of the epithelial phenotype may have the potential to also restore a healthy
microenvironment, thus ensuring long-term drug efficacy.

6.2. Reversal of EMT and EndMT as a Potential Therapeutic Approach for AMD

Reversal of EMT and EndMT is known as mesenchymal–epithelial transition or mesenchymal–
endothelial transition, herein collectively termed as MET. Ambitious as it may sound, activation of the
MET program and restoration of a functional monolayer of epithelial or endothelial cells is a plausible
therapeutic approach for combating AMD. In vitro studies show that RPE have the capacity to undergo
MET depending on the culture conditions. High plating density, low passage number and reduced
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serum concentration are effective in limiting cell spreading and proliferation, thus re-establishing the
epithelial monolayer [185–187].

Activation of EMT, EndMT, and MET are conserved embryological processes and as much as EMT
and EndMT can be hijacked by pathological cells, so too can we harness the MET program to restore
the epithelial or endothelial phenotype. Whether MET induces cells to return to their innate cell type
or whether it can be induced to differentiate into another cell type based on the microenvironment
is currently unknown. Complete reversal of TGFβ-induced EMT in renal tubular epithelial cells
required inhibition of both Zeb expression and the Rho signaling pathway [188]. Reversal of EndMT
has been successfully accomplished in a brain microvascular endothelial cell line using hydrocortisone,
which enhanced endothelial cell adhesive properties and barrier function [189]. MET remains an
exciting area in AMD research, warranting further investigation.

If reversal of EMT is to be a feasible therapeutic strategy for combating AMD, then measures
to restore the microenvironment may also be required. Without a proper substrate to attach to,
RPE cells undergo apoptosis [190], an important hurdle for the success of single cell transplantation
approaches. The fate of RPE cells seeded onto Bruch’s membrane depends on the composition and
three-dimensional arrangement of the ultrastructural layer of the basement membrane available for
reattachment. Age-related alterations in the biochemical and matrix composition of ECM molecules
in the basement membrane may not only hinder proper RPE reattachment but could also limit
the efficiency of MET strategies. Prior studies have evaluated the effect of rejuvenating Bruch’s
membrane to enhance cell reattachment and survival and found that reengineering the surface of
Bruch’s membrane explants either by cleaning and/or adding an ECM protein coating improves
the final surface coverage of transplanted RPE [191]. Cleaning the surface of Bruch’s membrane by
abrasive mechanical debridement promotes RPE repopulation [192]. However, adding ECM ligands to
the elastin layers of Bruch’s membrane does not increase RPE attachment indicating that there are
limitations to how many layers of Bruch’s membrane need to be intact in order for chemical surfacing
to be feasible [193]. Whether such a strategy could be utilized to potentiate MET of endogenous RPE
cells needs further investigation.

6.3. EMT and EndMT Inhibition

The inhibition of EMT and EndMT has primarily been explored in mechanistic experiments using
in vitro cell culture and in vivo animal models with few drug candidates progressing to preclinical
settings for AMD. Rather, most of the preclinical testing on blocking EMT of RPE has been pioneered
in PVR. Methotrexate, a commonly used anti-cancer agent that inhibits de novo nucleotide synthesis,
can also be used for its anti-inflammatory properties at low concentrations to treat rheumatoid arthritis
and psoriasis [194]. Intraocular methotrexate is used to treat many inflammatory ocular conditions
including uveitis, episcleritis, scleritis and sympathetic ophthalmia and at higher doses, primary
intraocular lymphoma [195,196]. A small, retrospective pilot study on 29 patients with PVR or at high
risk of PVR showed that intravitreal methotrexate infusion during surgery improved patient outcomes
with stable visual acuity at 6 months in 83% of patients and low rates of recurrent PVR (20%) [197].
ADX-2191 (intravitreal methotrexate 0.8%) is currently in a phase 3 clinical trial for prevention of PVR,
known as the GUARD trial [198]. Case reports on the use of intravitreal methotrexate in two nAMD
patients who were unresponsive to anti-VEGF treatment showed promise with both patients exhibiting
reduced subretinal fluid accumulation and perifoveal leakage [199]. Larger scale and longer-term
clinical trials are required to evaluate the efficacy of methotrexate in AMD. Another promising drug is
Ro5-3335, an inhibitor of runt-related transcription factor 1 (RUNX1), known to be upregulated during
ocular angiogenesis [200] and is currently being tested for its efficacy in blocking PVR.

While EMT is a key process in both AMD and PVR, it is important to note that the two conditions
represent vastly different timelines with AMD being a chronic condition that progresses at a slower
rate compared to PVR that develops as a more acute response to the retinal trauma inflicted upon
surgical repair of retinal detachment. Since subretinal fibrosis occurs in the end-stage of AMD, any
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potential intervention for this condition may need to be administered prophylactically over the course
of a long period of time before the development of major visual symptoms, thus raising concerns
regarding patient compliance and side effects.

7. Concluding Remarks and Future Directions

Extensive literature conclusively supports the importance of EMT and EndMT in AMD from
in vitro experiments on RPE and ECs to in vivo animal studies and histopathological analyses of human
AMD donor tissues. EndMT is still a relatively newly recognized type of cellular transdifferentiation
and although it has been well accepted in the field of embryology, there has been some hesitation
and controversy amongst the scientific community in recognizing EndMT as a pathogenic factor
in pathological conditions in adult tissues. We hope that this review highlights the emerging
involvement of both EMT and EndMT in AMD and its acceptance into the mainstream understanding
of AMD pathogenesis. Many questions remain unanswered that will need to be addressed in future
investigations, including the differential contributions of EMT and EndMT to the mesenchymal cell
population in subretinal fibrosis, any potential synergistic activity between EMT and EndMT in AMD
and the controversial dual role of TGFβ as both a pro- and anti-angiogenic factor in different clinical
stages of AMD.

Another key issue is the role of other cells in giving rise to the mesenchymal cell population in
subretinal fibrotic membranes in AMD. In an experimental CNV model using irradiated mice engrafted
with green fluorescent protein (GFP)-positive bone marrow cells, many of the α-SMA-positive cells
were also GFP-positive suggesting a systemic source of mesenchymal cells in CNV lesions [201].
Macrophages may also give rise to myofibroblasts via macrophage-myofibroblast transition (MMT) in
subretinal fibrosis secondary to nAMD [202]. Choroidal pericytes may represent another potential
source of myofibroblast precursors where they have been found to infiltrate CNV and transdifferentiate
into collagen I-expressing cells in a photocoagulation CNV mouse model [203].

In order to adequately identify the cellular origins of the mesenchymal cell population, lineage
tracing studies and genetic cell labeling need to be utilized to enhance our understanding. Tracking EMT,
EndMT and MET in vivo in humans may also present an exciting possibility through improvement of
positron emission tomography-magnetic resonance imaging (PET-MRI). The high resolution achieved
through fluorodeoxyglucose-PET (FDG-PET) enables cell-tracing studies for a deeper analysis of
fibrotic lesions as they develop in real-time.

To date, the literature exploring EMT and EndMT has largely studied these processes in isolation.
While it is important to narrow our focus to gain mechanistic insights in EMT and EndMT, it is equally
important to understand their synergistic potential in vivo. The mesenchymal cell population in
subretinal fibrotic lesions requires further characterization to determine their cellular source, but also
to determine whether mesenchymal cells derived from EMT or EndMT are distinct and contribute
uniquely to different stages of AMD pathogenesis. Excavating the missing pieces of the puzzle
is essential in harnessing the power of MET. We are optimistic that this review will encourage
further investigation into the burgeoning field of EMT and EndMT in AMD and thereby, enable the
development of novel drugs to combat AMD.
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Abbreviations

AMD age-related macular degeneration
AMPK adenosine monophosphate-activated protein kinase
α-SMA alpha-smooth muscle actin
CEC choroidal endothelial cell
COL1A1 collagen type I alpha 1 chain
CNV choroidal neovascularization
CTGF connective tissue growth factor
EC endothelial cell
ECM extracellular matrix
EGF epidermal growth factor
EMT epithelial–mesenchymal transition
EndMT endothelial–mesenchymal transition
ENOS endothelial nitric oxide synthase
ERK extracellular-signal-regulated kinases
ERM epiretinal membrane
FAK focal adhesion kinase
FDG-PET fluorodeoxyglucose- positron emission tomography
FGF fibroblast growth factor
FN fibronectin
GA geographic atrophy
GFP green fluorescent protein
HGF hepatocyte growth factor
HUVECs human umbilical vein endothelial cells
ICAM intercellular adhesion molecule
IGF insulin-like growth factor
IL interleukin
LAP latency associated peptide
LTBP latent TGFβ-binding protein
MAPK mitogen-activated protein kinase
MMPs matrix metalloproteinase
MMT macrophage-myofibroblast transition
mtHsp70 mitochondrial heat shock protein
mTOR mammalian target of rapamycin
nAMD neovascular age-related macular degeneration
NRLP3 NLR Family Pyrin Domain Containing 3
PAI-1 plasminogen activator inhibitor type-1
PECAM-1 platelet-endothelial cell adhesion molecule-1
PET-MRI positron emission tomography-magnetic resonance imaging
PDGF platelet-derived growth factor
PDR proliferative diabetic retinopathy
PGC1α proliferator-activated receptor gamma coactivator 1-alpha
PI3K phosphatidylinositol-3 kinase
PVR proliferative vitreoretinopathy
OIR oxygen-induced retinopathy
OxLDL oxidized low density lipoprotein
Rho GTPase ras-homologous GTPase
ROP retinopathy of prematurity
ROS reactive oxygen species
RPE retinal pigment epithelium
RTK receptor tyrosine kinase
RUNX1 runt-related transcription factor 1
siRNA small interfering RNA
S1P sphingosine-1-phosphate
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Taz transcriptional co-activator with PDZ-binding motif
TCF/LEF t-cell factor/lymphoid enhancer-binding factor
Tead transcriptional enhanced associate domains
TFs transcription factors
TGFβ transforming growth factor-β
TGFBR1 transforming growth factor-β receptor 1
TIE tyrosine kinase with immunoglobulin-like and EGF-like domains 1
TIMPs tissue inhibitors of matrix metalloproteinase
TNF-α tumor necrosis factor-α
TRPV4 transient receptor potential vanilloid 4
TSP1 thrombospondin 1
uPA urokinase-type plasminogen activator
uPAR urokinase-type plasminogen activator receptor
VCAM vascular cell adhesion molecule
VE-Cadherin vascular endothelial-cadherin
VEGF vascular endothelial growth factor
vWF von Willebrand Factor
Wnt Wingless/Integrated
YAP Yes-associated protein
Zeb zinc finger E-box-binding homeobox
ZO-1 zonula occludens-1
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